• Keine Ergebnisse gefunden

Hamburg University of Technology, Telecommunications Dept., Eissendorfer Str. 40, D-21071 Hamburg, Germany, e-mail: J.Wohlers@tu-harburg.d400.de

N/A
N/A
Protected

Academic year: 2022

Aktie "Hamburg University of Technology, Telecommunications Dept., Eissendorfer Str. 40, D-21071 Hamburg, Germany, e-mail: J.Wohlers@tu-harburg.d400.de"

Copied!
4
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

USING HIDDEN MARKOV MODELS

Jens Wohlers, Alfred Mertins, and Norbert Fliege

Hamburg University of Technology, Telecommunications Dept., Eissendorfer Str. 40, D-21071 Hamburg, Germany, e-mail: J.Wohlers@tu-harburg.d400.de

ABSTRACT

In this paper a new time-delay estimation algorithm for compound point-processes is presented. Compound point- processes, a generalization of temporal point-processes, de- scribe processes with discrete events, where each occurrence time is associated with certain features. It is shown that, al- though the events are not observable, the time delays from events at one location to the same events at a second loca- tion can be estimated using hidden Markov models based on the associated features. We demonstrate the performance of this time-delay estimation algorithm with an application to the estimation of section-related trac data in road traf- c monitoring and control systems.

1. INTRODUCTION

While the time-delay estimation for continuous processes and the estimation of time-of-arrival for determined events or signals have been studied intensively in the past, so- lutions for the time-delay estimation for compound point- processes give only estimations for the average time-delay of point clusters between two locations using correlation methods [1, 2].

We propose a new solution to the estimation problem which is based on the re-identication of single events at the output location with the aid of the feature vectors from the input location. In general, both, input and output feature vectors, are disturbed by noise.

As we will show, a hidden Markov model [3]{[5] can be used for the re-identication. In the model, the feature vec- tors of the events are combined to a parametric random pro- cess similar to speech recognition problems [6], and the sta- tistical properties of the mixture of the unobservable events between input and output location are taken into account.

The ecient determination of the most likely sequence of events is based on the Viterbi algorithm.

The algorithm is implemented to estimate section- related trac data in trac monitoring and control sys- tems on freeways. Section-related trac data including the travel time of vehicles in a road section improves the esti- mation of trac states and the incident detection in trac control systems. The vehicles on the road can be regarded as points of a point process and the trac ow process can be modeled as a compound point-process. The estimation is based on vehicle signals measured with inductive loops.

It will be shown via simulations based on measured traf-

t time

t

t t t t t t t

u u2u3 u4 ui u ui+1 i+2 ui+3

i+3 i+2 i+1 i 4 3 2 1 1

t0

Figure 1: Compound point-process in time c data that the new approach gives a good estimation of individual and average travel times of vehicles.

Compound point-processes and the estimation problem are described in Section 2. In Section 3, hidden Markov models are introduced. A hidden Markov model for the re-identication of events is presented in Section 4. The choice of the model parameters and the derivation of the model probability distributions will be discussed. The ap- plication of the algorithm is explained in Section 5. Finally, simulation results will be shown.

2. PROBLEM FORMULATION

A random point process is a mathematical model for a phys- ical phenomenon characterized by highly localized events distributed randomly in a continuum. Each event is repre- sented in the model by an idealized point to be conceived of as identifying the position of the event. The space of the process is usually a semi-innite real line representing time, a subset of Euclidean space representing a spatial region, or a combination of these.

Compound point-processes are obtained from temporal point processes by associating an auxiliary random vari- able, called a mark, with each point occurrence. Each oc- currence timetiis associated with a markuihaving values in a specied spaceU. A marked point-process is called a compound Poisson-process, if the marks are independent from the occurrence-time sequence, and if the occurrence- time sequence is an inhomogeneous Poisson-process [7, 8].

Figure 1 shows a marked point-process and its notation.

