• Keine Ergebnisse gefunden

4 Ergebnisse

5.8 Ausblick

Aktuelle Untersuchungen beschäftigen sich mit der Rolle von DHHC3 in neuronalen Zellen. Die Ergebnisse der vorliegenden Arbeit bestätigen, dass ein relativ einfaches Molekül, wie das Palmitat, in der Lage ist auch intrazelluläres System intestinaler Zellen zu beeinflussen (ROHWEDDER 2009). Für Caco-2 Zellen bedeutet dies, dass die Palmitoylierung von entscheidender Bedeutung für die Ausbildung einer integeren Zellkultur ist. Es ist anzunehmen, dass in vivo der DHHC3 eine ebensolche Bedeutung zukommt. Eine Rolle der iPAT bei der Entstehung intestinaler Erkrankungen ist nicht auszuschließen. Die wichtigste Fragestellung könnte also lauten: Spielt die iPAT eine Rolle bei der Entstehung chronisch entzündlicher Darmerkrankungen?

Das wissenschaftliche Feld der DHHC-Proteine ist weit und umfassend. Weitere Untersuchungen der PATs können zukünftig neue Einblicke in das intrazelluläre Gefüge intestinaler Zellen, in physiologischer aber auch pathophysiologischer Hinsicht geben.

Susanne Berger-Sohns

– Charakterisierung der Palmitoyltransferase hZDHHC3 in Caco-2 Zellen - 6 Zusammenfassung

Die intestinale Palmitoyltransferase DHHC3 (iPAT) wurde erstmals 2009 von Arndt Rohwedder in Caco-2 Zellen detailliert untersucht. Ziel der vorliegenden Arbeit war es die vorhandenen Daten mit Hilfe fluoreszenzspektroskopischer und biochemischer Methoden weiter zu vervollständigen und zu verifizieren.

In einem ersten Schritt wurde die für DHHC3 bekannte Lokalisation in der Golgi Region in COS-1 und CHO Zellen bestätigt. Dazu wurde iPAT mit einer Variante des green fluorescent protein (GFP), dem enhanced yellow fluorescent Protein (eYFP) fusioniert (YFP-iPAT). Dieses Fusionsprotein ermöglicht in vivo als auch in vitro biochemische und fluoreszenzspektroskopische Untersuchungen. Zusätzlich generierte Fusionproteine von iPAT mit einem 3xFlag-Tag, jeweils am N- und am C-Terminus, zeigten dieselbe Lokalisation in den genannten Zelllinien. Mit einem Radiolabeling Experiment konnte bestätigt werden, dass iPAT richtig prozessiert und transportiert wurde. Die Größe des Tags und deren Lokalisation spielen demnach weder für die Synthese der iPAT, noch für deren Transport eine Rolle.

Kolokalisationsexperimente ergaben eine Kolokalisation der iPAT mit der Saccharase-Isomaltase oder mit PSMA (Prostata-spezifisches Membran-Antigen) konnte nicht gefunden werden.

Des Weiteren wurde mit Hilfe der RNAi Methode eine stabile Caco - iPAT Knockdown siiPAT Zelllinie hergestellt. Der bereits vorhandene siiPAT Klon (siiPATB1) zeigte zellphysiologische und biochemische Auffälligkeiten. So ergab die Auswertung elektronenmikroskopischer Aufnahmen eine deutliche Strukturlosigkeit der Mikrovilli und des Aktinnetzwerks. In biochemischen Experimenten konnten erste Hinweise auf den Einfluss des iPAT Knockdowns auf das Trafficking und die Lipid Raft Assoziation verschiedener Proteine gefunden werden. Zur Verifizierung einiger der Ergebnisse wurde ein weiterer siiPAT Klon generiert (siiPAT7). Die erfolgreiche

stabile Transfektion der Hairpin RNA in Caco-2 Zellen wurde mittels RT-PCR bestätigt.

Mit Hilfe der erzeugten Knockdown Zelllinie wurde der Effekt der Reprimierung von iPAT auf die Expression der Saccharase-Isomaltase (SI), der humanen Dipeptidyl Peptidase IV (DPP IV) und, zum ersten Mal, auf P-Glykoprotein (P-gp) untersucht.

Für SI und P-gp konnte eine Verminderung der Expression gezeigt werden. Mehr noch, eine Enzymaktivitätsmessung ergab eine Abnahme der SI-Aktivität in siiPATB1.

