• Keine Ergebnisse gefunden

6. CONCLUSIONS AND FUTURE TOPICS

6.2 Future topics

The presented concepts show very promising results both theoretically and in practical measure-ment examples. Nevertheless, based on the results from this work, there is still some potential for possible future research topics, especially now that autonomous driving is becoming more and more interesting for car development.

• Since the 5 GHz bandwidth (76 – 81 GHz) is becoming the worldwide accepted regula-tion, a stable radiation pattern within wide bandwidth is required for the future antenna development. For this purpose, a multilayer of RF substrate as well as back feeding are possible solutions. A multilayer structure benefits antenna bandwidth, and the back feed-ing supports a stable radiation pattern. In this solution, a sophisticated and low-cost manufacturing is the key for mass production success.

• Another trend for the mmW radar is high IO integration in the package. Since more and more mmW radar applications are developed and digital beamforming is popularly used in all mmW radar systems, there is a high demand for a high number of RF IO channels as well as antenna in package from the market [176]. Such high-integration radar can be used for gesture detection, door open alarm, etc. The high number of Tx and Rx channels with antenna integrated in the package enables a very compact size of the radar systems with good angle resolution performance. Further improvement of the package technology has great potential for the future antenna/system development.

122

Appendix A

.1 Dipole antenna resistance

The radiation resistance of a infinitesimal dipole (l≤λ/50) is:

Rr = η(2π 3)(l

λ)2 (.1.1)

= 80π2(l

λ)2 (.1.2)

where ηis 120π.

The radiation resistance of a small dipole (λ/50< l≤λ/10) is:

Rr = 20π2(l

λ)2 (.1.3)

The real and imaginary parts of the antenna impedance for a finite length dipole are:

Rr = η

2π{C+ ln(kl)−Ci(kl) +1

2sin(kl)[Si(2kl)−2Si(kl)]

+1

2cos(kl)[C+ ln(kl

2) +Ci(2kl)−2Ci(kl)]} (.1.4)

Xr = η

4π{2Si(kl) + cos(kl)[2Si(kl)−Si(2kl)]

−sin(kl)[2Ci(kl)−Ci(2kl)−Ci(2ka2

l )]} (.1.5)

where Si(x) andCi(x) are the sine and cosine integrals. Cis Euler constant 0.5772.

Whenl=λ/2,Rr is 73 Ohm andXris 42 Ohm.

123

. APPENDIX A

.2 Horizontal electric dipole

Rr =ηπl λ

2h2

3− sin(2kh)

2kh − cos(2kh)

(2kh)2 + sin(2kh) (2kh)3

i

(.2.1)

124

Acronyms

ACC : autonomous cruise control AiP : antenna in package

AoC : antenna on chip B2B : back-to-back BGA : ball grid array BW : bandwidth

CFL : Courant-Friedrichs-Levy CM : common mode

cmW : centimeter wave

CSRR : complementary split ring resonator

CST MWS : computer simulation technology microwave studio CW : continuous-wave

DBF : digital beam forming DF : differential

DMPA : differential feed microstrip patch antenna DMSLs : differential microstrip lines

DP : dual patch

DUT : device under test

EM wave : electromagnetic wave

eWLB : embedded wafer level ball grid array EIRP : equivalent isotropically radiated power FD : folded dipole

FFT : fast fourier transformation FIT : finite integration technique

FMCW : frequency-modulated continuous-wave FoV : field of view

GC : gap coupled

GSG : Ground-Signal-Ground HPBW : half power beam width IC : integrated circuit

IEEE : Institute of Electrical and Electronics Engineers IF : intermediate frequency

IO : input-output

LCP : liquid-crystal polymers LRdR: load, reect, delayed reect LO : local oscillator

125

. ACRONYMS

LTCC : low temperature co-fired ceramics LWG : laminated waveguide

MGEs : Maxwell’s Grid Equation mmW : millimeter wave Radar

MIMO : multiple-input and multiple-output MMIC : monolithic microwave integrated circuits MN : matching network

MPA : microstrip patch antenna MRR : middle range Radar MSL : microstrip line PA : power amplifier PCB : printed circuit board QFN : quad flat no-leads

Radar : RAdio Detection And Ranging RF : radio frequency

RDL : redistribution layer Rx : receiving/receiver

SMPA : single-ended microstrip patch antenna SIW : substrate integrated waveguide

SLL : side lobe level

TEM : transverse electromagnetic Tx : transmitting/transmitter TRx : tranceiver

VCO : voltage-controlled oscillator VNA : Vector Network Analyzer WG : waveguide

WLP : wafer level packaging

126

References

[1] C. Huelsmeyer, Verfahren, um entfernte metallische Gegenstaende mittels elektrischer Wellen einem Beobachter zu melden. Patent, Germany: DE165546, Apr. 30 1904. 1

[2] M. Skolnik,Radar Handbook. McGraw Hill, 1970. 2

[3] E. Fishler, A. Haimovich, R. Blum, D. Chizhik, L. Cimini, and R. Valenzuela, “MIMO Radar: An Idea Whose Time Has Come,” inProceedings of the IEEE Radar Conference, (Philadelphia, PA, USA), pp. 71–78, Apr. 26-29 2004. 2

[4] E. Fishler, A. Haimovich, R. Blum, L. Cimini, D. Chizhik, and R. Valenzuela, “Perfor-mance of MIMO Radar Systems: Advantages of Angular Diversity,” in 38th Asilomar Conference on Signals, Systems and Computers, (Pacific Grove, CA, USA), pp. 305–309, Nov. 2004. 2

[5] J. Li and P. Stoica, “MIMO Radar – Diversity Means Superiority,” in The 14th An-nual Workshop Adaptive Sensor Array Processing, MIT Lincoln Laboratory, (Lexington, Massachusetts, USA), pp. 1–6, Jun. 6-7 2006. 2

[6] J. Li and P. Stoica, “MIMO Radar with Colocated Antennas,” IEEE Signal Processing Magazine, vol. 24, pp. 106–114, Sep. 2007. 2

[7] W. Menzel and A. Moebius, “Antenna Concepts for Millimeter-Wave Automotive Radar Sensors,”Proceedings of the IEEE, vol. 100, pp. 2372–2379, July 2012. 3,8

[8] J. Li and P. Stoica,MIMO Radar Signal Processing. John Wiley & Sons, INC, 2008. 3 [9] M. A. Richards, J. A. Scheer, and W. A. Holm, Principles of Modern Radar. SciTech