We consider a point process with discrete events in time and space as shown in Figure 2. The points are in motion with dierent velocities under the restriction

x2(t2)>x1(t1) with t2>t1. Each point only occurs once at the locationsx1 andx2.

The point processes at the locationsx1 andx2 can be regarded as temporal Poisson-processes. Each occurrence time of an eventti;1andti;2atx1andx2is associated with

(2)

x1 x2

t time

4,1 t

t t5,1 6,1t t7,1 u

u1,2 2,2 u4,2 u3,2u6,2 u5,2 u7,2

x location

ui,2

i,1 ti+1,1 ti+2,1 ti+3,1 t1,2 t2,2 t4,2 t3,2 t6,2 t5,2 t7,2 ti,2

u4,1 u5,1u6,1u7,1 ui,1 ui+1,1ui+2,1 ui+3,1

Figure 2: Compound point-process in time and space a mark ui;1 and ui;2, respectively. In our approach the marks are assumed to be feature vectors of the events de- tected at locationx1orx2in a region of a nite-dimensional Euclidean space. The resulting processes are compound Poisson-processes.

The problem is to estimate the time delay of one pointi with occurrence timeti;1at locationx1 andti;2at location

x

2:

i=ti;2 ti;1: (1) Since the events are not observable, the feature vectors at the input and the output location have to be combined to a parametric random process to assign the feature vector of an event atx2 to a feature vector of the same event at

x

1. The assignment can be realized using hidden Markov models. After the assignment, the individual time delay of the event can be determined.

3. HIDDENMARKOVMODELS

A hidden Markov model is a doubly stochastic process with an underlying stochastic process that is not directly observ- able, but can be observed through another set of stochastic processes that produce the sequence of observed symbols.

The symbols can be countably or continuously distributed, they can be scalars or vectors.

The hidden Markov model is characterized by the num- berN of states in the model. The individual states are labeled asf1;2;:::;Ngand the state at timetis labeled as

q

t. Based upon the state-transition probability distribution

A=faijg, the new stateqt+1att+ 1 is entered, where

aij =P(qt+1=jjqt =i); 1i;jN: (2) With the initial state distribution = fig, i =

P(q1 =i), 1iN, the probability of a state sequence

q= (q1q2:::qN) can be written as

P(q) =q1YT

t=2 aq

t 1aq

t

; (3)

where T is the length of the observation sequence O = (o1o2 :::oT).

After each transition, an observation output symbol is produced according to a probability distribution which de- pends on the current state. The observation symbol prob- ability distributionB=fbj(k)g, in which

b

j(k) =P(ot=vkjqt=j); 1kM; (4) denes the symbol distribution in statej, j= 1;2;:::;N.

v=fv1;v2;:::;vMgis the set ofM possible discrete sym- bol observations. For observations of continuous symbols or continuous vectors, the probability densitybj(k) is replaced by the continuous density,bj(o), 1jN. A special form forbj(o) is the Gaussian M-component mixture density

b

j(o) =XM

k =1 c

jk

N[o;jk;Rjk]; (5) where cjk is the mixture weight, N is the normal density andjkandRjkare the mean vector and covariance matrix associated with statejand mixturek.

It can be seen that a complete specication of an HMM requires the specication of two model parameters,N and

M, the specication of observation symbolsv, and the spec- ication of the three sets of probability densitiesA,Band

. To indicate the complete parameter set of the model, the compact notation

= (A;B;) (6) is used [3].

The probability of the observation sequenceOgiven the state sequenceqis

P(Ojq) =YT

t=1

P(otjqt) =bq1(o1)bq2(o2):::bqT(oT): (7) The joint probability ofOandqis

P(O;q) =P(Ojq)P(q): (8) Given the observation sequence O and the model , the probability of the observation sequenceO is obtained by summing the joint probability over all possible state se- quencesq:

P(Oj) =X allq

P(Ojq;)P(qj)

=X

q

1

;:::;q

T q

1 bq

1(o1)aq1q2bq2(o2):::aqT 1qTbqT(oT):(9) The model parameters= (A;B;) that maximize the probabilityP(Oj) can be adjusted with a set of training samples, e.g. by an iterative procedure called the Baum- Welch method [9].