Ein Saccharose-Gradient wurde zur Analyse der Lipid Raft Assoziation von SI, DPP IV und für P-gp durchgeführt. Die Ergebnisse zeigten eine Umverteilung der Proteine aus den Fraktionen mit größerer Dichte in die Fraktionen mit geringer Dichte. Das konnte für alle Proteine gezeigt werde. Jedoch war das Ausmaß der Umverteilung für jedes Protein unterschiedlich. Die fehlende bzw. verminderte Palmitoylierung verändert offensichtlich die Assoziation dieser Proteine mit Lipid Rafts.

Die vorhandenen Daten zur Relevanz von DHHC3 in Caco-2 Zellen konnten mit Hilfe des neuen Klons siiPAT7 größtenteils bestätigt, verifiziert und ergänzt werden. Die Rolle der iPAT scheint demnach in intestinalen Zellen essentiell zu sein.

Susanne Berger-Sohns

– Characterization of the palmitoyltransferase hZDHHC3 in Caco-2 cells – 7 Abstract

The intestinal palmitoyltransferase hZDHHC3 was first examined in 2009 by Arndt Rohwedder. The aim of the study at hand was to verify and to complete the already existing data via fluorescent confocal microscopy techniques and biochemical methods.

In a first step the localization of DHHC3 which is known to be found in the Golgi region was successfully verified in COS-1 and CHO cells. This was examined by using a variant of the green fluorescent protein (GFP) called enhanced yellow fluorescent protein (eYFP) which was tagged to iPAT (YFP-iPAT). Tagged proteins like this allow biochemical and fluorescence-spectroscopy studies in vivo and in vitro.

Additionally generated protein constructs with a 3xFlag-Tag respectively at the N- and C- terminus showed the same localization in the mentioned cell lines. A radiolabeling experiment was used to confirm that iPAT was correctly processed and trafficked. Neither the size of the Tag nor its localization does interfere with the synthesis or the trafficking of iPAT. Colocalization experiments offered no hints to a colocalization of iPAT with sucrase-isomaltase (SI) or with PSMA (prostate-specific membrane-antigen).

Furthermore siRNA (shRNA) was used to establish a stable iPAT knockdown cell line. An already existing siiPAT cell line (siiPATB1) showed remarkable changes in cell physiology and biochemistry. Analysis of electron microscopy images revealed a loss of structure in microvilli and in the actin network. Biochemical experiments showed variable influence of an iPAT knockdown on trafficking and lipid raft association of some proteins. To verify most of the results another iPAT knockdown clone was generated (siiPAT7). The successful stable transfection of hairpin RNA into Caco-2 cells was approved by RT-PCR.

The generated knockdown cell line was used to show the effect of the iPAT repression on the expression levels of SI, human Dipeptidyl peptidase IV (DPP IV)

and for the first time P-glycoprotein (P-gp). It could be shown that SI and P-gp are less expressed in siiPAT cells. Additionally in an enzyme activity measurement experiment a decrease of SI activity was found in siiPATB1cells.

A sucrose gradient was performed to analyze the changes of the lipid raft association of SI, DPP IV and P-gp. It revealed redistribution of the proteins from the non-floating to the floating fractions. That could be shown for all tested proteins but for each in a different extent. Less or missing palmitoylation therefore leads to a change in the lipid raft association of SI, DPP IV and P-gp.

The present data concerning the relevance of DHHC3 in Caco-2 cells could be reproduced, verified and completed for the most part using the new siiPAT7 clone.

According to the results the role of iPAT seems to be essential in intestinal cells.

8 Literaturverzeichnis

ADAMS, M. N., M. E. CHRISTENSEN, Y. HE, N. J. WATERHOUSE u. J. D.

HOOPER (2011):

The role of palmitoylation in signalling, cellular trafficking and plasma membrane localization of protease-activated receptor-2.

PLoS One 6 (11), e28018

ALFALAH, M., R. JACOB, U. PREUSS, K. P. ZIMMER, H. NAIM u. H. Y. NAIM (1999):

O-linked glycans mediate apical sorting of human intestinal sucrase-isomaltase through association with lipid rafts.

Curr Biol 9 (11), 593-6

ALFALAH, M., R. JACOB u. H. Y. NAIM (2002):

Intestinal dipeptidyl peptidase IV is efficiently sorted to the apical membrane through the concerted action of N- and O-glycans as well as association with lipid

microdomains.

J Biol Chem 277 (12), 10683-90

ALFALAH, M., G. WETZEL, I. FISCHER, R. BUSCHE, E. E. STERCHI, K. P. ZIMMER, H. P. SALLMANN u. H. Y. NAIM (2005):

A novel type of detergent-resistant membranes may contribute to an early protein sorting event in epithelial cells.

