• Keine Ergebnisse gefunden

3 Der Transportkomplex MalFGK

2 Das Trehalose/Maltose-Transportsystem von Pyrococcus furiosus Hinweis auf einen lateralen Gentransfer zwischen Archaea

5.3 Hinweise auf die Existenz eines Genregulators

Die Tatsache, daß die Expression der am Trehalose/Maltose-Transport beteiligten Gene induzierbar ist, weist auf die Existenz eines spezifischen Genregulators hin. Durch die Raumstruktur von MalK können erste Vermutungen auf die Art dieser Regulation aufgestellt werden. MalK enthält wie sein bakterielles Homolog zusätzlich zu der ATPase-Domäne eine weitere Domäne im C-terminalen Bereich des Proteins. Im E. coli MalK-Protein konnte diesem Bereich eine regulatorische Funktion zugeordnet werden. Es konnte gezeigt werden, daß MalK mit MalT interagiert und dabei MalT in die inaktive Form überführt (Panagiotidis et al., 1998). Obwohl in T. litoralis bislang keine Erkenntnis über ein derartiges MalT Homolog vorliegt, weist die Existenz dieser Domäne im archaeallen Protein aber auf eine solche Funktion hin.

Die Genregion, in der die Transportgene in T. litoralis kodiert sind, liegt auf einem 16 kb Fragment. Dieses Fragment liegt ebenfalls in P. furiosus vor und scheint das Ergebnis eines horizontalen Gentransfers zu sein (DiRuggerio et al., 2000). Da die Induzierbarkeit des Systems mittransferiert wurde, ist davon auszugehen, daß das Regulatorprotein ebenfalls auf diesem 16 kb Fragment zu finden ist. Neben den Genen des Tranportsystems enthält dieser Bereich die Information für mehrere Proteine denen bislang keine Funktion zugeordnet werden konnte. Als potentieller Kandidat kommt dabei u.a. das durch orf 2 (Abb. 16) kodierte Protein in Frage. Grund dafür ist die Sequenzhomologie des N-Terminus zu mehreren hypothetischen bakteriellen Transkriptionsregulatoren. Um die Frage zu klären welches dieser Proteine den protentiellen Regulator darstellen könnte

V Diskussion 126

werden derzeit bereits die ersten Versuche durchgeführt (persönliche Mitteilung S. Lee, AG Boos, Universität Konstanz).

Die Wechselwirkung des E. coli MalK mit der unphospholylierten Untereinheit EIIAGlc des Glucose-Transportsystems führt zur Inhibierung des Maltosetransportes (Dean et al., 1990; Van der Vlag und Postma, 1995). Dies zeigt, daß eine direkte Verknüpfung zwischen Substrattransport und Genregulation existiert. Denkbar wäre deshalb auch eine vergleichbare Regulation der Tranportaktivität in T. litoralis.. Allerdings wurde in den bis jetzt verfügbaren Sequenzdaten von Archaea-Genomen kein Hinweis auf das Vorhandensein von PTS-Systemen gefunden (Paulsen et al., 1998). Unter evolutionären Gesichtspunkten ist es interessant festzustellen, daß in T. litoralis Maltose und Trehalose über eine hochaffinen ABC-Transporter aufgenommen werden. In E. coli wird Maltose über einen Bindeprotein abhängigen ABC-Transporter transportiert, während Trehalose durch ein PTS-System aufgenommen wird. Vor allem in E. coli besteht jedoch ein Zusammenhang zwischen diesen beiden Systemen. Trehalose induziert das Maltose-System, wird allerdings weder durch dieses transportiert noch durch die im Maltose Metabolismus involvieren Proteine abgebaut (Klein und Boos, 1993). Die Tatsache, daß Trehalose in T. litoralis mittels eines Bindeprotein abhängigen ABC-Transporters aufgenommen wird, könnte darauf hinweisen, daß das PTS-System in Bakterien erst später entstand, während ABC-Transporter die sowohl in Eukaryoten wie auch in Prokaryoten vorhanden sind, früher in der Evolution entstanden.

