• Keine Ergebnisse gefunden

By   examining   a   healthy   cardiac   tissue   sectioned   in   a   plane   parallel   to   the   direction   of   its   fibers,   (Figure   3d),   highly   dense   structures   appear   to   connect   two   adjacent   cardiomyocytes.   These   intercalated  disks  (ID)  contain  multiple  adhesive  components  that  ensure  mechanical  coupling  and   rapid  coordinated  electrical  propagation,  therefore  are  vital  for  the  integrity  of  the  myocardium  and   its  ability  to  function  as  a  whole191.  Three  types  of  adhesive  junctions  exist  in  the  ID  domain:  fascia   adherens  and  desmosomes,  which  are  primarily  mechanical;  whereas  gap  junctions  are  the  sites  of   intercellular  electrical  coupling.  

 

Fascia   adherens   and   desmosomes   anchor   actin   filaments   (described   previously,   involved   in   the   contractile  machinery)  and  intermediate  filaments  (a  component  of  the  cytoskeleton)  at  the  plasma   membrane   of   adjoining   cells   respectively,   thereby   provide   physical   and   mechanical   attachment   between  the  cells191,  192.  In  fascia  adherens,  transmembrane  protein  N-­‐cadherin  connects  sarcomeric   actin   filaments   and   maintains   strong   cell-­‐cell   adhesion.   Desmosomes   are   small   and   discrete   structures   composed   of   three   separate   families   of   proteins:   desmosomal   cadherin,   armadillo   proteins   and   plakins193.   In   the   normally   working   myocardium,   both   fascia   adherens   and   desmosomes   are   involved   in   the   sensing   and   regulation   of   mechanical   stresses   acting   along   the   longitudinal  axis.  The  area  composita,  a  mixed  type  of  junctional  structure,  is  exclusive  to  the  ID  of   mammalian   species   suggesting   an   evolutionary   mechanism   to   strengthen   mechanical   coupling   in   the   heart   of   higher   vertebrates194.     Their   role   is   essential   in   organs   subjected   to   high   mechanical   stresses,  such  as  the  skin  and  the  heart.  Mutations  in  genes  coding  for  these  junctional  proteins  are   involved  in  cardio-­‐cutaneous  inherited  pathologies195,  such  as  Naxo’s  disease196,  197.    

 

Connexin43   (Cx43)   is   the   major   protein   constituting   gap   junctions,   which   are   made   of   two   connexons  (or  hemichannels)198  and  allow  non-­‐selective  diffusion  of  ~1kDa  molecules199,  ions,  and   second   messengers,   thereby   offering   electro-­‐metabolic   coupling.   3   types   of   connexins   exist   in   the   heart:  Cx40,  43  and  45  (the  number  refers  to  their  molecular  weights;  43  being  the  most  abundant).  

Saffitz  et  al.  describe  the  spatial  distribution  of  gap  junctions  as  well  suited  for  the  heart’s  functional   requirements200,   where   large   gap   junctions   at   the   ends   of   cells   presumably   facilitate   the   efficient   intercellular   current   transfer   and   provide   favorable  current-­‐to-­‐load  conditionsx  201.   Gap   junction   specific  proteins  and  density  have  a  direct  influence  on  the  velocity  of  propagation.    The  measured   CV  in  Purkinje  fibers  (~3m.s-­‐1)  is  considerably  higher  than  the  one  recorded  in  the  ventricular  bulk   muscle   (~0.5-­‐0.7   m.s-­‐1   longitudinally;   0.3-­‐0.4   m.s-­‐1   transversely)202.   The   fast   propagation   is   partly   due  to  the  presence  of  different  connexins  in  the  gap  junctions  of  these  cells,  where  the  amount  of   Cx40  is  at  least  3  folds  higher  in  Purkinje  fibers  than  regular  cardiomyocytes203.  On  the  other  hand,   high   anisotropic   ratio     (AR)   was   also   attributed   to   the   shape   of   cells,   the   number   and   spatial   orientation  of  cellular  connections  rather  than  the  anisotropic  distribution  of  gap  junctions190.  The                                                                                                                            

x  Saffitz  et  al.  defined  current-­‐to-­‐load  as  the  difference  between  the  minimum  amounts  of  current  required  in  maintaining   conduction  and  the  actual  amount  delivered.  

crista  terminalis,  a  discrete  bundle  of  atrial  fibers  that  conducts  impulses  from  the  SAN  to  the  AVN,   is   characterized   by   a   relatively   high   AR   compared   to   the   bulk   ventricular   muscle   (~10   vs.   ~3   respectively),  despite  the  relatively  fewer  gap  junctions  present201.  It  was  suggested  that  because  of   the   elongated   shape   of   the   cells   found   in   the   crista   terminalis,   wave   fronts   traveling   in   the   transverse  direction  must  traverse  more  intercellular  junctions  per  unit  distance  traveled,  and  thus   would  encounter  more  resistance  to  their  propagation  than  wave  fronts  traveling  in  the  longitudinal   direction190,  204.    