Publishing, 2010. 3

[10] W. Menzel, “Millimeter-wave Radar for Civil Applications,” inEuropean Radar Confer-ence (EuRAD), (Paris, France), pp. 89–92, Oct. 2010. 3

[11] P. Heide, M. Vossiek, M. Nalezinski, L. Or´eans, R. Schubert, and M. Kunert, “24 GHz Short-Range Microwave Sensors for Industrial and Vehicular Applications,”Short Range Radar Workshop, pp. 1–6, Jul. 15-16 1999. Ilmenau, Germany. 3

[12] M. Schneider, “Automotive Radar – Status and Trends,” inProceedings of the German Microwave Conference (GeMiC), (Ulm, Germany), pp. 144–147, Apr. 05-07 2005. 3,15

[13] H. H. Meinel and J. Dickmann, “Automotive Radar: From Its Origins to Future Direc-tions,”Microwave Journal, pp. 1–8, Sep. 2013. 3

[14] R. Stevenson, “Long Distance Car Radar,”IEEE Spectrum, pp. 1–6, Sep. 2011. 3,4 127

REFERENCES

[15] M. Pichler, P. Gulden, M. Vossiek, and A. Stelzer, “A 24 GHz Tank Level Gauging System with State Space Frequency Estimation and a Novel Adaptive Model Order Selection Algorithm,” in Microwave Symposium Digest 2003 IEEE MTT-S International, vol. 3, (Philadelphia, USA), pp. 1953–1956, Jun. 8-13 2003. 4

[16] P. Russer, “Si and SiGe Millimeter Wave Integrated Circuits,” IEEE Trans. Microwave Theory Tech., vol. 46, pp. 590–603, May 1998. 4

[17] H. Li, H.-M. Rein, T. Suttorp, and J. Boeck, “Fully Integrated SiGe VCOs With Powerful Output Buffer for 77 GHz Automotive Radar Systems and Applications Around 100GHz,”

IEEE J. Solid-State Circuits., vol. 39, pp. 1650–1658, Oct. 2004. 4

[18] S. Trotta and et al, “An 84 GHz Bandwidth and 20 dB Gain Broadband Amplifier in SiGe Bipolar Technology,” IEEE J. Solid-State Circuits., vol. 42, pp. 2099–2106, Oct.

2007. 4

[19] J.-J. Hung, T. M. Hancook, and G. . Rebeiz, “A 77 GHz SiGe Sub-Harmonic Balanced Mixer,”IEEE J. Solid-State Circuits., vol. 40, pp. 2167–2173, Nov. 2005. 4

[20] S. Reynolds, B. Floyd, U. Pfeiffer, and T. Zwick, “60 GHz Transceiver Circuits in SiGe Bipolar Technology,” inIEEE International Solid State Circuits Conference, pp. 442–443, Feb. 15-19 2004. 4

[21] B. A. Floyd, S. K. Reynolds, U. R. Pfeiffer, T. Zwick, T. Beukema, and B. Gaucher,

“SiGe Bipolar Transceiver Circuits Operating at 60 GHz,”IEEE J. Solid-State Circuits., vol. 40, pp. 156–167, Jan. 2005. 4

[22] H. P. Forstner and et al, “A 77 GHz 4-Channel Automotive Radar Transceiver in SiGe,” in IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, (Atlanta, Georgia, USA), pp. 233–236, Jun. 15-17 2008. 4

[23] C. Wagner, H. Forstner, G. Haider, A. Stelzer, and H. Jaeger, “A 79-GHz Radar Transceiver with Switchable TX and LO Feedthrough in a Silicon-Germanium Tech-nology,” in Proc. Bipolar BiCMOS Circuits and Technology Meeting, (Monterey, USA), pp. 105–108, Oct. 2008. 4

[24] R. C.-H. Li,Key Issues in RF RFIC Circuit Design. Higher Education Press, 2005. ch.5.

4

[25] W. Thomas, “A discretization method for the solution of Maxwell’s equations for six component fields,” Electronics and Communication, vol. 31, pp. 116–120, 1977. 5 [26] “CST Microwave Studio Manual,” 2006. 5,6

[27] W. Menzel,Antenna Concepts for Millimeter-Wave Automotive Radar Sensors. Springer, 2016. Chapter from Handbook of antenna technologies, Editors: Zhi Ning Chen, Duixian Liu, Hisamatsu Nakano, Xianming Qing, Thomas Zwick. 8

[28] M. Ando, “Planar Waveguide Arrays for Millimeter Wave Systems,” IEICE TRANS COMMUN, pp. 2504–2513, Oct. 2010. 8,66

128

REFERENCES

[29] K. Sakakibara and et al., “MILLIMETER-WAVE SLOTTED WAVEGUIDE ARRAY ANTENNA MANUFACTURED BY METAL INJECTION MOLDING FOR AUTOMO-TIVE RADAR SYSTEMS,” inProceedings of International Symposium on Antennas and Propagation (ISAP), (Fukuoka, Japan), pp. 1–4, Aug. 22-25 2000. 8,9,66

[30] B. Schoenlinner, X. Wu, G. V. Eleftheriades, and G. M. Rebeiz, “Spherical-Lens An-tennas For Millimeter Wave Radars,” inProceeding of 31st European Microwave Confer-ence(EuMC), (London, UK), pp. 1–4, Sep. 24-26 2001. 9,10

[31] B. Schoenlinner, X. Wu, J. Ebling, G. V. Eleftheriades, and G. M. Rebeiz, “Wide-scan spherical-lens antennas for automotive radars,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 2166–2175, Sep. 2002. 9, 10

[32] C. Fernandes, E. Lima, and J. Costa,Dielectric Lens Antennas, pp. 1001–1064. Springer, 2016. Chapter from Handbook of antenna technologies, Editors: Zhi Ning Chen, Duixian Liu, Hisamatsu Nakano, Xianming Qing, Thomas Zwick. 10

[33] S. Lutz, T. Walter, and R. Weigel, “Lens-based 77 GHz MIMO radar for angular estima-tion in multitarget environments,” in International Journal of Microwave and Wireless Technologies, vol. 6, pp. 397–404, Apr. 2014. 10

[34] F. Gallee, G. Landrac, and M. M. Ney, “Artificial lens for third-generation automotive radar antenna at millimetre-wave frequencies,”IEE Proceedings - Microwaves, Antennas and Propagation, vol. 150, pp. 470–476, Dec. 2003. 10,11

[35] T. Binzer, M. Klar, and V. Gross, “Development of 77 GHz Radar Lens Antennas for Automotive Applications Based on Given Requirements,” in2nd International ITG Con-ference on Antennas (INICA ’07), (Munich, Germany), pp. 1–5, Mar. 28-30 2007. 10

[36] S. B. Yeap, X. Qing, and Z. N. Chen, “77-GHz integrated antenna with plano-convex lens:

Design and measurement,” in 9th European Conference on Antennas and Propagation (EuCAP), (Lisbon, Portugal), pp. 1–4, Apr. 13-17 2015. 11

[37] S. B. Yeap, X. Qing, and Z. N. Chen, “77-GHz Dual-Layer Transmit-Array for Automotive Radar Applications,”IEEE Trans. Antennas Propag., vol. 63, pp. 2833–2837, Jun. 2015.