Given an observation sequenceO= (o1:::oT), one has to nd the optimal state sequenceq= (q1:::qT), that is, to maximize the probabilityP(qjO). A formal technique for nding this single best state sequence is the Viterbi al- gorithm [10].

(3)

P R O B L E M S O L U T I O N

T h e es ti m ati o n of t h e ti m e d el a y i of a n e v e nt i wi t h o c

c u rr e n c e ti m es ti k a t l o c ati o ns x k k is b as e d o n

t h e ass o ci a t e d f e at ur e v e c t ors u i k T h e f e at ur e v e c t ors of a

p oi nt gr o u p of si z e T c a n b e i nt e r p r et e d a s t h e o b s er v ati o n

ve c t ors O o o o T of a hi d d e n M ar k o v m o d el T h e

hi d d e n st at e s e q u e n c e q q q q T of t h e m o d el c or r e

s p o n ds t o t h e u n k n o w n p o si ti o ns of t h e p oi nts at x T h e

p ositi o n at l o c ati o n x of a n e ve nt o c c urri n g a t ti m e ti a t

x r e pr es e nts t h e a c t u al st at e q t of t h e m o d el

Gi v e n t h e p o siti o n s at x e a c h e v e nt c a n b e cl as si e d

a n d t h e ti m e d el a y o f t h e e v e nt c a n b e d e t er mi n e d T h e

a ct u al n u m b er of p oi nts b et we e n l o c ati o n s x a n d x gi v e s

t h e n u m b e r N of s t at e s of t h e hi d d e n M a r k o v m o d el

T h e st at e t r a n siti o n pr o b a bili t y di stri b uti o n f or t h e

tr a nsiti o n fr o m st at e i at ti m e t t o st at e j at ti m e t

a ij P q t j jq t i i j N d e p e n ds o n t h e

mi x u p of t h e p oi nt s b e t w e e n x a n d x T his l e a ds t o a

n o n er g o di c m o d el wit h f o r bi d d e n s t a t e tr a nsiti o ns Si n c e

m ulti pl e a ssi g ns of o n e e v e nt a r e f or bi d d e n t h e t r a n si ti o n

fr o m s t at e i t o st a t e j i is i m p ossi bl e i e a ij f or

i j

Si n c e t h e st atis ti c al d e p e n d e n c e of t h e p oi nt p o si ti o n s

h a v e t o b e i n d e p e n d e nt f r o m t h e d et e c t e d p oi nt at ti m e

t t h e s t at e t r a n si ti o n m at ri x A f a ij g r es ult s i n a b a n d

m a tri x wi t h z e r o s o n t h e m ai n di a g o n al

T h e c o nti n u o u s o bs e r v a ti o n p r o b a bili t y d e n sit y f u n cti o n

i n st a t e j b j o p o jq t j is b as e d o n t h e c o m p a ri s o n

of t h e f e at ur e v e ct or s u i i T wit h t h e f e at ur e

ve c t ors u j j N

Gi v e n t h e hi d d e n M ar k o v m o d el f or t h e r e i d e nti c ati o n

a n d t h e o bs e r v a ti o n s e q u e n c e of t h e f e a t u r e v e ct o rs

u u T fr o m l o c ati o n x o n e h a s t o n d t h e m os t li k el y

p oi nt gr o u p of t h e N p oi nt s a ss o ci a t e d wi t h t h e f e at ur e

ve c t ors u u N fr o m l o c ati o n x t h at i s t o n d t h e

o p ti m al s e q u e n c e q q q T f or a gi v e n o b s er v ati o n

s e q u e n c e O o o T

Af t er r e i d e nti c a ti o n t h e i n di vi d u al ti m e d el a ys of t h e