J Biol Chem 280 (52), 42636-43

BABU, P., R. J. DESCHENES u. L. C. ROBINSON (2004):

Akr1p-dependent palmitoylation of Yck2p yeast casein kinase 1 is necessary and sufficient for plasma membrane targeting.

J Biol Chem 279 (26), 27138-47

BAUMGART, F., M. CORRAL-ESCARIZ, J. PEREZ-GIL u. I. RODRIGUEZ-CRESPO (2010):

Palmitoylation of R-Ras by human DHHC19, a palmitoyl transferase with a CaaX box.

Biochim Biophys Acta 1798 (3), 592-604

BROSIUS, U., T. DEHMEL u. J. GARTNER (2002):

Two different targeting signals direct human peroxisomal membrane protein 22 to peroxisomes.

J Biol Chem 277 (1), 774-84

BROWN, D. A. u. E. LONDON (1998):

Functions of lipid rafts in biological membranes.

Annu Rev Cell Dev Biol 14 111-36

BURNETTE, W. N. (1981):

"Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate-- polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A.

Anal Biochem 112 (2), 195-203

BUSS, J. E. u. B. M. SEFTON (1986):

Direct identification of palmitic acid as the lipid attached to p21ras.

Mol Cell Biol 6 (1), 116-22

CASTELLETTI, D., M. ALFALAH, M. HEINE, Z. HEIN, R. SCHMITTE, G. FRACASSO, M. COLOMBATTI u. H. Y. NAIM (2008):

Different glycoforms of prostate-specific membrane antigen are intracellularly transported through their association with distinct detergent-resistant membranes.

Biochem J 409 (1), 149-57

CHEN, C. J., J. E. CHIN, K. UEDA, D. P. CLARK, I. PASTAN, M. M. GOTTESMAN u. I. B. RONINSON (1986):

Internal duplication and homology with bacterial transport proteins in the mdr1 (P-glycoprotein) gene from multidrug-resistant human cells.

Cell 47 (3), 381-9

CHEN, Z. W. u. R. W. OLSEN (2007):

GABAA receptor associated proteins: a key factor regulating GABAA receptor function.

J Neurochem 100 (2), 279-94

CHOUDHARY, V., N. JACQUIER u. R. SCHNEITER (2011):

The topology of the triacylglycerol synthesizing enzyme Lro1 indicates that neutral lipids can be produced within the luminal compartment of the endoplasmatic reticulum: Implications for the biogenesis of lipid droplets.

Commun Integr Biol 4 (6), 781-4 DAVID L. NELSON, M. M. C. (2005):

Lehninger Principles of Biochemistry.

4th Edition

DELAUNAY, J. L., M. BRETON, G. TRUGNAN u. M. MAURICE (2008):

Differential solubilization of inner plasma membrane leaflet components by Lubrol WX and Triton X-100.

Biochim Biophys Acta 1778 (1), 105-12 DIETRICH, L. E. u. C. UNGERMANN (2004):

On the mechanism of protein palmitoylation.

EMBO Rep 5 (11), 1053-7

DUNCAN, J. A. u. A. G. GILMAN (1996):

Autoacylation of G protein alpha subunits.

J Biol Chem 271 (38), 23594-600

EGGELING, C., C. RINGEMANN, R. MEDDA, G. SCHWARZMANN, K. SANDHOFF, S. POLYAKOVA, V. N. BELOV, B. HEIN, C. VON MIDDENDORFF, A. SCHONLE u.

S. W. HELL (2009):

Direct observation of the nanoscale dynamics of membrane lipids in a living cell.

Nature 457 (7233), 1159-62

EISENBERG, S., A. J. LAUDE, A. J. BECKETT, C. J. MAGEEAN, V. ARAN, M. HERNANDEZ-VALLADARES, Y. I. HENIS u. I. A. PRIOR (2013):

The role of palmitoylation in regulating Ras localization and function.

Biochem Soc Trans 41 (1), 79-83

FANG, C., L. DENG, C. A. KELLER, M. FUKATA, Y. FUKATA, G. CHEN u.

B. LUSCHER (2006):

GODZ-mediated palmitoylation of GABA(A) receptors is required for normal assembly and function of GABAergic inhibitory synapses.

J Neurosci 26 (49), 12758-68

FERNANDEZ-HERNANDO, C., M. FUKATA, P. N. BERNATCHEZ, Y. FUKATA, M. I. LIN, D. S. BREDT u. W. C. SESSA (2006):

Identification of Golgi-localized acyl transferases that palmitoylate and regulate endothelial nitric oxide synthase.