11

[38] Y.-J. Park and W. Wiesbeck, “Offset Cylindrical Reflector Antenna Fed by a Parallel-Plate Luneburg Lens for Automotive Radar Applications in Millimeter-Wave,” IEEE Trans. Antennas Propag., vol. 51, pp. 2481–2483, Sep. 2003. 11, 12

[39] S. Beer, G. Adamiuk, and T. Zwick, “Novel Antenna Concept for Compact Millimeter-Wave Automotive Radar Sensors,”IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 771–

774, Aug. 2009. 11,12

[40] W. Menzel, D. Pilz, and R. Leberer, “A 77-GHz FMCW Radar Front-End with a Low-Profile Low-Loss Printed Antenna,”IEEE Trans. Microwave Theory Tech., vol. 47, pp. 2237–2241, Dec. 1999. 11,12

[41] I. Gresham, N. Jain, T. Budka, and A. Alexanian, “A Compact Manufacturable 76−77 GHz Radar Module for Commercial ACC Applications,”IEEE Trans. Microwave Theory Tech., vol. 49, pp. 44–58, Jan. 2001. 12

129

REFERENCES

[42] H. Iizuka, T. Watanabe, K. Sato, and K. Nishikawa, “Millimeter-Wave Microstrip Array Antenna for Automotive Radars,” in Proceedings of International Symposium on Anten-nas and Propagation (ISAP), (Fukuoka, Japan), Aug. 22-25 2000. 2A2-5. 13

[43] H. Iizuka, K. Sakakibara, T. Watanabe, K. Sato, and K. Nishikawa, “Millimeter wave microstrip array antenna with high efficiency for automotive radar systems,”R&D review of Toyota CRDL, vol. 37, no. 2, pp. 7–12, 2002. 13

[44] L. Zhang, W. Zhang, and Y. P. Zhang, “Microstrip Grid and Comb Array Antennas,”

IEEE Trans. Antennas Propag., vol. 59, pp. 4077–4084, Nov. 2011. 13

[45] M. Frei and et al., “A 79 GHz Differentially Fed Grid Array Antenna,” inEuropean Radar Conference (EuRAD), (Manchester, UK), pp. 432–435, Oct. 12-14 2011. 14

[46] F. Bauer, X. Wang, W. Menzel, and A. Stelzer, “A 79-GHz Radar Sensor in LTCC Technology Using Grid Array Antennas,”IEEE Trans. Microwave Theory Tech., vol. 61, pp. 2514–2521, Jun. 2013. 14

[47] J. Schoebel and P. Herrero,Planar Antenna Technology for mm-Wave Automotive Radar, Sensing, and Communications. Radar Technology, Guy Kouemou(Ed.), 2010. chapter 15. 15

[48] A. Rida, M. Tentzeris, and S. Nikolaou, “Design of Low Cost Microstrip Antenna Ar-rays for mm-Wave Applications,” in IEEE International Symposium on Antennas and Propagation (APSURSI), (Spokane, WA, USA), pp. 2071–2073, Jul. 3-8 2011. 15

[49] P. Schmalenberg, J. S. Lee, and K. Shiozaki, “A SiGe-based 16-channel phased array radar system at W-Band for automotive applications,” in European Radar Conference (EuRAD), (Nuremberg, Germany), pp. 299–302, Oct. 9-11 2013. 15,16

[50] B.-H. Ku, P. Schmalenberg, O. Inac, O. D. Gurbuz, J. S. Lee, K. Shiozaki, and G. M.

Rebeiz, “A 77-81 GHz 16-Element Phased-Array Receiver With 50 Beam Scanning for Advanced Automotive Radars,”IEEE Trans. Microwave Theory Tech., vol. 62, pp. 2823–

2832, Nov. 2014. 15

[51] E. Topak, J. Hasch, C. Wagner, and T. Zwick, “A Novel Millimeter-Wave Dual-Fed Phased Array for Beam Steering,” IEEE Trans. Microwave Theory Tech., vol. 61, pp. 3140—-3147, Aug. 2013. 15,16

[52] D. Shin, K. Kim, J. Kim, and S. Park, “Design of Low Side Lobe Level Milimeter-Wave Microstrip Array Antenna for Automotive Radar,” in Proceedings of the International Symposium on Antennas and Propagation (ISAP), (Nanjing, China), pp. 1–4, Oct. 23-25 2013. 15

[53] A. Dewantari, J. Kim, S.-Y. Jeon, S. Kim, and M.-H. Ka, “Gain and side-lobe improve-ment of W-band microstrip array antenna with CSRR for radar applications,”Electronics Letters, vol. 53, pp. 702–704, May 2017. 15

[54] G. F. Hamberger, S. Trummer, U. Siart, and T. F. Eibert, “A single layer dual lin-early polarized microstrip patch antenna array for automotive applications in the 77 GHz band,” inIEEE International Symposium Phased Array Systems and Technology (PAST), (Waltham, MA, USA), pp. 1–4, Oct. 18-21 2016. 15,17

130

REFERENCES

[55] G. F. Hamberger, S. Trummer, U. Siart, and T. F. Eibert, “Circularly polarized antenna array for automotive applications,” in 42nd International Conference on Infrared, Mil-limeter, and Terahertz Waves (IRMMW-THz), (Cancun, Mexico), pp. 1–3, Aug. 27 -Sep.

01 2017. 15,16,17

[56] J. Xu, W. Hong, H. Zhang, and Y. Yu, “Design and measurement of array antennas for 77 GHz automotive radar application,” in10th UK-Europe-China Workshop on Millimetre Waves and Terahertz Technologies (UCMMT), (Liverpool, UK), pp. 1–4, Sep. 11-13 2017.

