• Keine Ergebnisse gefunden

19. Zhou, Z., Gu, J., Li, Y. Q. & Wang, Y. (2012) Genome plasticity and systems evolution in Streptomyces, BMC Bioinformatics. 13 Suppl 10, S8.

20. Grohmann, E., Muth, G. & Espinosa, M. (2003) Conjugative plasmid transfer in gram-positive bacteria, Microbiol Mol Biol Rev. 67, 277-301.

21. Bentley, S. D., Chater, K. F., Cerdeño-Tárraga, A. M., Challis, G. L., Thomson, N. R., James, K. D., Harris, D. E., Quail, M. A., Kieser, H., Harper, D., Bateman, A., Brown, S., Chandra, G., Chen, C. W., Collins, M., Cronin, A., Fraser, A., Goble, A., Hidalgo, J., Hornsby, T., Howarth, S., Huang, C. H., Kieser, T., Larke, L., Murphy, L., Oliver, K., O'Neil, S., Rabbinowitsch, E., Rajandream, M. A., Rutherford, K., Rutter, S., Seeger, K., Saunders, D., Sharp, S., Squares, R., Squares, S., Taylor, K., Warren, T., Wietzorrek, A., Woodward, J., Barrell, B. G., Parkhill, J. & Hopwood, D. A. (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2), Nature. 417, 141-147.

22. Flardh, K. & Buttner, M. J. (2009) Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium, Nat Rev Microbiol. 7, 36-49.

23. Elliot, M. A., Buttner, M. J. & Nodwell, J. R. (2008) Multicellular Development in Streptomyces in Myxobacteria (Whitworth, D. E., ed) pp. 419-438, ASM Press, Washington, DC.

24. Barka, E. A., Vatsa, P., Sanchez, L., Gaveau-Vaillant, N., Jacquard, C., Meier-Kolthoff, J. P., Klenk, H. P., Clement, C., Ouhdouch, Y. & van Wezel, G. P. (2016) Taxonomy, Physiology, and Natural Products of Actinobacteria, Microbiol Mol Biol Rev. 80, 1-43.

25. Brana, A. F., Mendez, C., Diaz, L. A., Manzanal, M. B. & Hardisson, C. (1986) Glycogen and trehalose accumulation during colony development in Streptomyces antibioticus, J Gen Microbiol. 132, 1319-26.

26. Jakimowicz, D. & van Wezel, G. P. (2012) Cell division and DNA segregation in Streptomyces: how to build a septum in the middle of nowhere?, Mol Microbiol. 85, 393-404.

27. Merrick, M. J. (1976) A morphological and genetic mapping study of bald colony mutants of Streptomyces coelicolor, J Gen Microbiol. 96, 299-315.

28. Kelemen, G. H. & Buttner, M. J. (1998) Initiation of aerial mycelium formation in Streptomyces, Curr Opin Microbiol. 1, 656-62.

29. Allocati, N., Masulli, M., Di Ilio, C. & De Laurenzi, V. (2015) Die for the community: an overview of programmed cell death in bacteria, Cell Death Dis. 6, e1609.

30. Claessen, D., Rink, R., de Jong, W., Siebring, J., de Vreugd, P., Boersma, F. G., Dijkhuizen, L. &

Wosten, H. A. (2003) A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils, Genes Dev. 17, 1714-26.

31. Elliot, M. A., Karoonuthaisiri, N., Huang, J., Bibb, M. J., Cohen, S. N., Kao, C. M. & Buttner, M. J.

(2003) The chaplins: a family of hydrophobic cell-surface proteins involved in aerial mycelium formation in Streptomyces coelicolor, Genes Dev. 17, 1727-40.

32. Willey, J., Santamaria, R., Guijarro, J., Geistlich, M. & Losick, R. (1991) Extracellular complementation of a developmental mutation implicates a small sporulation protein in aerial mycelium formation by S. coelicolor, Cell. 65, 641-50.

33. Claessen, D., Stokroos, I., Deelstra, H. J., Penninga, N. A., Bormann, C., Salas, J. A., Dijkhuizen, L.

& Wosten, H. A. (2004) The formation of the rodlet layer of streptomycetes is the result of the interplay between rodlins and chaplins, Mol Microbiol. 53, 433-43.

34. Claessen, D., de Jong, W., Dijkhuizen, L. & Wosten, H. A. (2006) Regulation of Streptomyces

35. Hopwood, D. A., Wildermuth, H. & Palmer, H. M. (1970) Mutants of Streptomyces coelicolor defective in sporulation, J Gen Microbiol. 61, 397-408.