Letztendlich kann festgestellt werden, daß das hyperthermophile Archaeon T. litoralis eine vergleichbare biochemische Strategie wie das mesophile Bakterium E. coli für den Maltose Transport und Metabolismus verwendet. Mit dem Unterschied, daß diese beiden Organismen zu verschiedenen phylogenetischen Domänen gehören und eine Differenz ihrer optimalen Wachstumstemperaturen von annähernd 50°C aufweisen.

Hauptunterschiede sind die bemerkenswerte Thermostabilität der Schlüsselenzyme, die Hyperaffinität des Transportsystems und die unabhängige Regulation von Transport und Metabolismus. Es scheint allerdings so, als ob es zum Leben bei hohen Temperaturen keine grundsätzlichen Veränderungen der metabolischen Strategien braucht.

VI Literatur 127

VI Literatur

Abele, R. & Tampè, R. (1999). Function of the transport complex TAP in cellular immune recognition. Biochim. Biophys. Acta 1461, 405-419.

Abrahams, J. P., Leslie, A. G., Lutter, R. & Walker, J. E. (1994). Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature 370(6491), 621-8.

Albers, S. V., Elferink, M. G. L., Charlebois, R. L., Sensen, C. W., Driessen, A. J. M. &

Konings, W. N. (1999). Glucose transport in the extremely thermoacidophilic Sulfolobus solfataricus involves a high-affinity membrane-integrated binding protein. J. Bacteriol. 181(14), 4285-4291.

Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403-410.

Ames, G. F.-L. & Lecar, H. (1992). ATP-dependent bacterial transporters and cystic fibrosis: analogy between channels and transporters. FASEB J. 6(9), 2660-2666.

Ames, G. F.-L. & Spudich, E. N. (1976). Protein-protein interaction in transport:

periplasmic histidine-binding protein J interacts with P protein. Proc. Natl. Acad.

Sci. USA 73, 1877-1881.

Andreotti, G., Cubellis, M. V., Nitti, G., Sannia, G., Mai, X., Marino, G. & Adams, M. W.

(1994). Characterization of aromatic aminotransferases from the

hyperthermophilic archaeon Thermococcus litoralis. Eur J Biochem 220(2), 543-9.

Argos, P., Mahoney, W. C., Hermodson, M. A. & Hanei, M. (1981). Structural prediction of sugar-binding proteins functional in chemotaxis and transport. J. Biol. Chem. 256, 4357-4361.

Auerbach, G., Huber, R., Grattinger, M., Zaiss, K., Schurig, H., Jaenicke, R. & Jacob, U.

(1997a). Closed structure of phosphoglycerate kinase from Thermotoga maritima reveals the catalytic mechanism and determinants of thermal stability. Structure 5(11), 1475-83.

Auerbach, G., Jacob, U., Grattinger, M., Schurig, H. & Jaenicke, R. (1997b).

Crystallographic analysis of phosphoglycerate kinase from the hyperthermophilic bacterium Thermotoga maritima. Biol Chem 378(3-4), 327-9.

Auerbach, G., Ostendorp, R., Prade, L., Korndorfer, I., Dams, T., Huber, R. & Jaenicke, R.

(1998). Lactate dehydrogenase from the hyperthermophilic bacterium thermotoga maritima: the crystal structure at 2.1 A resolution reveals strategies for intrinsic protein stabilization. Structure 6(6), 769-81.

Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Smith, J. A., Seidman, J. G. &

Struhl, K. (1987). Current Protocols in Molecular Biology, Greene Publishing Associates and Wiley-Interscience, N.Y., New York.

Baichwal, V., Liu, D. & Ames, G. F. (1993). The ATP-binding component of a prokaryotic traffic ATPase is exposed to the periplasmic (external) surface. Proc Natl Acad Sci U S A 90(2), 620-4.

Bavoil, P., Hofnung, M. & Nikaido, H. (1980). Identification of a cytoplasmic membrane-associated component of the maltose transport system of Escherichia coli. J. Biol.

Chem. 255, 8366-8369.