 

In  reality,   mechanical   stresses   can   induce   changes   in   gap   junction   density   at   the   ID,   subsequently   affecting  the  intercellular  communication  and  propagation  velocity  on  the  macroscopic  level.  Saffitz   et  al.  argue  that  the  close  proximity  of  gap  junctions  to  mechanical  adhesive  junctions  within  the  ID,   and  their  ribbon  like  structures  oriented  perpendicular  to  the  long  axis  of  the  cell  is  a  revolutionary   adaptation  that  would  protect  them  from  shear  stress200.    In  favor  of  this  point,  pulsatile  mechanical   stretch   was   shown   to   markedly   upregulate   Cx43   in   cultured   neonatal   cardiomyocytes,   inducing   remodeling  and  redistribution  of  gap  junctions  and  possibly  alterations  in  electrical  conduction205.   In  addition,  observations  suggest  that  mechanical  integrity  is  a  requirement  for  a  normal  excitation,   and   formation   of   adhesion   junctions   is   a  prerequisite   for   gap   junction   formation206.   On   the   other   hand,  Cx43  was  not  found  to  be  a  prerequisite  for  the  organization  of  mechanical  junctions192  and   that   electrical   conduction   was   maintained   in   Cx43-­‐deficient   mice,   suggesting   an   alternative   mechanism  of  electrical  propagation  in  the  context  of  severely  reduced  gap  junctions207.  A  growing   line  of  evidence  suggests  that  altered  mechanical  coupling  or  loss  of  cell-­‐cell  contact  for  any  reason   (chemical   mediator,   hypertrophy,   dilatation,   scarring…   etc.)   would   directly   modulate   electrical   pacing  of  the  heart.  Whereas,  the  opposite  is  not  yet  as  tangible:  impaired  electrical  coupling  doesn’t   affect  mechanical  coupling206.    

 

Under  normal  physiological  conditions,  cardiac  cells  don’t  show  similar  electrical  coupling  along  the   transverse  axis,  as  they  do  along  the  longitudinal  one14.  The  costamere  and  the  t-­‐tubules  are  the  two   major  structures  in  the  LM  domain  (Figure  3c).  The  term  costamere  refers  to  the  rib-­‐like  bands  that   encircle   the   cardiomycoyte   perpendicular   to   its   long   axis208.   It   consists   of   a   complex   protein   network   that   not   only   forms   a   physical   attachment   of   the   underlying   Z-­‐line   to   its   outer   stress   tolerant   extracellular   matrix   (ECM),   but   also   is   the   site   where   contractile   forces   within   the   cardiomyocyte  are  directly  transmitted  to  the  ECM209.  In  fact,  externally  applied  strain  on  the  ECM   was   sufficient   through   this   protein   complex   to   induce   myofibril   contraction,   indicating   that   both   externally   applied   and   intrinsically   stimulated   mechanical   forces   were   bidirectionally   transmitted   through   the   costameres209.   The   major   consequence   of   muscular   contraction   is   shortening   and   deformation.   A   process   during   which   the   contractile   machinery   of   the   sarcomere   must   remain   connected   to   both   the   sarcolemma   and   the   ECM,   for   the   adequate   transmission   of   force   and   the   proper   coordination   of   contraction   within   the   three-­‐dimensional   muscular   structure210.   Cardiomyocytes,  as  load-­‐bearing  cells,  not  only  generate  and  transmit  mechanical  contractions,  but   they   are   also   equipped   through   the   costameres   to   sense   physical   forces,   to  transduce   them   into   biochemical  signals,  and  generate  appropriate  responses  leading  to  alterations  in  cellular  structure   and   function211.   This  mechanotransduction   is   particularly   complex   in   the   heart,   since   individual   cardiac   cells   should   adapt   to   many   simultaneously   ongoing   processes212:   externally   applied   mechanical  forces,  internal  loads  (blood  volume,  arterial  pressure),  neurohormonal  modulations,  by   either   reacting   instantaneously   on   the   short-­‐term   or   modifying   gene   expression   for   long-­‐term   responses212,  then  transmitting  the  same  message  to  adjacent  cells  and  their  surrounding  ECM  for  a   synchronized  contraction.    