36. Chater, K. F. (2001) Regulation of sporulation in Streptomyces coelicolor A3(2): a checkpoint multiplex?, Curr Opin Microbiol. 4, 667-73.

37. Chater, K. F. & Chandra, G. (2006) The evolution of development in Streptomyces analysed by genome comparisons, FEMS Microbiol Rev. 30, 651-72.

38. Claessen, D., Wosten, H. A., van Keulen, G., Faber, O. G., Alves, A. M., Meijer, W. G. & Dijkhuizen, L. (2002) Two novel homologous proteins of Streptomyces coelicolor and Streptomyces lividans are involved in the formation of the rodlet layer and mediate attachment to a hydrophobic surface, Mol Microbiol. 44, 1483-92.

39. Hopwood, D. A. & Glauert, A. M. (1961) Electron microscope observations on the surface structures of Streptomyces violaceoruber, J Gen Microbiol. 26, 325-30.

40. Wildermuth, H., Wehrli, E. & Horne, R. W. (1971) The surface structure of spores and aerial mycelium in Streptomyces coelicolor, J Ultrastruct Res. 35, 168-80.

41. Del Sol, R., Armstrong, I., Wright, C. & Dyson, P. (2007) Characterization of changes to the cell surface during the life cycle of Streptomyces coelicolor: atomic force microscopy of living cells, J Bacteriol. 189, 2219-25.

42. Dragos, A., Kovacs, A. T. & Claessen, D. (2017) The Role of Functional Amyloids in Multicellular Growth and Development of Gram-Positive Bacteria, Biomolecules. 7.

43. Di Berardo, C., Capstick, D. S., Bibb, M. J., Findlay, K. C., Buttner, M. J. & Elliot, M. A. (2008) Function and redundancy of the chaplin cell surface proteins in aerial hypha formation, rodlet assembly, and viability in Streptomyces coelicolor, J Bacteriol. 190, 5879-89.

44. Sawyer, E. B., Claessen, D., Haas, M., Hurgobin, B. & Gras, S. L. (2011) The assembly of individual chaplin peptides from Streptomyces coelicolor into functional amyloid fibrils, PLoS One. 6, e18839.

45. Duong, A., Capstick, D. S., Di Berardo, C., Findlay, K. C., Hesketh, A., Hong, H. J. & Elliot, M. A.

(2012) Aerial development in Streptomyces coelicolor requires sortase activity, Mol Microbiol. 83, 992-1005.

46. Yang, W., Willemse, J., Sawyer, E. B., Lou, F., Gong, W., Zhang, H., Gras, S. L., Claessen, D. &

Perrett, S. (2017) The propensity of the bacterial rodlin protein RdlB to form amyloid fibrils determines its function in Streptomyces coelicolor, Sci Rep. 7, 42867.

47. Capstick, D. S., Willey, J. M., Buttner, M. J. & Elliot, M. A. (2007) SapB and the chaplins: connections between morphogenetic proteins in Streptomyces coelicolor, Mol Microbiol. 64, 602-13.

48. Bibb, M. J., Domonkos, A., Chandra, G. & Buttner, M. J. (2012) Expression of the chaplin and rodlin hydrophobic sheath proteins in Streptomyces venezuelae is controlled by sigma(BldN) and a cognate anti-sigma factor, RsbN, Mol Microbiol. 84, 1033-49.

49. de Jong, W., Wosten, H. A., Dijkhuizen, L. & Claessen, D. (2009) Attachment of Streptomyces coelicolor is mediated by amyloidal fimbriae that are anchored to the cell surface via cellulose, Mol Microbiol. 73, 1128-40.

50. Pridham, T. G., Hesseltine, C. W. & Benedict, R. G. (1958) A guide for the classification of streptomycetes according to selected groups; placement of strains in morphological sections, Appl Microbiol. 6, 52-79.

51. Labeda, D. P. (1996) DNA relatedness among verticil-forming Streptomyces species (formerly Streptoverticillium species), International Journal of Systematic Bacteriology. 46, 699-703.

52. Witt, D. & Stackebrandt, E. (1990) Unification of the Genera Streptoverticillum and Streptomyces, and Amendation of Streptomyces Waksman and Henrici 1943, 339AL, Systematic and Applied Microbiology. 13, 361-371.

53. Kämpfer, P., Kroppenstedt, R. M. & Dott, W. (1991) A numerical classification of the genera Streptomyces and Streptoverticillium using miniaturized physiological tests, Microbiology. 137, 1831-1891.