Bell, S. D. & Jackson, S. P. (2000). Mechanism of autoregulation by an archaeal transcriptional repressor. J Biol Chem 275(41), 31624-9.

Bell, S. D., Kosa, P. L., Sigler, P. B. & Jackson, S. P. (1999). Orientation of the transcription preinitiation complex in Archaea. Proc. Natl. Acad. Sci. USA 96(24), 13662-13667.

Benz, R., Schmid, A. & Vos-Scheperkeuter, G. H. (1987). Mechanism of sugar transport through the sugar-specific LamB channel of the Escherichia coli outer membrane.

J. Membr. Biol. 100, 21-29.

Berchtold, H., Reshetnikova, L., Reiser, C. O., Schirmer, N. K., Sprinzl, M. & Hilgenfeld, R.

(1993). Crystal structure of active elongation factor Tu reveals major domain rearrangements. Nature 365(6442), 126-32.

VI Literatur 128

Bianchet, M. A., Ko, Y. H., Amzel, L. M. & Pedersen, P. L. (1997). Modeling of nucleotide binding domains of ABC transporter proteins based on a F1-ATPase/recA

topology: structural model of the nucleotide binding domains of the cystic fibrosis transmembrane conductance regulator (CFTR). J Bioenerg Biomembr 29(5), 503-24.

Bliss, J. M., Garon, C. F. & Silver, R. P. (1996). Polysialic acid export in Escherichia coli K1:

the role of KpsT, the ATP-binding component of an ABC transporter, in chain translocation. Glycobiology 6(4), 445-52.

Blochl, E., Rachel, R., Burggraf, S., Hafenbradl, D., Jannasch, H. W. & Stetter, K. O. (1997).

Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea,

extending the upper temperature limit for life to 113 degrees C. Extremophiles 1(1), 14-21.

Blott, E. J., Higgins, C. F. & Linton, K. J. (1999). Cysteine-scanning mutagenesis provides no evidence for the extracellular accessibility of the nucleotide-binding domains of the multidrug resistance transporter P-glycoprotein. EMBO J. 18(23), 6800-6808.

Bohl, E. & Boos, W. (1997). Quantitative analysis of binding protein-mediated ABC transport systems. J. theor. Biol. 186, 65-74.

Bohl, E., Shuman, H. A. & Boos, W. (1995). Mathematical treatment of the kinetics of binding protein dependent transport systems reveals that both the substrate loaded and unloaded binding proteins interact with the membrane components. J.

Theor. Biol. 172(1), 83-94.

Boos, W., Ehmann, U., Bremer, E., Middendorf, A. & Postma, P. (1987). Trehalase of Escherichia coli. Mapping and cloning of its structural gene and identification of the enzyme as a periplasmic protein induced under high osmolarity growth conditions. J. Biol. Chem. 262, 13212-13218.

Boos, W. & Eppler, T. (2001). Prokaryotic binding protein-dependent ABC transporters. In Microbial transport systems (Winkelmann, G., ed.), pp. submitted. Wiley VCH, Weinheim.

Boos, W. & Lucht, J. M. (1996). Periplasmic binding protein-dependent ABC transporters, p. 1175-1209. In F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (ed.) Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed American Society for Microbiology, Washington, D.C.

Boos, W. & Shuman, H. A. (1998). The maltose/maltodextrin system of Escherichia coli;

transport, metabolism and regulation. Microbiol. Mol. Biol. Rev. 62(1), 204-229.

Borges, K. M., Brummet, S. R., Bogert, A., Davis, M. C., Hujer, K. M., Domke, S. T., Szasz, J., Ravel, J., DiRuggiero, J., Chase, J. W. & Robb, F. T. (1996). A survey of the genome of the hyperthermophilic archaeon, Pyrococcus furiosus. Genome Sci. Tech.

1, 37-46.

Boyd, D., Traxler, B. & Beckwith, J. (1993). Analysis of the topology of a membrane protein by using a minimum number of alkaline phosphatase fusions. J. Bacteriol.

175(2), 553-556.

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem.

72, 248-254.