16, 17

[57] J. Xu, W. Hong, H. Zhang, G. Wang, Y. Yu, and Z. H. Jiang, “An Array Antenna for Both Long- and Medium-Range 77 GHz Automotive Radar Applications,”IEEE Trans.

Antennas Propag., vol. 65, pp. 7207––7216, Dec. 2017. 16,17

[58] D. Deslandes and K. Wu, “Integrated Microstrip and Rectangular Waveguide in Planar Form,”IEEE Microw. Wireless Comon. Lett., vol. 11, pp. 68–70, Feb. 2001. 18

[59] S. Cheng, H. Yousef, and H. Kratz, “79 GHz Slot Antennas Based on Substrate Integrated Waveguides in a Flexible Printed Circuit Boards,”IEEE Trans. Antennas Propag., vol. 57, pp. 64–71, Jan. 2009. 18

[60] H.-N. Wang, H.-W. Hu, and S.-J. Chung, “High Gain Slot-Pair Substrate-Integrated-Waveguide Antenna for 77 GHz Vehicle Collision Warning Radar,” in 11th European Radar Conference (EuRAD), (Rome, Italy), pp. 569–572, Oct. 8-10 2014. 19

[61] J. Massen, M. Frei, W. Menzel, and U. Moeller, “A 79 GHz SiGe short-range radar sensors for automotive applications,” International Journal of Microwave and Wireless Technologies, vol. 5, pp. 5–14, Feb. 2013. 19

[62] J. Hasch, U. Wostradowski, and S. Gaier, “77 GHz Radar Transceiver with Dual In-tegrated Antenna Elements,” in German Microwave Conference, (Berlin, Germany), pp. 280–283, Mar. 15-17 2010. 19,20, 93

[63] A. Babakhani, X. Guan, A. Komijani, A. Natarajan, and A. Hajimiri, “A 77-GHz Phased-Array Transceiver With On-Chip Antennas in Silicon: Receiver and Antennas,” IEEE Journal of Solid-State Circuits, vol. 41, pp. 2795–2806, Dec. 2006. 19,93

[64] J. Hasch, E. Topak, R. Schnabel, T. Zwick, R. Weigel, and C. Waldschmidt, “Millimeter-Wave Technology for Automotive Radar Sensors in the 77 GHz Frequency Band,”IEEE Trans. Microwave Theory Tech., vol. 60, pp. 845–860, Mar. 2012. 19

[65] C. Vasanelli, R. Batra, A. D. Serio, F. Boegelsack, and C. Waldschmidt, “Assessment of a Millimeter-Wave Antenna System for MIMO Radar Applications,”IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 1261––1264, 2017. 20

[66] M. Mosalanejad, S. Brebels, I. Ocket, C. Soens, and G. A. E. Vandenbosch, “Stacked patch antenna sub-array with low mutual coupling for 79 GHz MIMO radar applications,”

in 11th European Conference on Antennas and Propagation (EuCAP), (Paris, France), pp. 190–194, Mar. 19-24 2017. 20

[67] X. Wang and A. Stelzer, “A 79-GHz LTCC RF-Frontend Deploying 45 Degree Linear-Polarized Vertical Parallel-Feed,” in IEEE MTT-S International Conference on Mi-crowaves for Intelligent Mobility, (Heidelberg, Germany), pp. 1–4, Apr. 27-29 2015. 20, 21, 94

131

REFERENCES

[68] F. Sickinger, E. Weissbrodt, and M. Vossiek, “76 to 81 GHz LTCC antenna for an au-tomotive miniature radar frontend,” in Proceeding of 47th European Microwave Confer-ence(EuMC), (Nuremberg, Germany), pp. 1222–1225, Oct. 10-12 2017. 21

[69] B. Gaucher and et al., “MM-wave transceivers using SiGe HBT technology,” in Proc.

IEEE Topical Meeting Silicon Monolithic Integrated Circuits in RF Systems,, (Atlanta, US), pp. 81––84, Sep. 2004. 21, 22, 95

[70] T. Zwick, F. Boes, B. G¨ottel, and A. Bhutani, “Pea-Sized mmW Transceivers: QFN-Based Packaging Concepts for Millimeter-Wave Transceivers,” IEEE Microwave Maga-zine, vol. 18, pp. 79–89, Sep.-Oct. 2017. 21,22,93,96

[71] M. Brunnbauer and et. al., “An Embedded Device Technology Based on a Molded Re-configured Wafer,” in56th Electronic Components and Technology Conference (ECTC), (San Diego, USA), pp. 547–551, May 30-Jun. 02 2006. 21,96,97,98

[72] M. Brunnbauer and et. al., “Embedded Wafer Level Ball Grid Array (eWLB),” in8th Electronics Packaging Technology Conference, (Singapore), pp. 1–5, Dec. 6-8 2006. 21, 96,97

[73] A. Hagelauer, M. Wojnowski, K. Pressel, R. Weigel, and D. Kissinger, “Integrated Systems-in-Package: Heterogeneous Integration of Millimeter-Wave Active Circuits and Passives in Fan-Out Wafer-Level Packaging Technologies,” IEEE Microwave Magazine, vol. 19, pp. 48–56, Jan.-Feb. 2018. 21,22,93,96

[74] T. Zwick and S. Beer, “QFN based Packaging Concepts for Millimeter-Wave Transceivers,” in Proc. IEEE Int. Workshop on Antenna Technology (iWAP), (Tucson, USA.), pp. 335––338, Mar. 5-7 2012. 22

[75] C. Beck and et al., “Industrial mmWave Radar Sensor in Embedded Wafer-Level BGA Packaging Technology,” IEEE SENSORS JOURNAL, pp. 6566–6578, Sep. 2016. 22 [76] M. Wojnowski and et al., “A 77-GHz SiGe Single-Chip Four-Channel Transceiver

Mod-ule with Integrated Antennas in Embedded Wafer-Level BGA Package,” in IEEE 62nd Electronic Components and Technology Conference (ECTC), (San Diego, USA), pp. 1027–

1032, May 29 - Jun. 1 2012. 22

[77] Bosch, “Middle range radar,” accessed, Feb. 2018. https://www.i-micronews.

com/images/Reports/MEMS/Images_reports/Bosch_Mid_Range_Radar_MRR_Sensor_

Image2.jpg. 23

[78] Continental, “Long range radar,”accessed, Feb. 2018. https://www.i-micronews.com/

images/Reports/MEMS/Images_reports/Continental_ARS4xx_77GHz_Radar_System_

Plus_Consultingbd.jpg. 23

[79] Autoliv, “Short range radar,” accessed, Feb. 2018. https://www.i-micronews.com/

images/Reports/Packaging/Images_Reports/RF_Board_overview_Autoliv_System_

plus_consulting.png. 23

[80] Delphi, “Short range radar,” accessed, Feb. 2018. https://fccid.io/L2C0059TR/