54. Anderson, A. S. & Wellington, E. M. (2001) The taxonomy of Streptomyces and related genera, Int J Syst Evol Microbiol. 51, 797-814.

55. Ando, H., Adachi, M., Umeda, K., Matsuura, A., Nonaka, M., Uchio, R., Tanaka, H. & Motoki, M.

(1989) Purification and Characteristics of a Novel Transglutaminase Derived from Microorganisms, Agr Biol Chem Tokyo. 53, 2613-2617.

56. Yang, H., He, T., Wu, W., Zhu, W., Lu, B. & Sun, W. (2013) Whole-Genome Shotgun Assembly and Analysis of the Genome of Streptomyces mobaraensis DSM 40847, a Strain for Industrial Production of Microbial Transglutaminase, Genome Announc. 1, e0014313.

57. Zindel, S. (2013) Struktur und Funktion enzymatisch vernetzbarer Proteaseinhibitoren von Streptomyces mobaraensis, Technische Universität Darmstadt, Darmstadt.

58. Silhavy, T. J., Kahne, D. & Walker, S. (2010) The bacterial cell envelope, Cold Spring Harb Perspect Biol. 2, a000414.

59. Vollmer, W., Blanot, D. & de Pedro, M. A. (2008) Peptidoglycan structure and architecture, FEMS Microbiol Rev. 32, 149-67.

60. Marraffini, L. A., Dedent, A. C. & Schneewind, O. (2006) Sortases and the art of anchoring proteins to the envelopes of gram-positive bacteria, Microbiol Mol Biol Rev. 70, 192-221.

61. Ilangovan, U., Ton-That, H., Iwahara, J., Schneewind, O. & Clubb, R. T. (2001) Structure of sortase, the transpeptidase that anchors proteins to the cell wall of Staphylococcus aureus, Proc Natl Acad Sci U S A. 98, 6056-61.

62. Spirig, T., Weiner, E. M. & Clubb, R. T. (2011) Sortase enzymes in Gram-positive bacteria, Mol Microbiol. 82, 1044-59.

63. Mazmanian, S. K., Liu, G., Ton-That, H. & Schneewind, O. (1999) Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall, Science. 285, 760-3.

64. Bradshaw, W. J., Davies, A. H., Chambers, C. J., Roberts, A. K., Shone, C. C. & Acharya, K. R. (2015) Molecular features of the sortase enzyme family, FEBS J. 282, 2097-114.

65. Clancy, K. W., Melvin, J. A. & McCafferty, D. G. (2010) Sortase transpeptidases: insights into mechanism, substrate specificity, and inhibition, Biopolymers. 94, 385-96.

66. Jacobitz, A. W., Kattke, M. D., Wereszczynski, J. & Clubb, R. T. (2017) Sortase Transpeptidases:

Structural Biology and Catalytic Mechanism, Adv Protein Chem Struct Biol. 109, 223-264.

67. Comfort, D. & Clubb, R. T. (2004) A comparative genome analysis identifies distinct sorting pathways in gram-positive bacteria, Infect Immun. 72, 2710-22.

68. Mazmanian, S. K., Ton-That, H., Su, K. & Schneewind, O. (2002) An iron-regulated sortase anchors a class of surface protein during Staphylococcus aureus pathogenesis, Proc Natl Acad Sci U S A. 99, 2293-8.

69. Khare, B. & S, V. L. N. (2017) Pilus biogenesis of Gram-positive bacteria: Roles of sortases and implications for assembly, Protein Sci. 26, 1458-1473.

70. Marraffini, L. A. & Schneewind, O. (2006) Targeting proteins to the cell wall of sporulating Bacillus anthracis, Mol Microbiol. 62, 1402-17.

71. Di Girolamo, S., Puorger, C., Castiglione, M., Vogel, M., Gebleux, R., Briendl, M., Hell, T., Beerli, R.

R., Grawunder, U. & Lipps, G. (2019) Characterization of the housekeeping sortase from the human pathogen Propionibacterium acnes: first investigation of a class F sortase, Biochem J. 476, 665-682.

72. Chang, C., Mandlik, A., Das, A. & Ton-That, H. (2011) Cell surface display of minor pilin adhesins in the form of a simple heterodimeric assembly in Corynebacterium diphtheriae, Mol Microbiol. 79, 1236-47.

73. Das, S., Pawale, V. S., Dadireddy, V., Singh, A. K., Ramakumar, S. & Roy, R. P. (2017) Structure and specificity of a new class of Ca(2+)-independent housekeeping sortase from Streptomyces avermitilis provide insights into its non-canonical substrate preference, J Biol Chem. 292, 7244-7257.