J Cell Biol 174 (3), 369-77

FU, D. u. B. D. ROUFOGALIS (2007a):

Actin disruption inhibits endosomal traffic of P-glycoprotein-EGFP and resistance to daunorubicin accumulation.

Am J Physiol Cell Physiol 292 (4), C1543-52

FU, D., E. M. VAN DAM, A. BRYMORA, I. G. DUGGIN, P. J. ROBINSON u.

B. D. ROUFOGALIS (2007b):

The small GTPases Rab5 and RalA regulate intracellular traffic of P-glycoprotein.

Biochim Biophys Acta 1773 (7), 1062-72 FU, D. u. I. M. ARIAS (2012):

Intracellular trafficking of P-glycoprotein.

Int J Biochem Cell Biol 44 (3), 461-4

FUKATA, M., Y. FUKATA, H. ADESNIK, R. A. NICOLL u. D. S. BREDT (2004):

Identification of PSD-95 palmitoylating enzymes.

Neuron 44 (6), 987-96

FUKATA, Y., T. IWANAGA u. M. FUKATA (2006):

Systematic screening for palmitoyl transferase activity of the DHHC protein family in mammalian cells.

Methods 40 (2), 177-82

FUKATA, Y. u. M. FUKATA (2010):

Protein palmitoylation in neuronal development and synaptic plasticity.

Nat Rev Neurosci 11 (3), 161-75

GETHING, M. J. u. J. SAMBROOK (1992):

Protein folding in the cell.

Nature 355 (6355), 33-45

GORRELL, M. D., V. GYSBERS u. G. W. MCCAUGHAN (2001):

CD26: a multifunctional integral membrane and secreted protein of activated lymphocytes.

Scand J Immunol 54 (3), 249-64

GREAVES, J., C. SALAUN, Y. FUKATA, M. FUKATA u. L. H. CHAMBERLAIN (2008):

Palmitoylation and membrane interactions of the neuroprotective chaperone cysteine-string protein.

J Biol Chem 283 (36), 25014-26

GREAVES, J., O. A. GORLEKU, C. SALAUN u. L. H. CHAMBERLAIN (2010):

Palmitoylation of the SNAP25 protein family: specificity and regulation by DHHC palmitoyl transferases.

J Biol Chem 285 (32), 24629-38

GREAVES, J., J. A. CARMICHAEL u. L. H. CHAMBERLAIN (2011a):

The palmitoyl transferase DHHC2 targets a dynamic membrane cycling pathway:

regulation by a C-terminal domain.

Mol Biol Cell 22 (11), 1887-95

GREAVES, J. u. L. H. CHAMBERLAIN (2011b):

DHHC palmitoyl transferases: substrate interactions and (patho)physiology.

Trends Biochem Sci 36 (5), 245-53

HANCOCK, J. F., A. I. MAGEE, J. E. CHILDS u. C. J. MARSHALL (1989):

All ras proteins are polyisoprenylated but only some are palmitoylated.

Cell 57 (7), 1167-77

HAURI, H. P., E. E. STERCHI, D. BIENZ, J. A. FRANSEN u. A. MARXER (1985):

Expression and intracellular transport of microvillus membrane hydrolases in human intestinal epithelial cells.

J Cell Biol 101 (3), 838-51

HAYASHI, T., G. RUMBAUGH u. R. L. HUGANIR (2005):

Differential regulation of AMPA receptor subunit trafficking by palmitoylation of two distinct sites.

Neuron 47 (5), 709-23

HAYASHI, T., G. M. THOMAS u. R. L. HUGANIR (2009):

Dual palmitoylation of NR2 subunits regulates NMDA receptor trafficking.

Neuron 64 (2), 213-26 HEERKLOTZ, H. (2002):

Triton promotes domain formation in lipid raft mixtures.

Biophys J 83 (5), 2693-701

HEINRICH BEHRENS, M. G., THEODOR HIEPE (2009):

Lehrbuch der Schafkrankheiten.

Stuttgart Martin Ganter 4. 490

HESS, D. T., T. M. SLATER, M. C. WILSON u. J. H. SKENE (1992):

The 25 kDa synaptosomal-associated protein SNAP-25 is the major methionine-rich polypeptide in rapid axonal transport and a major substrate for palmitoylation in adult CNS.

J Neurosci 12 (12), 4634-41

HINES, R. M., R. KANG, A. GOYTAIN u. G. A. QUAMME (2010):

Golgi-specific DHHC zinc finger protein GODZ mediates membrane Ca2+ transport.