Internal-Photos/Internal-Photos-2751143.pdf. 23 132

REFERENCES

[81] D. D. Grieg and H. F. Englemann, “Microstrip - A New Transmission Technique for the Kilomegacycle Range,” inProc. IRE, vol. 40, pp. 1644–1650, Dec. 1952. 24

[82] C. Nguyen, Analysis Methods for RF, Microwave, and Millimeter-Wave Planar Trans-mission Line Structures. John Wiley & Sons. Inc., 1nd ed., 2000. chapter 4. 24

[83] K. F. Lee and W. Chen, Advances in Microstrip and Printed Antennas. John Wiley &

Sons. Inc., 2nd ed., 1997. 24

[84] R. K. Hoffmann,Handbook of Microwave Integrated Circuits. Artech House, 1985. chapter 3. 24

[85] G. A. Deschamps, “Microstrip Microwave Antennas,” in3rd USAF Symposium on An-tennas, 1953. 25

[86] J. Q. Howell, “Microstrip Antennas,” inProc. IEEE Antennas and Propag. Society Int.

Symp., (Virginia, USA), pp. 177–180, Dec. 1972. 25

[87] R. E. Munson, “Conformal Microstrip Antennas and Microstrip Phased Arrays,” IEEE Trans. Antennas Propag., vol. 22, pp. 74–78, Jan. 1974. 25

[88] R. Garg, P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, pp. 2–3. Norwood, US: Artech House, 2001. 25,26

[89] C. A. Balanis,Antenna Theory: Analysis and Design, pp. 727–752. John Wiley & Sons.

Inc., 2nd ed., 1997. Chap.4.2. 25,26,29,35,36

[90] Y. T. Lo, D. D. Harrison, and W. F. Richards, “Theory and experiment on microstrip antennas,”IEEE Trans. Antennas Propag., vol. 27, pp. 137–145, Mar. 1979. 26

[91] W. F. Richards, Y. T. Lo, and D. D. Harrison, “An Improved Theory for Microstrip Antennas and Applications,” IEEE Trans. Antennas Propag., vol. 29, pp. 38–46, Jan.

1981. 26,30,32

[92] R. Garg, P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, pp. 90–97, 257–264. Norwood, US: Artech House, 2001. 26,30

[93] J. J. Schuss and J. D. Hanfling, “Nonreciprocity and scan blindness in phased arrays using balanced-fed radiators,”IEEE Trans. Antennas Propag., vol. 35, pp. 134–138, Feb. 1987.

30

[94] R. L. Bauer and J. J. Schuss, “Axial ratio of balanced and unbalanced fed circularly po-larized patch radiator arrays,” inAntennas and Propagation Society International Sym-posium, (Blacksburg, VA, USA), pp. 286–289, Jun. 15-19 1987. 30

[95] A. Petosa, A. Ittipiboon, and N. Gagnon, “Suppression of Unwanted Probe Radiation in Wideband Probe-fed Microstrip Patches,” Electronics Letters, pp. 355–357, Mar. 1999.

30

[96] W. R. Deal, V. Radisic, Y. Qian, and T. Itoh, “Integrated-Antenna Push-Pull Power Amplifiers,”IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1418–1425, Aug. 1999.

30, 31,37

133

REFERENCES

[97] T. Brauner, R. Vogt, and W. Baechtold, “A Differential Active Patch Antenna Element for Array Applications,”IEEE Microw. Wireless Comon. Lett., vol. 13, pp. 161–163, Apr.

2003. 30

[98] Y. P. Zhang and J. J. Wang, “Theory and Analysis of Differentially-Driven Microstrip Antennas,”IEEE Trans. Antennas Propag., vol. 54, pp. 1092–1099, Apr. 2006. 30,32 [99] C.-H. K. Chin, Q. Xue, H. Wong, and X. Zhang, “Broadband Patch Antenna with Low

Cross-polarisation,” Electronics Letters, vol. 43, pp. 137–138, Feb. 2007. 30

[100] E. Lee, K. M. Chan, P. Gardner, and T. E. Dodgson, “Active Integrated Antenna Design Using a Contact-Less, Proximity Coupled, Differentially Fed Technique,” IEEE Trans.

Antennas Propag., vol. 55, pp. 267–276, Feb. 2007. 30

[101] J. A. G. Akkermans, M. H. A. J. Herben, and M. C. van Beurden, “Balanced-Fed Pla-nar Antenna for Millimeter-Wave Transceivers,”IEEE Trans. Antennas Propag., vol. 57, pp. 2871–2881, Oct. 2009. 30,31

[102] A. Bisognin and et al., “Differential Feeding Technique for mm-Wave Series-fed Antenna-array,”Electronics Letters, vol. 49, pp. 918–919, Jul. 2013. 30,31

[103] Jin and et al., “Differential-Fed Patch Antenna Arrays With Low Cross Polarization and Wide Bandwidths,”IEEE Antennas Wireless Propag. Lett., vol. 13, pp. 1069–1072, Jun.

2014. 30

[104] M. H. Sagor and P. Callaghan, “Benefits of active transmit balanced antenna fed by differential power amplifier,” in Antennas and Propagation Conference (LAPC), 2014 Loughborough, (Loughborough, UK), pp. 732–735, Nov. 10-11 2014. 30

[105] Y. P. Zhang, “Design and Experiment on Differentially-Driven Microstrip Antennas,”

IEEE Trans. Antennas Propag., vol. 55, pp. 2701–2708, Oct. 2007. 30, 31,37

[106] C.-H. K. Chin, Q. Xue, and H. Wong, “Broadband Patch Antenna With a Folded Plate Pair as a Differential Feeding Scheme,”IEEE Trans. Antennas Propag., vol. 55, pp. 2461–

2467, Sep. 2007. 30

[107] C. Hamouda and et al, “A Differential printed antenna design for multiband Impulse Radio transmitter at 60 GHz,” in IEEE International Wireless Symposium (IWS) con-ference, (Beijing, China), pp. 1–4, Apr. 2013. 31,37,41

[108] Y.-C. Ou and G. M. Rebeiz, “Differential Microstrip and Slot-Ring Antennas for Millimeter-Wave Silicon Systems,” IEEE Trans. Antennas Propag., vol. 60, pp. 2611–