74. Kattke, M. D., Chan, A. H., Duong, A., Sexton, D. L., Sawaya, M. R., Cascio, D., Elliot, M. A. & Clubb, R. T. (2016) Crystal Structure of the Streptomyces coelicolor Sortase E1 Transpeptidase Provides Insight into the Binding Mode of the Novel Class E Sorting Signal, PLoS One. 11, e0167763.

75. Popp, M. W. & Ploegh, H. L. (2011) Making and breaking peptide bonds: protein engineering using sortase, Angew Chem Int Ed Engl. 50, 5024-32.

76. Wu, Z. & Guo, Z. (2012) Sortase-Mediated Transpeptidation for Site-Specific Modification of Peptides, Glycopeptides, and Proteins, J Carbohydr Chem. 31, 48-66.

77. Dai, X. L., Boker, A. & Glebe, U. (2019) Broadening the scope of sortagging, Rsc Adv. 9, 4700-4721.

78. Martins, I. M., Matos, M., Costa, R., Silva, F., Pascoal, A., Estevinho, L. M. & Choupina, A. B. (2014) Transglutaminases: recent achievements and new sources, Appl Microbiol Biotechnol. 98, 6957-64.

79. Kashiwagi, T., Yokoyama, K., Ishikawa, K., Ono, K., Ejima, D., Matsui, H. & Suzuki, E. (2002) Crystal structure of microbial transglutaminase from Streptoverticillium mobaraense, J Biol Chem. 277, 44252-60.

80. Jaros, D., Partschefeld, C., Henle, T. & Rohm, H. (2006) Transglutaminase in dairy products:

Chemistry, physics, applications, J Texture Stud. 37, 113-155.

81. Griffin, M., Casadio, R. & Bergamini, C. M. (2002) Transglutaminases: nature's biological glues, Biochem J. 368, 377-96.

82. Serafini-Fracassini, D., Della Mea, M., Tasco, G., Casadio, R. & Del Duca, S. (2009) Plant and animal transglutaminases: do similar functions imply similar structures?, Amino Acids. 36, 643-57.

83. Makarova, K. S., Aravind, L. & Koonin, E. V. (1999) A superfamily of archaeal, bacterial, and eukaryotic proteins homologous to animal transglutaminases, Protein Sci. 8, 1714-9.

84. Kim, S. Y., Jeitner, T. M. & Steinert, P. M. (2002) Transglutaminases in disease, Neurochem Int. 40, 85-103.

85. Strop, P. (2014) Versatility of microbial transglutaminase, Bioconjug Chem. 25, 855-62.

86. Ohtsuka, T., Umezawa, Y., Nio, N. & Kubota, K. (2001) Comparison of Deamidation Activity of Transglutaminases, Journal of Food Science. 66, 25-29.

87. Kobayashi, K., Suzuki, S. I., Izawa, Y., Miwa, K. & Yamanaka, S. (1998) Transglutaminase in sporulating cells of Bacillus subtilis, J Gen Appl Microbiol. 44, 85-91.

88. Chen, K., Zhang, D., Liu, S., Wang, N. S., Wang, M., Du, G. & Chen, J. (2013) Improvement of transglutaminase production by extending differentiation phase of Streptomyces hygroscopicus:

mechanism and application, Appl Microbiol Biotechnol. 97, 7711-9.

89. Kieliszek, M. & Misiewicz, A. (2014) Microbial transglutaminase and its application in the food industry. A review, Folia Microbiol (Praha). 59, 241-50.

90. Savoca, M. P., Tonoli, E., Atobatele, A. G. & Verderio, E. A. M. (2018) Biocatalysis by Transglutaminases: A Review of Biotechnological Applications, Micromachines (Basel). 9.

91. Deweid, L., Avrutina, O. & Kolmar, H. (2019) Microbial transglutaminase for biotechnological and biomedical engineering in Biological Chemistry pp. 257

92. Pasternack, R., Dorsch, S., Otterbach, J. T., Robenek, I. R., Wolf, S. & Fuchsbauer, H. L. (1998) Bacterial pro-transglutaminase from Streptoverticillium mobaraense--purification, characterisation and sequence of the zymogen, Eur J Biochem. 257, 570-6.

93. Yang, M. T., Chang, C. H., Wang, J. M., Wu, T. K., Wang, Y. K., Chang, C. Y. & Li, T. T. (2011) Crystal structure and inhibition studies of transglutaminase from Streptomyces mobaraense, J Biol Chem.