Brinkman, A. B., Dahlke, I., Tuininga, J. E., Lammers, T., Dumay, V., de Heus, E., Lebbink, J. H., Thomm, M., de Vos, W. M. & van Der Oost, J. (2000). An Lrp-like

transcriptional regulator from the archaeon Pyrococcus furiosus is negatively autoregulated. J Biol Chem 275(49), 38160-9.

Brown, S. H. & Kelly, R. M. (1993). Characterization of amylolytic enzymes, having both α-1,4 and α-1,6 hydrolytic activity, from the thermophilic archaea Pyrococcus furiosus and Thermococcus litoralis. Appl. Environm. Microbiol. 59, 2614-2621.

Bukau, B., Ehrmann, M. & Boos, W. (1986). Osmoregulation of the maltose regulon in Escherichia coli. J. Bacteriol. 166(3), 884-891.

Bult, C. J., White, O., Olsen, G. J., Zhou, L., Fleischmann, R. D., Sutton, G. G., Blake, J. A., FitzGerald, L. M., Clayton, R. A., Gocayne, J. D., Kerlavage, A. R., Dougherty, B.

A., Tomb, J. F., Adams, M. D., Reich, C. I., Overbeek, R., Kirkness, E. F., Weinstock,

VI Literatur 129

K. G., Merrick, J. M., Glodek, A., Scott, J. L., Geoghagen, N. S. & Venter, J. C.

(1996). Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273(5278), 1058-73.

Burda, P. & Aebi, M. (1999). The dolichol pathway of N-linked glycosylation. Biochim Biophys Acta 1426(2), 239-57.

Calvo, J. M. & Matthews, R. G. (1994). The leucine-responsive regulatory protein, a global regulator of metabolism in Escherichia coli. Microbiol. Rev. 58(3), 466-490.

Carter, P., Bedouelle, H. & Winter, G. (1985). Improved oligonucleotide site-directed mutagenesis using M13 vectors. Nucleic Acids Res 13(12), 4431-43.

Chan, K. M., Delfert, D. & Junger, K. D. (1986). A direct colorimetric assay for Ca2+ -stimulated ATPase activity. Anal Biochem 157(2), 375-80.

Chang, A. C. & Cohen, S. N. (1978). Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol 134(3), 1141-56.

Chapon, C. & Kolb, A. (1983). Action of CAP on the malT promoter in vitro. J. Bacteriol.

156, 1135-1143.

Chaudhuri, B. N., Ko, J., Park, J. & Mowbray, S. L. (1999). Structure of D-allose binding protein from Escherichia coli bound to D-allose at 1.8 Å resolution. J. Mol. Biol. 286, 1519-1531.

Chen, J., Sharma, S., Quiocho, F. A. & Davidson, A. L. (2001). Trapping the transition state of an ATP-binding cassette transporter: Evidence for a concerted mechanism of maltose transport. Proc Natl Acad Sci U S A 98(4), 1525-1530.

Cheng, S. H., Rich, D. P., Marshall, J., Gregory, R. J., Welsh, M. J. & Smith, A. E. (1991).

Phosphorylation of the R domain by cAMP-dependent protein kinase regulates the CFTR chloride channel. Cell 66(5), 1027-36.

Chifflet, S., Torriglia, A., Chiesa, R. & Tolosa, S. (1988). A method for the determination of inorganic phosphate in the presence of labile organic phosphate and high

concentrations of protein: application to lens ATPases. Anal Biochem 168(1), 1-4.

Chung, C. T., Niemela, S. L. & Miller, R. H. (1989). One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution.

Proc. Natl. Acad. Sci. USA 86, 2172-2175.

Colacino, F. & Crichton, R. R. (1997). Enzyme thermostabilization: the state of the art.

Biotechnol Genet Eng Rev 14, 211-77.

da Costa, M. S., Santos, H. & Galinski, E. A. (1998). An overview of the role and diversity of compatible solutes in Bacteria and Archaea. Adv Biochem Eng Biotechnol 61, 117-53.

Dahl, M. K., Francoz, E., Saurin, W., Boos, W., Manson, M. D. & Hofnung, M. (1989).