 

Two   important   macromolecular   protein   complexes   play   the   regulatory   role   at   the   costamere:   the   dystrophin-­‐syntrophin  mutliprotein  complex  (DSMC)  and  the  integrin  complex14  (Figure  3c).  Integrins  

Anisotropy          23  

are   heterodimers   composed   of   chains   with   a   long   extracellular   domain,   which   binds   extracellular   laminin   to   the   cytoskeletal   actin213.   The   principal   role   of   the   integrin   complex   is   mechanotransduction,   anchoring   at   its   cytoplasmic   side   many   signaling   molecules   and   kinases.  

Inactivation  of  the  cardiac  integrin  gene  in  mice  resulted  in  an  enhanced  predisposition  to  stress-­‐

induced  cardiomyopathy214  and  dilated  ventricular  chambers215.     1.2.2. The Dystrophin Molecule and the DSMC

The   DSMC,   similarly   to   the   integrin   complex,   is   composed   of   transmembrane,   cytoplasmic   and   extracellular  proteins216.  In  the  cardiac  cell,  the  transmembrane  proteins  are  the  sarcoglycans,  the   sarcospan  and  the  dystroglycans  that  in  turn  bind  to  extracellular  laminin.  On  the  cytoplasmic  side,   dystrophin   binds   to   syntrophin,   dystrobrevin217,   and   neuronal   nitric   oxide   synthase   and   attaches   this   multimolecular   complex   to   cytoskeletal   actin218.   The   DSMC   is   essential   in   stabilizing   the   sarcolemma  upon  physical  stresses.  Dystrophin  (~430kDa)  is  mainly  expressed  in  striated  muscles,   including  cardiac  muscle  cells219  and  its  main  function  lies  in  linking  membrane  proteins  to  the  actin   cytoskeleton220   and   maintaining   the   stability   of   the   dystrophin-­‐syntrophin   multiprotein   complex   (DSMC)  in  the  LM  domain221.  An  interesting  fact  is  that  dystrophin  isn’t  restricted  to  muscles,  but  is   also   expressed   in   the   central   nervous   system   (such   as   the   cerebellum,   cortical   neurons,   hippocampus)222.   Mutations   of   dystrophin   lead   to   a   severe   progressive   muscle   wasting   disease,   Duchenne  muscular  dystrophy  (DMD),  or  to  a  less  severe  form  Becker’s  dystrophy223.    

 

DMD  is  a  devastating  X-­‐linked  degenerative  muscle  disease,  with  an  incidence  of  1:3300  live  male   births  annually223.  In  patients  with  DMD,  muscular  biopsies  characteristically  demonstrate  encoring   or   degenerating   muscle   fibers,   often   observed   in   clusters224.   Small   immature   centrally   nucleated   cells   are   also   observed   and   they   correspond   to   the   regenerative   processes   that   take   place   in   the   early  phases  of  the  disease,  creating  a  balance  between  necrotic  and  regenerating  muscle  tissue225.   Later,   the   regenerative   capacity   of   the   muscle   is   exhausted   and   muscle   fibers   are   continuously   replaced   with   connective   and   adipose   tissues225.   The   pathology   becomes   more   prominently   manifested  with  age  and  patients  are  usually  wheelchair  ridden  in  early  adolescence224.  

 

The  responsible  gene  and  its  product,  dystrophin,  have  been  identified  more  than  30  years  ago226,   and  the  mouse  model  (mdx)  harboring  a  spontaneous  mutation  similar  to  the  one  observed  in  man   has  been  extensively  studied,  as  a  mouse  model  of  the  pathology227,  228.  These  experimental  murine   models  are  one  of  the  best  tools  not  only  to  investigate  the  primary  defect,  but  also  to  delineate  the   causal  chain  of  events  leading  to  the  observed  pathological  finding229,  230.  In  the  case  of  DMD,  despite   major   advancements   done   in   the   field,   a   comprehensive   understanding   of   the   mechanism   leading   from  the  absence  of  dystrophin  to  the  muscular  degeneration  is  still  lacking231.  Several  hypotheses   have   been   proposed   to   clarify   the   pathophysiology   of   the   underlying   deficits   resulting   from   the   absence   of   dystrophin232.   Among   the   current   hypotheses   is   the  mechanical   hypothesis,   which   suggests  that  membrane  fragility  in  DMD  patients  allows  the  accumulation  of  proteins  that  are  not   normally  present  in  the  muscle  fibers,  indicating  increased  membrane  permeability233.  On  the  other   hand,  the  calcium  hypothesis  proposes  that  disruptions  to  the  DSMC  can  result  in  instability  of  the   sarcolemma  that  permits  calcium  entry  through  membrane  tears,  when  the  sarcolemma  is  stretched   during   lengthening   muscle   contractions234.   For   a   comprehensive   review   on   the   different   available   hypotheses  involved  in  the  pathology  of  DMD,  refer  to  the  review  by  Deconinck  and  Dan  (2007)231.      