286, 7301-7.

94. Zotzel, J., Keller, P. & Fuchsbauer, H. L. (2003) Transglutaminase from Streptomyces mobaraensis is activated by an endogenous metalloprotease, Eur J Biochem. 270, 3214-22.

95. Zotzel, J., Pasternack, R., Pelzer, C., Ziegert, D., Mainusch, M. & Fuchsbauer, H. L. (2003) Activated transglutaminase from Streptomyces mobaraensis is processed by a tripeptidyl aminopeptidase in the final step, Eur J Biochem. 270, 4149-55.

96. Malesevic, M., Migge, A., Hertel, T. C. & Pietzsch, M. (2015) A fluorescence-based array screen for transglutaminase substrates, Chembiochem. 16, 1169-74.

97. Beninati, S., Bergamini, C. M. & Piacentini, M. (2009) An overview of the first 50 years of transglutaminase research, Amino Acids. 36, 591-8.

98. Hitomi, K., Kitamura, M. & Sugimura, Y. (2009) Preferred substrate sequences for transglutaminase 2: screening using a phage-displayed peptide library, Amino Acids. 36, 619-24.

99. Lee, J. H., Song, C., Kim, D. H., Park, I. H., Lee, S. G., Lee, Y. S. & Kim, B. G. (2013) Glutamine (Q)-peptide screening for transglutaminase reaction using mRNA display, Biotechnol Bioeng. 110, 353-62.

100. Ohtsuka, T., Ota, M., Nio, N. & Motoki, M. (2000) Comparison of substrate specificities of transglutaminases using synthetic peptides as acyl donors, Biosci Biotechnol Biochem. 64, 2608-13.

101. Fontana, A., Spolaore, B., Mero, A. & Veronese, F. M. (2008) Site-specific modification and PEGylation of pharmaceutical proteins mediated by transglutaminase, Adv Drug Deliv Rev. 60, 13-28.

102. Spolaore, B., Raboni, S., Ramos Molina, A., Satwekar, A., Damiano, N. & Fontana, A. (2012) Local unfolding is required for the site-specific protein modification by transglutaminase, Biochemistry. 51, 8679-89.

103. Schmidt, S., Adolf, F. & Fuchsbauer, H. L. (2008) The transglutaminase activating metalloprotease inhibitor from Streptomyces mobaraensis is a glutamine and lysine donor substrate of the intrinsic transglutaminase, FEBS Lett. 582, 3132-8.

104. Zindel, S., Ehret, V., Ehret, M., Hentschel, M., Witt, S., Kramer, A., Fiebig, D., Juttner, N., Frols, S., Pfeifer, F. & Fuchsbauer, H. L. (2016) Involvement of a Novel Class C Beta-Lactamase in the Transglutaminase Mediated Cross-Linking Cascade of Streptomyces mobaraensis DSM 40847, PLoS One.

11, e0149145.

105. Fiebig, D., Storka, J., Roeder, M., Meyners, C., Schmelz, S., Blankenfeldt, W., Scrima, A., Kolmar, H. & Fuchsbauer, H. L. (2018) Destructive twisting of neutral metalloproteases: the catalysis mechanism of the Dispase autolysis-inducing protein from Streptomyces mobaraensis DSM 40487, FEBS J. 285, 4246-4264.

106. Sarafeddinov, A., Schmidt, S., Adolf, F., Mainusch, M., Bender, A. & Fuchsbauer, H. L. (2009) A novel transglutaminase substrate from Streptomyces mobaraensis triggers autolysis of neutral metalloproteases, Biosci Biotechnol Biochem. 73, 993-9.

107. Fiebig, D., Schmelz, S., Zindel, S., Ehret, V., Beck, J., Ebenig, A., Ehret, M., Frols, S., Pfeifer, F., Kolmar, H., Fuchsbauer, H. L. & Scrima, A. (2016) Structure of the Dispase Autolysis-inducing Protein from Streptomyces mobaraensis and Glutamine Cross-linking Sites for Transglutaminase, J Biol Chem.

291, 20417-26.

108. Sarafeddinov, A., Arif, A., Peters, A. & Fuchsbauer, H. L. (2011) A novel transglutaminase substrate from Streptomyces mobaraensis inhibiting papain-like cysteine proteases, J Microbiol Biotechnol. 21, 617-26.

109. Juettner, N. E., Schmelz, S., Bogen, J. P., Happel, D., Fessner, W. D., Pfeifer, F., Fuchsbauer, H. L.

& Scrima, A. (2018) Illuminating structure and acyl donor sites of a physiological transglutaminase substrate from Streptomyces mobaraensis, Protein Sci. 27, 910-922.