Comparison of sequences from the malB regions of Salmonella typhimurium and Enterobacter aerogenes with Escherichia coli K12: a potential new regulatory site in the interoperonic region. Mol Gen Genet 218(2), 199-207.

Dalgaard, J. Z., Garrett, R. A. & Belfort, M. (1993). A site-specific endonuclease encoded by a typical archaeal intron. Proc Natl Acad Sci U S A 90(12), 5414-7.

Dardonville, B. & Raibaud, O. (1990). Characterization of malT mutants that constitutively activate the maltose regulon of Escherichia coli. J. Bacteriol. 172(4), 1846-1852.

Dassa, E. & Muir, S. (1993). Membrane topology of MalG, an inner membrane protein from the maltose transport system of Escherichia coli. Mol. Microbiol. 7(1), 29-38.

Davidson, A. L., Laghaeian, S. S. & Mannering, D. E. (1996). The maltose transport system of Escherichia coli displays positive cooperativity in ATP hydrolysis. J. Biol. Chem.

271(9), 4858-4863.

Davidson, A. L. & Nikaido, H. (1990). Overproduction, solubilization and reconstitution of the maltose transport system from Escherichia coli. J. Biol. Chem. 265(8), 4254-4260.

Davidson, A. L. & Nikaido, H. (1991). Purification and characterization of the membrane-associated components of the maltose transport system from Escherichia coli. J.

Biol. Chem 266(14), 8946-8951.

VI Literatur 130

Davidson, A. L. & Sharma, S. (1997). Mutation of a single MalK subunit severely impairs maltose transport activity in Escherichia coli. J. Bacteriol. 179, 5458-5464.

Davidson, A. L., Shuman, H. A. & Nikaido, H. (1992). Mechanism of maltose transport in Escherichia coli. Transmembrane signaling by periplasmic binding proteins. Proc.

Natl. Acad. Sci. USA 89(6), 2360-2364.

De Sutter, K., Hostens, K., Vandekerckhove, J. & Fiers, W. (1994). Production of enzymatically active rat protein disulfide isomerase in Escherichia coli. Gene 141(2), 163-70.

de Vos, W. M., Kengen, S. W., Voorhorst, W. G. & van der Oost, J. (1998). Sugar utilization and its control in hyperthermophiles. Extremophiles 2(3), 201-5.

Dean, D. A., Reizer, J., Nikaido, H. & Saier, M. H., Jr. (1990). Regulation of the maltose transport system of Escherichia coli by the glucose-specific enzyme III of the phosphoenolpyruvate-sugar phosphotransferase system. Characterization of inducer exclusion- resistant mutants and reconstitution of inducer exclusion in proteoliposomes. J Biol Chem 265(34), 21005-10.

Death, A. & Ferenci, T. (1994). Between feast and famine: endogenous inducer synthesis in the adaptation of Escherichia coli to growth with limiting carbohydrates. J.

Bacteriol. 176(16), 5101-5107.

Death, A., Notley, L. & Ferenci, T. (1993). Derepression of LamB protein facilitates outer membrane permeation of carbohydrates into Escherichia coli under conditions of nutrient stress. J. Bacteriol. 175(5), 1475-1483.

Debarbouille, M., Shuman, H. A., Silhavy, T. J. & Schwartz, M. (1978). Dominant

constitutive mutations in malT, the positive regulator gene of the maltose regulon in Escherichia coli. J Mol Biol 124(2), 359-71.

Decker, K. (1997). Untersuchungen zur Regulationsfunktion von MalK, der ATP-bindenden Untereinheit des Maltosetransportsystems aus Escherichia coli.

Dissertation, Universität Konstanz.

DeLong, E. F. (1998). Everything in moderation: archaea as 'non-extremophiles'. Curr Opin Genet Dev 8(6), 649-54.

DeLong, E. F., Wu, K. Y., Prezelin, B. B. & Jovine, R. V. (1994). High abundance of Archaea in Antarctic marine picoplankton. Nature 371(6499), 695-7.