J Biol Chem 285 (7), 4621-8

HUANG, K., S. SANDERS, R. SINGARAJA, P. ORBAN, T. CIJSOUW, P. ARSTIKAITIS, A. YANAI, M. R. HAYDEN u. A. EL-HUSSEINI (2009):

Neuronal palmitoyl acyl transferases exhibit distinct substrate specificity.

FASEB J 23 (8), 2605-15

HUNTER, J., M. A. JEPSON, T. TSURUO, N. L. SIMMONS u. B. H. HIRST (1993):

Functional expression of P-glycoprotein in apical membranes of human intestinal Caco-2 cells. Kinetics of vinblastine secretion and interaction with modulators.

J Biol Chem 268 (20), 14991-7

HUNZIKER, W., M. SPIESS, G. SEMENZA u. H. F. LODISH (1986):

The sucrase-isomaltase complex: primary structure, membrane-orientation, and evolution of a stalked, intrinsic brush border protein.

Cell 46 (2), 227-34 IKONEN, E. (2001):

Roles of lipid rafts in membrane transport.

Curr Opin Cell Biol 13 (4), 470-7

IPSEN, J. H., G. KARLSTROM, O. G. MOURITSEN, H. WENNERSTROM u.

M. J. ZUCKERMANN (1987):

Phase equilibria in the phosphatidylcholine-cholesterol system.

Biochim Biophys Acta 905 (1), 162-72

JACOB, R., M. ALFALAH, J. GRUNBERG, M. OBENDORF u. H. Y. NAIM (2000a):

Structural determinants required for apical sorting of an intestinal brush-border membrane protein.

J Biol Chem 275 (9), 6566-72

JACOB, R., K. P. ZIMMER, J. SCHMITZ u. H. Y. NAIM (2000b):

Congenital sucrase-isomaltase deficiency arising from cleavage and secretion of a mutant form of the enzyme.

J Clin Invest 106 (2), 281-7

JASCUR, T., K. MATTER u. H. P. HAURI (1991):

Oligomerization and intracellular protein transport: dimerization of intestinal dipeptidylpeptidase IV occurs in the Golgi apparatus.

Biochemistry 30 (7), 1908-15

KELLER, C. A., X. YUAN, P. PANZANELLI, M. L. MARTIN, M. ALLDRED, M. SASSOE-POGNETTO u. B. LUSCHER (2004):

The gamma2 subunit of GABA(A) receptors is a substrate for palmitoylation by GODZ.

J Neurosci 24 (26), 5881-91

KENNETH MURPHY, P. T., MARK WALPORT (2009):

Janeway Immunologie.

Heidelberg Springer Verlag 1093

KLEUSS, C. u. E. KRAUSE (2003):

Galpha(s) is palmitoylated at the N-terminal glycine.

EMBO J 22 (4), 826-32

KLUMPERMAN, J., J. C. BOEKESTIJN, A. M. MULDER, J. A. FRANSEN u.

L. A. GINSEL (1991):

Intracellular localization and endocytosis of brush border enzymes in the enterocyte- like cell line Caco-2.

Eur J Cell Biol 54 (1), 76-84

KOLLER, A., W. B. SNYDER, K. N. FABER, T. J. WENZEL, L. RANGELL, G. A. KELLER u. S. SUBRAMANI (1999):

Pex22p of Pichia pastoris, essential for peroxisomal matrix protein import, anchors the ubiquitin-conjugating enzyme, Pex4p, on the peroxisomal membrane.

J Cell Biol 146 (1), 99-112

LAI, J. u. M. E. LINDER (2013):

Oligomerization of DHHC protein S-acyltransferases.

J Biol Chem 288 (31), 22862-70

LASSERRE, R., X. J. GUO, F. CONCHONAUD, Y. HAMON, O. HAWCHAR, A. M. BERNARD, S. M. SOUDJA, P. F. LENNE, H. RIGNEAULT, D. OLIVE, G. BISMUTH, J. A. NUNES, B. PAYRASTRE, D. MARGUET u. H. T. HE (2008):

Raft nanodomains contribute to Akt/PKB plasma membrane recruitment and activation.

Nat Chem Biol 4 (9), 538-47

LAVIE, Y., G. FIUCCI u. M. LISCOVITCH (1998):

Up-regulation of caveolae and caveolar constituents in multidrug-resistant cancer cells.

J Biol Chem 273 (49), 32380-3

LEVENTAL, I., D. LINGWOOD, M. GRZYBEK, U. COSKUN u. K. SIMONS (2010):

Palmitoylation regulates raft affinity for the majority of integral raft proteins.