110. Juettner, N. E., Schmelz, S., Kraemer, A., Knapp, S., Becker, B., Kolmar, H., Scrima, A. &

Fuchsbauer, H. L. (2018) Structure of a glutamine donor mimicking inhibitory peptide shaped by the catalytic cleft of microbial transglutaminase, FEBS J. 285, 4684-4694.

111. Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K. & Pease, L. R. (1989) Site-directed mutagenesis by overlap extension using the polymerase chain reaction, Gene. 77, 51-9.

112. Mandel, M. & Higa, A. (1970) Calcium-dependent bacteriophage DNA infection, J Mol Biol. 53, 159-62.

113. Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F. & Hopwood, D. A. (2000) Practical Streptomyces genetics, The John Innes Foundation, Norwich.

114. Harper, S. & Speicher, D. W. (2011) Purification of proteins fused to glutathione S-transferase, Methods Mol Biol. 681, 259-80.

115. Laemmli, U. K. (1970) Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4, Nature. 227, 680-685.

116. Blum, H., Beier, H. & Gross, H. J. (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels, Electrophoresis. 8, 93-99.

117. Vassar, P. S. & Culling, C. F. (1959) Fluorescent stains, with special reference to amyloid and connective tissues, Arch Pathol. 68, 487-98.

118. Naiki, H., Higuchi, K., Hosokawa, M. & Takeda, T. (1989) Fluorometric determination of amyloid fibrils in vitro using the fluorescent dye, thioflavin T1, Anal Biochem. 177, 244-9.

119. Eckhardt, B. M., Oeswein, J. Q., Yeung, D. A., Milby, T. D. & Bewley, T. A. (1994) A turbidimetric method to determine visual appearance of protein solutions, J Pharm Sci Technol. 48, 64-70.

120. Davies, J. T. & Rideal, E. K. (1963) Interfacial phenomena, 2. edn, Academic Press, New York and London.

121. Weimer, S., Oertel, K. & Fuchsbauer, H. L. (2006) A quenched fluorescent dipeptide for assaying dispase- and thermolysin-like proteases, Anal Biochem. 352, 110-9.

122. Anderl, A., Kolmar, H. & Fuchsbauer, H. L. (2019) The metal-binding properties of the long chaplin from Streptomyces mobaraensis: A bioinformatic and biochemical approach, J Inorg Biochem. 202, 110878.

123. Anderl, A., Ferlemann, C., Muth, M., Henkel-Gupalo, A., Ebenig, A., Brenner-Weiss, G., Kolmar, H.

& Fuchsbauer, H. L. (2019) Biochemical study of sortase E2 from Streptomyces mobaraensis and determination of transglutaminase cross-linking sites, FEBS Lett.

124. de Jong, W., Manteca, A., Sanchez, J., Bucca, G., Smith, C. P., Dijkhuizen, L., Claessen, D. &

Wosten, H. A. (2009) NepA is a structural cell wall protein involved in maintenance of spore dormancy in Streptomyces coelicolor, Mol Microbiol. 71, 1591-603.

125. Ekkers, D. M., Claessen, D., Galli, F. & Stamhuis, E. (2014) Surface modification using interfacial assembly of the Streptomyces chaplin proteins, Appl Microbiol Biotechnol. 98, 4491-501.

126. Capstick, D. S., Jomaa, A., Hanke, C., Ortega, J. & Elliot, M. A. (2011) Dual amyloid domains promote differential functioning of the chaplin proteins during Streptomyces aerial morphogenesis, Proc Natl Acad Sci U S A. 108, 9821-6.

127. Micsonai, A., Wien, F., Bulyaki, E., Kun, J., Moussong, E., Lee, Y. H., Goto, Y., Refregiers, M. &

Kardos, J. (2018) BeStSel: a web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra, Nucleic acids research. 46, W315-W322.

128. Zhang, D., Wang, M., Du, G., Zhao, Q., Wu, J. & Chen, J. (2008) Surfactant protein of the Streptomyces subtilisin inhibitor family inhibits transglutaminase activation in Streptomyces hygroscopicus, J Agric Food Chem. 56, 3403-8.

129. Paananen, A., Vuorimaa, E., Torkkeli, M., Penttila, M., Kauranen, M., Ikkala, O., Lemmetyinen, H., Serimaa, R. & Linder, M. B. (2003) Structural hierarchy in molecular films of two class II hydrophobins, Biochemistry. 42, 5253-8.