2619, Jun. 2012. 31

[109] A. G. Derneryd, “A Theoretical Investigation of the Rectangular Microstrip Antenna Element,” IEEE Trans. Antennas Propag., vol. 26, pp. 532–535, Jul. 1978. 33

[110] D. E. Bockelman and W. R. Eisenstadt, “Combined Differential and Common-mode Scattering Parameters: Theory and Simulation,” IEEE Trans. Microwave Theory Tech., vol. 43, pp. 1530–1539, July 1995. 36,44,57, 81

[111] Z. Tong, A. Stelzer, and W. Menzel, “Improved Expressions for Calculating the Impedance of Differential Feed Rectangular Microstrip Patch Antennas,” IEEE Microw. Wireless Comon. Lett., vol. 22, pp. 441–443, Sep. 2012. 38

134

REFERENCES

[112] Z. Tong and A. Stelzer, “Study of Electrical Separation in Differential Feed Rectangular Microstrip Patch Antennas,” in Proc. Of Antennas and Propagation and USNC-URSI National Radio Science Meeting (AP-S/USNC-URSI), (Orlando, US), pp. 1752–1753, Jul. 2013. 40

[113] Z. Tong, A. Stelzer, C. Wagner, R. Feger, and E. Kolmhofer, “A Novel Differential Mi-crostrip Patch Antenna and Array at 79GHz,” inProc. Int. Symp. on Antennas Propag.

(ISAP), (Taipei, ROC), pp. 276–280, Oct. 2008. 41,46,53,54

[114] K. C. Gupta, R. Garg, I. Bahl, and P. Bhartia,Microstrip Lines and Slotlines. Norwood, US: Artech House, 2nd ed., 1996. 42

[115] M. J. Vaughan, K. Y. Hur, and R. C. Compton, “Improvement of Microstrip Patch Antenna Radiation Patterns,” IEEE Trans. Antennas Propag., vol. 42, pp. 882 – 885, Jun. 1994. 46

[116] Z. Tong, A. Stelzer, and E. Kolmhofer, “77GHz Center-Fed Differential Microstrip An-tenna Array,” inProc. Of the 5th European Conference on Antennas and Propagation, (Rome, Italy), pp. 607–610, 2011. 57, 59,60

[117] W. Grabherr, B. Huder, and W. Menzel, “Microstrip to Waveguide Transition Compati-ble with MM-Wave Integrated Circuits,”IEEE Trans. Microwave Theory Tech., vol. 42, pp. 1842–1843, Sep. 1994. 60,66,67

[118] Y.-C. Leong and S. Weinreb, “Full band waveguide-to-microstrip probe transitions,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., (Anaheim, CA, USA), pp. 1435–1438, Jun.

13-19 1999. 60,66

[119] H. Iizuka, T. Watanabe, K. Sato, and K. Nisikawa, “Millimeter-wave microstrip line to waveguide transition fabricated on a single layer dielectric substrate,”IEICE Trans.

Commun., vol. E85-B, pp. 1169–1177, Jun. 2002. 60

[120] M. Hirono, K. Sakakibara, N. Kikuma, and H. Hirayama, “Design of a Broadband Microstrip-to-Waveguide Transition in Multi-layer Substrate,” in Proc. Int. Symp. on Antennas Propag. (ISAP), (Niigata, Japan), pp. 125–128, Aug. 20-24 2007. 60

[121] Z. Tong, A. Stelzer, W. Menzel, C. Wagner, R. Feger, and E. Kolmhofer, “A Wide Band Transition from Waveguide to Differential Microstrip Lines,” inProc. Asia-Pacific Microwave Conference., (Hongkong, China), pp. 1–4, Dec. 2008. Session A2-22. 61, 62, 63, 64,67

[122] M. Jahn, A. Hamidipour, Z. Tong, and A. Stelzer, “A 120-GHz FMCW radar frontend demonstrator based on a SiGe chipset,” inProceeding of 41st European Microwave Con-ference(EuMC), (Manchester, UK), pp. 519–522, Oct. 10-13 2011. 65

[123] R. Feger, C. Wagner, S. Schuster, S. Scheiblhofer, H. Jaeger, and A. Stelzer, “A 77GHz FMCW MIMO Radar Based on an SiGe Single Chip Transceiver,” IEEE Trans. Mi-crowave Theory Tech., vol. 57, pp. 1020–1035, May 2009. 65

[124] R. Feger, C. Wagner, S. Schuster, S. Scheiblhofer, and A. Stelzer, “Accuracy Improve-ment for Direction of Arrival Estimation by the Use of a Mirror EleImprove-ment,”IEEE Trans.

Microwave Theory Tech., vol. 59, pp. 1016–1024, Apr. 2011. 65

135

REFERENCES

[125] M. Jahn, R. Feger, C. Wagner, Z. Tong, and A. Stelzer, “A Four-Channel 94-GHz SiGe-Based Digital Beamforming FMCW Radar,”IEEE Trans. Microwave Theory Tech., vol. 60, pp. 861–869, Mar. 2012. 65

[126] B. H. Ku and et al., “A 16-element 77 to 81 GHz phased array for automotive radars with±50beam-scanning capabilities,” inProc. IEEE MTT-S Int. Microw. Symp. Dig., (Seattle, US), pp. 1–4, Jun. 2-7 2013. 65

[127] R. Feger, C. Pfeffer, W. Scheiblhofer, C. Schmid, M. Lang, and A. Stelzer, “A 77GHz Cooperative Radar System Based on Multi-Channel FMCW Stations for Local Positioning Applications,”IEEE Trans. Microwave Theory Tech., vol. 61, pp. 676–684, Jan. 2013. 65 [128] K. Sakakibara, A. Kawasaki, N. Kikuma, and H. Hirayama, “Design of Millimeter-wave Slotted-Waveguide Planar Antenna for Sub-array of Beam-scanning Antenna,” in Proc.