Proc Natl Acad Sci U S A 107 (51), 22050-4

LEVY, A. D., V. DEVIGNOT, Y. FUKATA, M. FUKATA, A. SOBEL u. S. CHAUVIN (2011):

Subcellular Golgi localization of stathmin family proteins is promoted by a specific set of DHHC palmitoyl transferases.

Mol Biol Cell 22 (11), 1930-42

LI, Y., J. HU, K. HOFER, A. M. WONG, J. D. COOPER, S. G. BIRNBAUM, R. E. HAMMER u. S. L. HOFMANN (2010):

DHHC5 interacts with PDZ domain 3 of post-synaptic density-95 (PSD-95) protein and plays a role in learning and memory.

J Biol Chem 285 (17), 13022-31

LINDER, M. E., P. MIDDLETON, J. R. HEPLER, R. TAUSSIG, A. G. GILMAN u.

S. M. MUMBY (1993):

Lipid modifications of G proteins: alpha subunits are palmitoylated.

Proc Natl Acad Sci U S A 90 (8), 3675-9 LINDER, M. E. u. R. J. DESCHENES (2003):

New insights into the mechanisms of protein palmitoylation.

Biochemistry 42 (15), 4311-20

LODISH, B., MATSUDAIRA, KAISER, KRIEGER, SCOTT, ZIPURSKY, DARNELL (2003):

Molecular Cell Biology.

5th Edition

LU, D., H. Q. SUN, H. WANG, B. BARYLKO, Y. FUKATA, M. FUKATA, J. P. ALBANESI u. H. L. YIN (2012):

Phosphatidylinositol 4-kinase IIalpha is palmitoylated by Golgi-localized palmitoyltransferases in cholesterol-dependent manner.

J Biol Chem 287 (26), 21856-65

LUCIANI, F., A. MOLINARI, F. LOZUPONE, A. CALCABRINI, L. LUGINI, A. STRINGARO, P. PUDDU, G. ARANCIA, M. CIANFRIGLIA u. S. FAIS (2002):

P-glycoprotein-actin association through ERM family proteins: a role in P-glycoprotein function in human cells of lymphoid origin.

Blood 99 (2), 641-8

MATTEUCCI, E. u. O. GIAMPIETRO (2009):

Dipeptidyl peptidase-4 (CD26): knowing the function before inhibiting the enzyme.

Curr Med Chem 16 (23), 2943-51

MESZAROS, P., I. HUMMEL, K. KLAPPE, O. DRAGHICIU, D. HOEKSTRA u.

J. W. KOK (2013):

The function of the ATP-binding cassette (ABC) transporter ABCB1 is not susceptible to actin disruption.

Biochim Biophys Acta 1828 (2), 340-51

MILL, P., A. W. LEE, Y. FUKATA, R. TSUTSUMI, M. FUKATA, M. KEIGHREN, R. M. PORTER, L. MCKIE, I. SMYTH u. I. J. JACKSON (2009):

Palmitoylation regulates epidermal homeostasis and hair follicle differentiation.

PLoS Genet 5 (11), e1000748

MITCHELL, D. A., A. VASUDEVAN, M. E. LINDER u. R. J. DESCHENES (2006):

Protein palmitoylation by a family of DHHC protein S-acyltransferases.

J Lipid Res 47 (6), 1118-27

MOLINARI, A., M. CIANFRIGLIA, S. MESCHINI, A. CALCABRINI u. G. ARANCIA (1994):

P-glycoprotein expression in the Golgi apparatus of multidrug-resistant cells.

Int J Cancer 59 (6), 789-95

MUKAI, J., A. DHILLA, L. J. DREW, K. L. STARK, L. CAO, A. B. MACDERMOTT, M. KARAYIORGOU u. J. A. GOGOS (2008):

Palmitoylation-dependent neurodevelopmental deficits in a mouse model of 22q11 microdeletion.

Nat Neurosci 11 (11), 1302-10 MUNRO, S. (2003):

Lipid rafts: elusive or illusive?

Cell 115 (4), 377-88

MUSCH, A., D. COHEN u. E. RODRIGUEZ-BOULAN (1997):

Myosin II is involved in the production of constitutive transport vesicles from the TGN.

J Cell Biol 138 (2), 291-306

NORITAKE, J., Y. FUKATA, T. IWANAGA, N. HOSOMI, R. TSUTSUMI,

N. MATSUDA, H. TANI, H. IWANARI, Y. MOCHIZUKI, T. KODAMA, Y. MATSUURA, D. S. BREDT, T. HAMAKUBO u. M. FUKATA (2009):

Mobile DHHC palmitoylating enzyme mediates activity-sensitive synaptic targeting of PSD-95.