Diederichs, K., Diez, J., Greller, G., Muller, C., Breed, J., Schnell, C., Vonrhein, C., Boos, W.

& Welte, W. (2000). Crystal structure of MalK, the ATPase subunit of the

trehalose/maltose ABC transporter of the archaeon Thermococcus litoralis. Embo J 19(22), 5951-61.

Dietzel, I., Kolb, V. & Boos, W. (1978). Pole cap formation in Escherichia coli following induction of the maltose-binding protein. Arch. Microbiol. 118, 207-218.

Diez, J., Diederichs, K., Greller, G., Horlacher, R., Boos, W. & Welte, W. (2001). The Crystal Structure of a Liganded Trehalose/Maltose-binding Protein from the

Hyperthermophilic Archaeon Thermococcus litoralis at 1.85 A. J Mol Biol 305(4), 905-915.

DiRuggiero, J., Dunn, D., Maeder, D. L., Holley-Shanks, R., Chatard, J., Horlacher, R., Robb, F. T., Boos, W. & Weiss, R. B. (2000). Evidence of recent lateral gene transfer among hyperthermophilic Archaea. Mol. Microbiol. 38(4), 684-693.

Doige, C. A. & Ames, G. F. L. (1993). ATP-dependent transport systems in bacteria and humans - relevance to cystic fibrosis and multidrug resistance. Annu. Rev.

Microbiol. 47, 291-319.

Dong, H., Nilsson, L. & Kurland, C. G. (1996). Co-variation of tRNA abundance and codon usage in Escherichia coli at different growth rates. J Mol Biol 260(5), 649-63.

Döring, K., Surrey, T., Nollert, P. & Jähnig, F. (1999). Effects of ligand binding on the internal dynamics of maltose-binding protein. Eur. J. Biochem. 266(2), 477-483.

Drumm, M. L. & Collins, F. S. (1993). Molecular biology of cystic fibrosis. Mol Genet Med 3, 33-68.

Duplay, P., Bedouelle, H., Fowler, A., Zabin, I., Saurin, W. & Hofnung, M. (1984).

Sequences of the malE gene and of its product, the maltose-binding protein of Escherichia coli K12. J. Biol. Chem. 259(16), 10606-10613.

VI Literatur 131

Dutzler, R., Wang, Y. F., Rizkallah, P., Rosenbusch, J. P. & Schirmer, T. (1996). Crystal structures of various maltooligosaccharides bound to maltoporin reveal a specific sugar translocation pathway. Structure 4(2), 127-34.

Egner, U., Tomasselli, A. G. & Schulz, G. E. (1987). Structure of the complex of yeast adenylate kinase with the inhibitor P1,P5-di(adenosine-5'-)pentaphosphate at 2.6 A resolution. J Mol Biol 195(3), 649-58.

Ehrle, R., Pick, C., Ulrich, R., Hofmann, E. & Ehrmann, M. (1996). Characterization of transmembrane domains 6, 7, and 8 of MalF by mutational analysis. J. Bacteriol.

178(8), 2255-2262.

Ehrmann, M. & Beckwith, J. (1991). Proper Insertion of a Complex Membrane Protein in the Absence of Its Amino-Terminal Export Signal. J Biol Chem 266(25), 16530-16533.

Ehrmann, M., Boyd, D. & Beckwith, J. (1990). Genetic analysis of membrane protein topology by a sandwich gene fusion approach. Proc. Natl. Acad. Sci. USA 87, 7574-7578.

Ehrmann, M., Ehrle, R., Hofmann, E., Boos, W. & Schlosser, A. (1998). The ABC maltose transporter. Mol Microbiol 29(3), 685-94.

Elcock, A. H. (1998). The stability of salt bridges at high temperatures: implications for hyperthermophilic proteins. J Mol Biol 284(2), 489-502.

Endicott, J. A. & Ling, V. (1989). The biochemistry of P-glycoprotein-mediated multidrug resistance. Annu Rev Biochem 58, 137-71.

Enoru-Eta, J., Gigot, D., Thia-Toong, T.-L., Glansdorff, N. & Charlier, D. (2000).