Int. Symp. on Antennas Propag. (ISAP), (Taipei, ROC), pp. 730–733, Oct. 2008. 66

[129] H.-W. Yao, A. Abdelmonem, J.-F. Liang, and K. A. Zaki, “Analysis and Design of Microstrip-to-Waveguide Transitions,” IEEE Trans. Microwave Theory Tech., vol. 42, pp. 2371–2380, Dec. 1994. 66

[130] N. Kaneda, Y. Qian, and T. Itoh, “A Broad-Band Microstrip-to-Waveguide Transition Using Quasi-Yagi Antenna,” inProc. IEEE MTT-S Int. Microw. Symp. Dig., (Anaheim, US), pp. 1431–1434, Jun. 13-19 1999. 66,67

[131] N. Kaneda, Y. Qian, and T. Itoh, “A Broad-Band Microstrip-to-Waveguide Transition Using Quasi-Yagi Antenna,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 2562–

2567, Dec 1999. 66

[132] Y. Deguchi, K. Sakakibara, N. Kikuma, and H. Hirayama, “Millimeterwave Microstrip-to-Waveguide Transition Operating over Broad Frequency Bandwidth,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., pp. 2107–2110, Jun. 12-17 2005. 66

[133] W. Thiel and W. Menzel, “An Efficient FDTD Analysis of A Waveguide-to-Microstrip Transition,” inProceeding of 28th European Microwave Conference(EuMC), vol. 4, (Am-sterdam, Neitherland), pp. 576–580, Oct. 5-9 1998. 66, 67

[134] F. J. Villegas, D. I. Stones, and H. A. Hung, “A Novel Waveguide-to-Microstrip Transi-tion for Millimeter-Wave Module ApplicaTransi-tions,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 48–55, Jan. 1999. 66,67

[135] M. A. Henawy and M. Schneider, “Rectangular Waveguide to Coplanar Stripline Transi-tion Based on a Unilateral Finline,” in6th European Conference on Antennas and Prop-agation (EUCAP), (Prague, Czech Republic), pp. 405–409, Mar. 26-30 2012. 67,68

[136] M. Giese, J. Waldhelm, and A. F. Jacob, “A Wideband Differential Microstrip-to-Waveguide Transition at W-band,” inGerman Microwave Conference (GeMiC), (Nuern-berg, Germany), pp. 174–177, Mar. 16-18 2015. 67

[137] M. Giese, T. Meinhardt, and A. F. Jacob, “Compact Wideband Single-ended and Differ-ential Microstrip-to-Waveguide Transitions at W-band,” in IEEE MTT-S International Microwave Symposium (IMS), (Phoenix, USA), pp. 1–4, May 17-22 2015. 67,68

136

REFERENCES

[138] T. Yuasa, T. Oba, Y. Tahara, Y. Morimoto, T. Owada, and M. Miyazaki, “A Millimeter Wave Wideband Differential Line to Waveguide Transition Using Short Ended Slot Line,”

inProceeding of 44th European Microwave Conference(EuMC), (Rome, Italy), pp. 1004–

1007, Oct. 6-9 2014. 67,68

[139] F. Bauer and W. Menzel, “A Wideband Transition from Substrate Integrated Waveguide to Differential Microstrip Lines in Multilayer Substrates,” inProceeding of 40th European Microwave Conference(EuMC), (Paris, France), pp. 811–813, Sep. 28-30 2010. 67,68

[140] X. Wang and A. Stelzer, “A 79-GHz LTCC Differential Microstrip Line to Laminated Waveguide Transition Using High Permittivity Material,” inProceedings of Asia-Pacific Microwave Conference, (Pacifico Yokohama, Japan,), pp. 1593–1596, Dec. 7-10 2010. 67, 94

[141] Miosga and et al., “Hochfrequenzanordnung mit einem Uebergang zwishen einem Hohlleiter und einer Mikrostrip-Leitung,”Patent DE102006019054A1, 2006. 68

[142] P. Herrero and J. Schoebel, “A WR-6 rectangular waveguide to microstrip transition and patch antenna at 140 GHz using low-cost solutions,” inProceeding of Radio and Wireless Symposium, pp. 355–358, Jan. 22-24 2008. 68

[143] D. M. Pozar,Microwave Engineering. John Wiley & Sons. Inc., 3nd ed., 2005. 68 [144] Z. Tong and A. Stelzer, “A Millimeter-wave Transition from Microstrip to Waveguide

Using a Differential Microstrip Antenna,” inProc. Of the 40th European Microwave Con-ference(EuMC), (Paris, France), pp. 660–663, Sep. 2010. 70,71,72,74,75,77,78

[145] L.-K. Wu and Y.-C. Chang, “Characterization of the Shielding Effects on the Frequency-Dependent Effective Dielectric Constant of a Waveguide-Shielded Microstrip Using the Finite-Difference Time-Domain Method,”IEEE Trans. Microwave Theory Tech., vol. 39, pp. 1688–1693, Oct. 1991. 70

[146] V. M. Hietala, “Determining two-port S-parameters from a one-port measurement using a novel impedance-state test chip,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., (Anaheim, US), pp. 1639–1642, Jun. 13-19 1999. 79

[147] Z. Tong and A. Stelzer, “S-parameters Extraction for Wide-band Transition from Coupled Microstrip Line to Waveguide by the LRdR Method,” inProc. Radio Wireless Symposium, (Phoenix, US), pp. 170–173, Jan. 2011. 80,82,83

[148] Z. Tong and A. Stelzer, “A Vertical Transition between Rectangular Waveguide and Coupled Microstrip Lines,”IEEE Microw. Wireless Comon. Lett., vol. 22, pp. 251–253, May 2012. 84,85,86,87

[149] J. Schrattenecker and et al., “Polarimetric Measurements with Integrated Sensors at mm-Wave Frequencies,” inProceeding of Asia Pacific Microwave Conference (APMC), (Kaoh-siung, Taiwan, ROC), pp. 1154–1156, Dec. 4-7 2012. 92

[150] Y. Zhang and D. Liu, “Antenna-on-Chip and Antenna-in-Package Solutions to Highly In-tegrated Millimeter-Wave Devices for Wireless Communications,”IEEE Trans. Antennas Propag., vol. 57, pp. 2830–2841, Oct. 2009. 93

137

REFERENCES

[151] A. E. I. Lamminen, J. Saily, and A. R. Vimpari, “60 GHz Patch Antennas and Arrays on LTCC With Embedded-Cavity Substrates,”IEEE Trans. Antennas Propag., vol. 56, pp. 2865––2874, Sep. 2008. 93,94

[152] Y. Zhang, M. Sun, D. Liu, and Y. Lu, “Dual Grid Array Antennas in a Thin-Profile Package for Flip-Chip Interconnection to Highly Integrated 60-GHz Radios,”IEEE Trans.