J Cell Biol 186 (1), 147-60

O'BRIEN, P. J. u. M. ZATZ (1984):

Acylation of bovine rhodopsin by [3H]palmitic acid.

J Biol Chem 259 (8), 5054-7

OHNO, Y., A. KIHARA, T. SANO u. Y. IGARASHI (2006):

Intracellular localization and tissue-specific distribution of human and yeast DHHC cysteine-rich domain-containing proteins.

Biochim Biophys Acta 1761 (4), 474-83

OHNUMA, K., T. YAMOCHI, M. UCHIYAMA, K. NISHIBASHI, N. YOSHIKAWA, N. SHIMIZU, S. IWATA, H. TANAKA, N. H. DANG u. C. MORIMOTO (2004):

CD26 up-regulates expression of CD86 on antigen-presenting cells by means of caveolin-1.

Proc Natl Acad Sci U S A 101 (39), 14186-91

OHNUMA, K., M. UCHIYAMA, T. YAMOCHI, K. NISHIBASHI, O. HOSONO, N. TAKAHASHI, S. KINA, H. TANAKA, X. LIN, N. H. DANG u. C. MORIMOTO (2007):

Caveolin-1 triggers T-cell activation via CD26 in association with CARMA1.

J Biol Chem 282 (13), 10117-31

OHNUMA, K., N. TAKAHASHI, T. YAMOCHI, O. HOSONO, N. H. DANG u.

C. MORIMOTO (2008):

Role of CD26/dipeptidyl peptidase IV in human T cell activation and function.

Front Biosci 13 2299-310

OKU, S., N. TAKAHASHI, Y. FUKATA u. M. FUKATA (2012):

In silico screening for palmitoyl substrates reveals a role for DHHC1/3/10 (zDHHC1/3/11)-mediated neurochondrin palmitoylation in its targeting to Rab5-positive endosomes.

J Biol Chem 288 (27), 19816-29

PAIGE, L. A., M. J. NADLER, M. L. HARRISON, J. M. CASSADY u. R. L. GEAHLEN (1993):

Reversible palmitoylation of the protein-tyrosine kinase p56lck.

J Biol Chem 268 (12), 8669-74

POLITIS, E. G., A. F. ROTH u. N. G. DAVIS (2005):

Transmembrane topology of the protein palmitoyl transferase Akr1.

J Biol Chem 280 (11), 10156-63

PUTILINA, T., P. WONG u. S. GENTLEMAN (1999):

The DHHC domain: a new highly conserved cysteine-rich motif.

Mol Cell Biochem 195 (1-2), 219-26 RIETVELD, A. u. K. SIMONS (1998):

The differential miscibility of lipids as the basis for the formation of functional membrane rafts.

Biochim Biophys Acta 1376 (3), 467-79

ROBINSON, L. J., L. BUSCONI u. T. MICHEL (1995):

Agonist-modulated palmitoylation of endothelial nitric oxide synthase.

J Biol Chem 270 (3), 995-8

ROCKS, O., M. GERAUER, N. VARTAK, S. KOCH, Z. P. HUANG,

M. PECHLIVANIS, J. KUHLMANN, L. BRUNSVELD, A. CHANDRA, B. ELLINGER, H. WALDMANN u. P. I. BASTIAENS (2010):

The palmitoylation machinery is a spatially organizing system for peripheral membrane proteins.

Cell 141 (3), 458-71 ROHWEDDER, A. (2009):

The Palmitoyltransferase hZDHHC3 as a Lipid Raft associated protein in its cell physiological context.

Hannover Stiftung Tierärztliche Hochschule Hannover Dr. rer. nat. 93

ROTH, A. F., Y. FENG, L. CHEN u. N. G. DAVIS (2002):

The yeast DHHC cysteine-rich domain protein Akr1p is a palmitoyl transferase.

J Cell Biol 159 (1), 23-8

SALEEM, A. N., Y. H. CHEN, H. J. BAEK, Y. W. HSIAO, H. W. HUANG, H. J. KAO, K. M. LIU, L. F. SHEN, I. W. SONG, C. P. TU, J. Y. WU, T. KIKUCHI,

M. J. JUSTICE, J. J. YEN u. Y. T. CHEN (2010):

Mice with alopecia, osteoporosis, and systemic amyloidosis due to mutation in Zdhhc13, a gene coding for palmitoyl acyltransferase.