Purification and characterization of Sa-Lrp, a DNA-binding protein from the extreme thermoacidophilic archaeon Sulfolobus acidocaldarius homologous to the bacterial global transcriptional regulator Lrp. J. Bacteriol. 182(13), 3661-3672.

Evdokimov, A. G., Anderson, D. E., Routzahn, K. M. & Waugh, D. S. (2000). The crystal structure of a liganded maltodextrin-binding protein from the hyperthermophilic archaeon Pyrococcus furiosus at 1.85 Å resolution. J. Mol. Biol., submitted.

Ferenci, T. & Boos, W. (1980). The role of the Escherichia coli lambda receptor in the transport of maltose and maltodextrins. J. Supramol. Struct. 13(1), 101-116.

Fiala, G. & Stetter, K. O. (1986). Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100° C. Arch. Microbiol.

145, 56-61.

Fischer, M., Hlinak, A., Montag, T., Claros, M., Schade, R. & Ebner, D. (1996).

[Comparison of standard methods for the preparation of egg yolk antibodies].

Tierarztl Prax 24(4), 411-8.

Flocco, M. M. & Mowbray, S. L. (1994). The 1.9 angstrom X-ray structure of a closed unliganded form of the periplasmic glucose/galactose receptor from Salmonella typhimurium. J. Biol. Chem. 269(12), 8931-8936.

Freundlieb, S. & Boos, W. (1986). Alpha-amylase of Escherichia coli, mapping and cloning of the structural gene, malS, and identification of its product as a periplasmic protein. J Biol Chem 261(6), 2946-53.

Freundlieb, S., Ehmann, U. & Boos, W. (1988). Facilitated diffusion of p-nitrophenyl-alpha-D-maltohexaoside through the outer membrane of Escherichia coli.

Characterization of LamB as a specific and saturable channel for maltooligosaccharides. J Biol Chem 263(1), 314-20.

Froshauer, S., Green, G. N., Boyd, D., McGovern, K. & Beckwith, J. (1988). Genetic analysis of the membrane insertion and topology of MalF, a cytoplasmic membrane protein of Escherichia coli. J. Mol. Biol. 200(3), 501-511.

Gerlach, J. H., Endicott, J. A., Juranka, P. F., Henderson, G., Sarangi, F., Deuchars, K. L. &

Ling, V. (1986). Homology between P-glycoprotein and a bacterial haemolysin transport protein suggests a model for multidrug resistance. Nature 324(6096), 485-9.

Gileadi, U. & Higgins, C. F. (1997). Membrane topology of the ATP-binding cassette transporter associated with antigen presentation (Tap1) expressed in Escherichia coli. J. Biol. Chem. 272(17), 11103-11108.

VI Literatur 132

Gilson, E., Alloing, G., Schmidt, T., Claverys, J. P., Dudler, R. & Hofnung, M. (1988).

Evidence for high affinity binding-protein dependent transport systems in gram-positive bacteria and in Mycoplasma. EMBO J. 7, 3971-3974.

Gilson, E., Nikaido, H. & Hofnung, M. (1982). Sequence of the malK gene in E.coli K12.

Nucleic Acids Res 10(22), 7449-58.

Gottermann, S. (1997). Klonierung und Charakterisierung der Komponeneten eines ABC-Transporters von Thermococcus litoralis. Diplomarbeit, Universität Konstanz.

Gottesman, M. M., Hrycyna, C. A., Schoenlein, P. V., Germann, U. A. & Pastan, I. (1995).

Genetic analysis of the multidrug transporter. In Annu. Rev. Genet., Vol. 29, pp.

607-649.

Gottesman, M. M. & Pastan, I. (1993). Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 62, 385-427.

Greller, G., Horlacher, R., DiRuggiero, J. & Boos, W. (1999). Molecular and biochemical analysis of MalK, the ATP-hydrolyzing subunit of the trehalose/maltose transport system of the hyperthermophilic archaeon Thermococcus litoralis. J Biol Chem 274(29), 20259-64.