130. Yu, L., Zhang, B., Szilvay, G. R., Sun, R., Janis, J., Wang, Z., Feng, S., Xu, H., Linder, M. B. & Qiao, M. (2008) Protein HGFI from the edible mushroom Grifola frondosa is a novel 8 kDa class I hydrophobin that forms rodlets in compressed monolayers, Microbiology. 154, 1677-85.

131. Wang, Z., Morales-Acosta, M. D., Li, S., Liu, W., Kanai, T., Liu, Y., Chen, Y. N., Walker, F. J., Ahn, C. H., Leblanc, R. M. & Yan, E. C. (2016) A narrow amide I vibrational band observed by sum frequency generation spectroscopy reveals highly ordered structures of a biofilm protein at the air/water interface, Chem Commun (Camb). 52, 2956-9.

132. Dokouhaki, M., Hung, A., Prime, E. L., Qiao, G. G., Day, L. & Gras, S. L. (2017) pH-Induced interfacial properties of Chaplin E from Streptomyces coelicolor, Colloids Surf B Biointerfaces. 160, 589-597.

133. Dokouhaki, M., Prime, E. L., Hung, A., Qiao, G. G., Day, L. & Gras, S. L. (2017) Structure-Dependent Interfacial Properties of Chaplin F from Streptomyces coelicolor, Biomolecules. 7.

134. Kyte, J. & Doolittle, R. F. (1982) A simple method for displaying the hydropathic character of a protein, J Mol Biol. 157, 105-32.

135. Kapinos, L. E., Song, B. & Sigel, H. (1998) Metal ion-coordinating properties of imidazole and derivatives in aqueous solution: interrelation between complex stability and ligand basicity, Inorganica Chimica Acta. 280, 50-56.

136. Lu, M., Jiang, Y. L., Wang, S., Jin, H., Zhang, R. G., Virolle, M. J., Chen, Y. & Zhou, C. Z. (2014) Streptomyces coelicolor SCO4226 is a nickel binding protein, PLoS One. 9, e109660.

137. Cun, S., Li, H., Ge, R., Lin, M. C. & Sun, H. (2008) A histidine-rich and cysteine-rich metal-binding domain at the C terminus of heat shock protein A from Helicobacter pylori: implication for nickel homeostasis and bismuth susceptibility, J Biol Chem. 283, 15142-51.

138. Ge, R., Watt, R. M., Sun, X., Tanner, J. A., He, Q. Y., Huang, J. D. & Sun, H. (2006) Expression and characterization of a histidine-rich protein, Hpn: potential for Ni2+ storage in Helicobacter pylori, Biochem J. 393, 285-93.

139. Viles, J. H. (2012) Metal ions and amyloid fiber formation in neurodegenerative diseases. Copper, zinc and iron in Alzheimer's, Parkinson's and prion diseases, Coordination Chemistry Reviews. 256, 2271-2284.

140. Bajakian, T. H., Cervantes, S. A., Soria, M. A., Beaugrand, M., Kim, J. Y., Service, R. J. & Siemer, A. B. (2017) Metal Binding Properties of the N-Terminus of the Functional Amyloid Orb2, Biomolecules.

7.

141. Rowinska-Zyrek, M., Witkowska, D., Potocki, S., Remelli, M. & Kozlowski, H. (2013) His-rich sequences – is plagiarism from nature a good idea?, New Journal of Chemistry. 37, 58-70.

142. Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. E. (2015) The Phyre2 web portal for protein modeling, prediction and analysis, Nature Protocols. 10, 845-858.

143. Ton-That, H., Mazmanian, S. K., Faull, K. F. & Schneewind, O. (2000) Anchoring of surface proteins to the cell wall of Staphylococcus aureus. Sortase catalyzed in vitro transpeptidation reaction using LPXTG peptide and NH(2)-Gly(3) substrates, J Biol Chem. 275, 9876-81.

144. Huang, X., Aulabaugh, A., Ding, W., Kapoor, B., Alksne, L., Tabei, K. & Ellestad, G. (2003) Kinetic mechanism of Staphylococcus aureus sortase SrtA, Biochemistry. 42, 11307-15.

145. Cozzi, R., Prigozhin, D., Rosini, R., Abate, F., Bottomley, M. J., Grandi, G., Telford, J. L., Rinaudo, C. D., Maione, D. & Alber, T. (2012) Structural basis for group B streptococcus pilus 1 sortases C regulation and specificity, PLoS One. 7, e49048.