The  importance  of  dystrophin  from  a  cardiac  perspective  becomes  obvious  when  almost  all  DMD-­‐

patientsxi   develop   severe   cardiac   manifestations   of   their   disease,   that   culminate   into   dilated   cardiomyopathy235,  heart  failure  and  increased  propensity  of  sudden  cardiac  death224.  Henceforth,   understanding  the  mechanisms  behind  the  induced  arrhythmia  in  the  dystrophic  substrate  requires   the  knowledge  not  only  of  the  membrane  effects  due  to  the  primary  channel  defect,  but  also  of  the   intracellular  signals,  developmental  effects  on  intercellular  communication,  integration  of  possible   compensatory   responses   and   other   environmental   factors   that   modulate   the   translation   of   the   primary  defect  from  the  gene  to  the  organ229.  Despite  known  discrepancies  in  the  electrophysiology   of  mouse  and  man,  the  mdx  mouse  has  been  continuously  developed  in  the  last  30  years  to  elucidate   the  role  of  dystrophic  loss  in  the  pathology  of  DMD.  

 

Dystrophin   has   multiple   protein-­‐protein   interaction   domains,   including   a   specific   domain   in   its   carboxylic  terminus  facilitating  its  interaction  with  syntrophin217.  The  latter  has  a  PDZ  domain  xiithat   mediates  interactions  with  the  carboxylic  end  of  various  ionic  channels,  including  NaV1.5xiii,  which   has   a   PDZ-­‐domain   binding   motif   in   its   carboxylic-­‐terminal   tail.   Interestingly,   among   the   nine   different   NaV   channels,   only   the   ones   expressed   in   striated   muscles   (i.e.   NaV1.4   and   NaV1.5)   have   such  PDZ-­‐binding  motifs  in  their  carboxylic  ends236.  This  domain  was  found  necessary  for  indirect   interactions   with   dystrophin   via   syntrophin236.   Gavillet  et   al.   have   initially   shown   that   NaV1.5   expression  was  decreased  in  the  mdx  mouse,  the  functional  consequence  of  which  was  a  reduction   in  the  whole  cell  INa,f  current237.  The  authors  ruled  out  other  factors  that  could  potentially  lower  the   availability  of  NaV1.5,  hence  decrease  the  upstroke  current  (such  as  increased  Vrmp,  or  alterations  in   activation-­‐inactivation   kinetics   of   NaV1.5   in   the   mdx   heart).   As   dystrophin   and   syntrophin   are   virtually  absent  from  IDs  in  normal  condition,  Petitprez  et  al.  subsequently  demonstrated  that  the   interaction   between   NaV1.5   and   dystrophin   is   exclusive   to   the   LM   of   the   myocytes238.   All   these   findings   combined,   suggest   that   NaV1.5   is   exclusively   regulated   by   dystrophin   on   the   LM   of   cardiomyocytes,  the  absence  of  which  in  the  dystrophin-­‐deficient  mouse  ensues  the  loss  of  NaV1.5   from  the  LM  and  reduction  in  the  total  INa,f  at  the  upstroke.  On  the  other  hand,  other  studies  have   emphasized   the   interaction   of   SAP97   (another   regulatory   protein   described   in   section   1.4.6)   with   cardiac  ionic  channels239,   240  including  NaV1.5  at  the  IDs238,  which  also  involves  the  PDZ-­‐domain.  In   these  studies,  SAP97  enhanced  INa,f  without  affecting  the  biophysical  properties  of  the  current  or  the   intrinsic  properties  of  the  channels238.  SAP97  has  been  also  found  not  to  have  any  major  influence   on  conductance  or  opening  probability  nor  time  of  the  channels;  rather  it  is  thought  to  enhance  the   density   of   functional   channels241.   Silencing   SAP97   lead   however   to   a   drastic   deterioration   of   both   INa,f   and   Ito,1   (the   transient   outward   K+   current   or   early   repolarization   current)238.   How   SAP97   modulates  functional  NaV1.5  is  not  yet  well  understood.