Greller, G., Riek, R. & Boos, W. (2001). Purification and characterization of the heterologously expressed trehalose/maltose ABC transporter complex of the hyperthermophilic archaeon Thermococcus litoralis. Eur. J. Biochem. eingereicht.

Grisshammer, R. & Tate, C. G. (1995). Overexpression of integral membrane proteins for structural studies. Q Rev Biophys 28(3), 315-422.

Hain, J., Reiter, W. D., Hudepohl, U. & Zillig, W. (1992). Elements of an archaeal promoter defined by mutational analysis. Nucleic Acids Res 20(20), 5423-8.

Hall, J. A., Gehring, K. & Nikaido, H. (1997). Two modes of ligand binding in maltose-binding protein of Escherichia coli. Correlation with the structure of ligands and the structure of binding protein. J. Biol. Chem. 272(28), 17605-17609.

Hamilton, P. T. & Reeve, J. N. (1985). Sequence divergence of an archaebacterial gene cloned from a mesophilic and a thermophilic methanogen. J Mol Evol 22(4), 351-60.

Haney, P., Konisky, J., Koretke, K. K., Luthey-Schulten, Z. & Wolynes, P. G. (1997).

Structural basis for thermostability and identification of potential active site residues for adenylate kinases from the archaeal genus Methanococcus. Proteins 28(1), 117-30.

Hatfield, D., Hofnung, M. & Schwartz, M. (1969). Genetic analysis of the maltose A region in Escherichia coli. J. Bacteriol. 98(2), 559-567.

Hausner, W., Wettach, J., Hethke, C. & Thomm, M. (1996). Two transcription factors related with the eucaryal transcription factors TATA-binding protein and transcription factor IIB direct promoter recognition by an archaeal RNA polymerase. J Biol Chem 271(47), 30144-8.

Hekstra, D. & Tommassen, J. (1993). Functional exchangeability of the ABC proteins of the periplasmic binding protein-dependent transport systems Ugp and Mal of

Escherichia coli. J Bacteriol 175(20), 6546-52.

Helenius, A. & Simons, K. (1975). Solubilization of membranes by detergents. Biochim Biophys Acta 415(1), 29-79.

Herrmann, A., Schlösser, A., Schmid, R. & Schneider, E. (1996). Biochemical identification of a lipoprotein with maltose-binding activity in the thermoacidophilic Gram-positive bacterium Alicyclobacillus acidocaldarius. Res. Microbiol. 147(9), 733-737.

Hess, D. & Hensel, R. (1996). The 3-phosphoglycerate kinase of the hyperthermophilic archaeum Pyrococcus woesei produced in Escherichia coli: loss of heat resistance due to internal translation initiation and its restoration by site-directed

mutagenesis. Gene 172, 121-124.

Hethke, C., Bergerat, A., Hausner, W., Forterre, P. & Thomm, M. (1999). Cell-free transcription at 95 degrees: thermostability of transcriptional components and DNA topology requirements of Pyrococcus transcription. Genetics 152(4), 1325-33.

Higgins, C. F. (1992). ABC transporters: from microorganisms to man. Annu. Rev. Cell Biol.

8, 67-113.

VI Literatur 133

Hofnung, M., Schwartz, M. & Hatfield, D. (1971). Complementation studies in the maltose-A region of Escherichia coli K12 genetic map. J. Mol. Biol. 61, 681-694.

Holland, I. B. & Blight, M. A. (1999). ABC-ATPases, adaptable energy generators fuelling transmembrane movement of a variety of molecules in organisms from bacteria to humans. J Mol Biol 293(2), 381-99.

Hor, L. I. & Shuman, H. A. (1993). Genetic analysis of periplasmic binding protein dependent transport in Escherichia coli. Each lobe of maltose-binding protein interacts with a different subunit of the MalFGK2 membrane transport complex. J

Hor, L. I. & Shuman, H. A. (1993). Genetic analysis of periplasmic binding protein dependent transport in Escherichia coli. Each lobe of maltose-binding protein interacts with a different subunit of the MalFGK2 membrane transport complex. J