PLoS Genet 6 (6), e1000985

SATO, I., Y. OBATA, K. KASAHARA, Y. NAKAYAMA, Y. FUKUMOTO, T. YAMASAKI, K. K. YOKOYAMA, T. SAITO u. N. YAMAGUCHI (2009):

Differential trafficking of Src, Lyn, Yes and Fyn is specified by the state of palmitoylation in the SH4 domain.

J Cell Sci 122 (Pt 7), 965-75

SCHINKEL, A. H., U. MAYER, E. WAGENAAR, C. A. MOL, L. VAN DEEMTER, J. J. SMIT, M. A. VAN DER VALK, A. C. VOORDOUW, H. SPITS,

O. VAN TELLINGEN, J. M. ZIJLMANS, W. E. FIBBE u. P. BORST (1997):

Normal viability and altered pharmacokinetics in mice lacking mdr1-type (drug-transporting) P-glycoproteins.

Proc Natl Acad Sci U S A 94 (8), 4028-33

SCHUCK, S., M. HONSHO, K. EKROOS, A. SHEVCHENKO u. K. SIMONS (2003):

Resistance of cell membranes to different detergents.

Proc Natl Acad Sci U S A 100 (10), 5795-800

SCHWEIZER, A., S. KORNFELD u. J. ROHRER (1996):

Cysteine34 of the cytoplasmic tail of the cation-dependent mannose 6-phosphate receptor is reversibly palmitoylated and required for normal trafficking and lysosomal enzyme sorting.

J Cell Biol 132 (4), 577-84

SHARMA, C., I. RABINOVITZ u. M. E. HEMLER (2012):

Palmitoylation by DHHC3 is critical for the function, expression, and stability of integrin alpha6beta4.

Cell Mol Life Sci 69 (13), 2233-44

SHMUELI, A., M. SEGAL, T. SAPIR, R. TSUTSUMI, J. NORITAKE, A. BAR, S. SAPOZNIK, Y. FUKATA, I. ORR, M. FUKATA u. O. REINER (2009):

Ndel1 palmitoylation: a new mean to regulate cytoplasmic dynein activity.

EMBO J 29 (1), 107-19

SIMONS, K. u. E. IKONEN (1997):

Functional rafts in cell membranes.

Nature 387 (6633), 569-72

SIMONS, K. u. W. L. VAZ (2004):

Model systems, lipid rafts, and cell membranes.

Annu Rev Biophys Biomol Struct 33 269-95

SINGARAJA, R. R., S. HADANO, M. METZLER, S. GIVAN, C. L. WELLINGTON, S. WARBY, A. YANAI, C. A. GUTEKUNST, B. R. LEAVITT, H. YI, K. FICHTER, L. GAN, K. MCCUTCHEON, V. CHOPRA, J. MICHEL, S. M. HERSCH, J. E. IKEDA u. M. R. HAYDEN (2002):

HIP14, a novel ankyrin domain-containing protein, links huntingtin to intracellular trafficking and endocytosis.

Hum Mol Genet 11 (23), 2815-28

SINGARAJA, R. R., M. H. KANG, K. VAID, S. S. SANDERS, G. L. VILAS, P. ARSTIKAITIS, J. COUTINHO, R. C. DRISDEL, D. EL-HUSSEINI AEL, W. N. GREEN, L. BERTHIAUME u. M. R. HAYDEN (2009):

Palmitoylation of ATP-binding cassette transporter A1 is essential for its trafficking and function.

Circ Res 105 (2), 138-47

SINGER, S. J. u. G. L. NICOLSON (1972):

The fluid mosaic model of the structure of cell membranes.

Science 175 (4023), 720-31

SMOTRYS, J. E. u. M. E. LINDER (2004):

Palmitoylation of intracellular signaling proteins: regulation and function.

Annu Rev Biochem 73 559-87

SPODSBERG, N., M. ALFALAH u. H. Y. NAIM (2001):

Characteristics and structural requirements of apical sorting of the rat growth hormone through the O-glycosylated stalk region of intestinal sucrase-isomaltase.

J Biol Chem 276 (49), 46597-604 STOCKLI, J. u. J. ROHRER (2004):

The palmitoyltransferase of the cation-dependent mannose 6-phosphate receptor cycles between the plasma membrane and endosomes.

Mol Biol Cell 15 (6), 2617-26

THIEBAUT, F., T. TSURUO, H. HAMADA, M. M. GOTTESMAN, I. PASTAN u.

THIEBAUT, F., T. TSURUO, H. HAMADA, M. M. GOTTESMAN, I. PASTAN u.