Antennas Propag., vol. 59, pp. 1191––1199, Apr. 2011. 94

[153] B. Zhang and Y. Zhang, “Grid Array Antennas With Subarrays and Multiple Feeds for 60-GHz Radios,”IEEE Trans. Antennas Propag., vol. 60, pp. 2270––2275, May 2012.94, 120

[154] X. Wang, Z. Tong, and A. Stelzer, “A 79-GHz LTCC Microstrip Half-Grid Array An-tenna Using a Laminated Waveguide Feed,” in Proceeding of 43rd European Microwave Conference(EuMC), (Nuremberg, Germany), pp. 44–47, Oct. 6-10 2013. 94

[155] X. Wang and A. Stelzer, “A 79-GHz LTCC Patch Array Antenna Using a Laminated Waveguide-Based Vertical Parallel Feed,”IEEE Antennas Wireless Propag. Lett., vol. 12, pp. 987–990, Dec. 2013. 94

[156] D. G. Kam, D. Liu, A. Natarajan, S. K. Reynolds, and B. A. Floyd, “Low-Cost Antenna-in-Package Solutions for 60-GHz Phased-Array Systems,” in IEEE 19th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), (Austin, USA), pp. 93–96, Oct. 25-27 2010. 94,95,105

[157] D. G. Kam, D. Liu, A. Natarajan, S. K. Reynolds, and B. A. Floyd, “Organic Packages with Embedded Phased-Array Antennas for 60-GHz Wireless Chipsets,” IEEE Trans.

Compon. Packag. Manuf. Technol., vol. 1, pp. 1806–1814, Nov. 2011. 94,105

[158] X. Gu and et al., “A Compact 4-Chip Package with 64 Embedded Dual-Polarization Antennas for W-band Phased-Array Transceivers,” inIEEE 64th Electronic Components and Technology Conference (ECTC), (Orlando, USA), pp. 1272–1277, May 27-30 2014.

94,95

[159] D. Guermandi and et al., “A 79-GHz 2×2 MIMO PMCW Radar SoC in 28-nm CMOS,”

IEEE J. Solid-State Circuits., vol. 52, pp. 2613–2626, Oct. 2017. 94, 95

[160] B. G. W. Winkler and A. B. B. P. Zwick, “Packaging Solution for a Millimeter-Wave System-on-Chip Radar,” IEEE Trans. Compon. Packag. Manuf. Technol., pp. 1–9, Oct.

2017. 95,96

[161] A. Hamidipour, A. Fischer, L. Maurer, and A. Stelzer, “On the Feasibility of an An-tenna in Package With Stacked Directors,” in IEEE MTT-S International Microwave Symposium Digest (MTT), (Montreal, Canada), pp. 1–3, Jun. 17-22 2012. 96

[162] Abouzar Hamidipour and et al., “Antennas in Package With Stacked Metallization,” in Proc. of 43rd European Microwave Conference (EuMC), (Nuremberg, Germany), pp. 56–

59, Oct. 6-10 2013. 96

[163] A. Hamidipour and et al., “A Rhombic Antenna Array Solution in eWLB Package for Millimeter-Wave Applications,” in Proc. of 42nd European Microwave Conference (EuMC), (Amsterdam, Netherlands), pp. 205–208, Oct. 29 - Nov. 1 2012. 96

138

REFERENCES

[164] A. Fischer, Z. Tong, A. Hamidipour, L. Maurer, and A. Stelzer, “A 77-GHz Antenna in Package,” in Proc. Of the 41th European Microwave Conference(EuMC), (Manchester, UK), pp. 1316–1319, Oct. 10-13 2011. 98,100,101,102

[165] C. A. Balanis,Antenna Theory: Analysis and Design, pp. 175–181. John Wiley & Sons.

Inc., 2nd ed., 1997. Chap.4.7.5. 99

[166] C. A. Balanis,Antenna Theory: Analysis and Design, pp. 458–462. John Wiley & Sons.

Inc., 2nd ed., 1997. Chap.9.5. 99

[167] A. Fischer, F. Starzer, H. P. Forstner, E. Kolmhofer, and A. Stelzer, “A 77 GHz SiGe Frequency Multiplier (x18) for Radar Transceiver,” inProf. of Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), (Austin, USA), pp. 1316–1319, Oct. 4-6 2010. 99,100, 103,108

[168] Z. Tong, A. Fischer, A. Stelzer, and L. Maurer, “Bandwidth and Gain Enhancement of Antenna in Package,” in Proc. of Electrical Performance of Electronic Packaging and Systems, (Tempe, US), pp. 149–152, Oct. 2012. 103, 104,105,113,114,118,120

[169] D. R. Jackson and N. G. Alexopoulos, “Gain Enhancement Methods for Printed Circuit Antennas,”IEEE Trans. Antennas Propag., vol. 33, pp. 976–987, Sep. 1985. 105

[170] Z. Tong, A. Fischer, X. Wang, A. Stelzer, and L. Maurer, “Wideband Differential An-tenna in Package with Superstrate Structure at 77GHz,” inProc. of IEEE Aisa-Pacific Conference on Antennas and Propagation, (Singapore), pp. 203–206, August 2012. 106, 107,108, 109,110

[171] K.-H. Kim, S.-B. Cho, Y.-J. Park, and H.-G. Park, “Novel Planar Ultra Wideband Stepped-Fat Dipole Antenna,” in Proceeding of IEEE Conference on Ultra Wideband Systems and Technologies, (Reston, USA), pp. 508–512, Nov. 16-19 2003. 106

[172] Z. Tong, A. Fischer, A. Stelzer, and L. Maurer, “Radiation Performance Enhancement of E-band Antenna in Package,”IEEE Trans. Compon. Packag. Manuf. Technol., vol. 3, pp. 1953–1959, Nov. 2013. 107,108,111,112,115,116,117,118,119

[173] S. B. Yeap, Z. N. Chen, and X. Qing, “Gain-Enhanced 60-GHz LTCC Antenna Array With Open Air Cavities,”IEEE Trans. Antennas Propag., vol. 59, pp. 3470–3473, Sep.

2011. 120

[174] B. Zhang and et al., “Metallic 3-D Printed Antennas for Millimeter- and Submillimeter Wave Applications,” IEEE Transactions on Terahertz Science and Technology, vol. 6, pp. 592–600, July 2016. 122

[175] K. Lomakin and et al., “3D Printed Slotted Waveguide Array Antenna for Automotive Radar Applications in W-Band,” inIn proceeding 15th European Radar Conference (Eu-RAD), (Madrid, Spain), pp. 1409–1412, 26-28 Sept. 2018. 122

[176] Google, “Soli radar,”accessed, 2016. https://atap.google.com/soli/. 122

139