146. Kruger, R. G., Otvos, B., Frankel, B. A., Bentley, M., Dostal, P. & McCafferty, D. G. (2004) Analysis of the substrate specificity of the Staphylococcus aureus sortase transpeptidase SrtA, Biochemistry. 43, 1541-51.

147. Sarell, C. J., Wilkinson, S. R. & Viles, J. H. (2010) Substoichiometric levels of Cu2+ ions accelerate the kinetics of fiber formation and promote cell toxicity of amyloid-{beta} from Alzheimer disease, J Biol Chem. 285, 41533-40.

148. Leclere, V., Boiron, P. & Blondeau, R. (1999) Diversity of Superoxide-Dismutases Among Clinical and Soil Isolates of Streptomyces Species, Current Microbiology. 39, 365-368.

149. Ahn, B. E., Cha, J., Lee, E. J., Han, A. R., Thompson, C. J. & Roe, J. H. (2006) Nur, a nickel-responsive regulator of the Fur family, regulates superoxide dismutases and nickel transport in Streptomyces coelicolor, Mol Microbiol. 59, 1848-58.

150. Fernandes, C. G., Martins, D., Hernandez, G., Sousa, A. L., Freitas, C., Tranfield, E. M., Cordeiro, T. N., Serrano, M., Moran, C. P., Jr. & Henriques, A. O. (2019) Temporal and spatial regulation of protein cross-linking by the pre-assembled substrates of a Bacillus subtilis spore coat transglutaminase, PLoS Genet. 15, e1007912.

151. Juettner, N. E., Schmelz, S., Anderl, A., Colin, F., Classen, M., Pfeifer, F., Scrima, A. & Fuchsbauer, H. L. (2019) The N-terminal peptide of the transglutaminase-activating metalloprotease inhibitor from Streptomyces mobaraensis accommodates both inhibition and glutamine cross-linking sites, FEBS J.

152. Liu, W., Li, S., Wang, Z., Yan, E. C. Y. & Leblanc, R. M. (2017) Characterization of Surface-Active Biofilm Protein BslA in Self-Assembling Langmuir Monolayer at the Air-Water Interface, Langmuir. 33, 7548-7555.

153. Mendelsohn, R., Mao, G. & Flach, C. R. (2010) Infrared reflection–absorption spectroscopy:

Principles and applications to lipid–protein interaction in Langmuir films, Biochimica et Biophysica Acta (BBA) - Biomembranes. 1798, 788-800.

154. Pechkova, E. & Nicolini, C. (2017) Langmuir-Blodgett nanotemplates for protein crystallography, Nat Protoc. 12, 2570-2589.

155. Pechkova, E., Tripathi, S., Ravelli, R. B., McSweeney, S. & Nicolini, C. (2009) Radiation stability of proteinase K crystals grown by LB nanotemplate method, J Struct Biol. 168, 409-18.

156. Ugur, I., Schatte, M., Marion, A., Glaser, M., Boenitz-Dulat, M. & Antes, I. (2018) Ca2+ binding induced sequential allosteric activation of sortase A: An example for ion-triggered conformational selection, PLoS One. 13, e0205057.

157. Kruger, R. G., Dostal, P. & McCafferty, D. G. (2004) Development of a high-performance liquid chromatography assay and revision of kinetic parameters for the Staphylococcus aureus sortase transpeptidase SrtA, Anal Biochem. 326, 42-8.

158. Marraffini, L. A., Ton-That, H., Zong, Y., Narayana, S. V. & Schneewind, O. (2004) Anchoring of surface proteins to the cell wall of Staphylococcus aureus. A conserved arginine residue is required for efficient catalysis of sortase A, J Biol Chem. 279, 37763-70.

159. Donahue, E. H., Dawson, L. F., Valiente, E., Firth-Clark, S., Major, M. R., Littler, E., Perrior, T. R.

& Wren, B. W. (2014) Clostridium difficile has a single sortase, SrtB, that can be inhibited by small-molecule inhibitors, BMC Microbiol. 14, 219.

160. Biswas, T., Pawale, V. S., Choudhury, D. & Roy, R. P. (2014) Sorting of LPXTG peptides by archetypal sortase A: role of invariant substrate residues in modulating the enzyme dynamics and conformational signature of a productive substrate, Biochemistry. 53, 2515-24.

161. Douillard, F. P., Rasinkangas, P., von Ossowski, I., Reunanen, J., Palva, A. & de Vos, W. M. (2014) Functional identification of conserved residues involved in Lactobacillus rhamnosus strain GG sortase specificity and pilus biogenesis, J Biol Chem. 289, 15764-75.