e v e nt s c a n b e o b t ai n e dA P P L I C A T I O N

D u e t o o pti m al us e of e xis ti n g r o a d n e t w or k s a n o pti mi z a

ti o n of tr a c o w wit h tr a c m o nit ori n g a n d c o nt r ol s y s

t e m s i s e ss e nti al T h e d e sir e d i nf or m a ti o n f or t h e s e s y s

t e m s c a n b e e xt r a ct e d f r o m m o d el b as e d t r a c st at e e sti

m a ti o n pr o c e d ur e s P r es e nt t r a c d a t a a c q ui si ti o n s y st e ms

ar e us u all y b as e d o n l o c al tr a c d at a li k e t h e s p e e d or o w

r a t e of p assi n g v e hi cl es A n i m p r o v e m e nt of t h e t r a c s t at e

esti m ati o n o n f r e e w a y s c a n b e o b t ai n e d wi t h s e cti o n r el at e d

tr a c d a t a i n cl u di n g t h e t r a v el ti m e of ve hi cl es i n a r o a d

s e cti o n

T h e v e hi cl es o n a f r e e w a y c a n b e r e pr e s e nt e d a s p oi nt s

a n d i n c as e of f r e e t r a c o w t h e m oti o n of t h e v e hi cl es

o n t h e r o a d c a n b e m o d el e d as a P ois s o n pr o c e ss

A bl o c k di a gr a m of t h e s e c ti o n r el at e d tr a c d at a e sti

m a ti o n i s s h o w n i n Fi g ur e T h e es ti m ati o n is b a s e d o n

ve hi cl e si g n al s m e as ur e d wi t h i n d u cti v e l o o ps a t t h e e ntr y

a n d t h e e xi t of a f r e e w a y s e cti o n s o t h e r e s ul ti n g pr o c e ss i s

a c o m p o u n d P oi ss o n pr o c es s

Fr e e w a y s e cti o n

Pr e- pr o c essi n g

F e at ur e e xtr a cti o n

Pr e- pr o c essi n g

F e at ur e e xtr a cti o n

Ti m e- d el a y esti m ati o n

ui, 2

M e m or y u j= 1,..., Nj, 1

Fi g ur e S e c ti o n r el at e d t r a c d at a es ti m ati o n

A hi d d e n M ar k o v m o d el f o r t h e s e cti o n r el at e d t r a c

d a t a es ti m a ti o n is c h ar a c t eri z e d b y t h e f oll o wi n g el e m e nts

T h e p o si ti o n of t h e v e hi cl es e n t eri n g t h e r o a d s e cti o n i s

d es c ri b e d b y t h e st at e s e q u e n c e Q f q q q T g

T h e p ositi o n of t h e v e hi cl e l e a vi n g t h e r o a d s e c ti o n i s

d e n o t e d as t h e di s cr e t e o bs er v a ti o n ti m e t

T h e u n k n o w n p ositi o n of t h e ve hi cl e t at t h e e nt r y of

t h e r o a d s e c ti o n is d e n ot e d a s q t

T h e a ct u al n u m b er of v e hi cl es i n t h e r o a d s e cti o n is t h e

n u m b e r of s t at e s N i n t h e m o d el T h e n u m b er of st a t es

d e p e n d s o n t h e o bs e r v a ti o n ti m e t

T h e r a n d o m p r o c es s of t h e f e a t ur e v e c t ors of t h e v e hi cl es

fr o m t h e s e c o n d m e as ur e m e nt p oi nt c a n b e i nt e r p r et e d a s

a n o bs er v ati o n s e q u e n c e O f o o o T g

T h e si z e of t h e v e hi cl e gr o u p l e a vi n g t h e s e cti o n c or r e

s p o n ds t o t h e n u m b er of o bj e ct s T of t h e hi d d e n M ar k o v

m o d el

T h e st at e t r a n siti o n pr o b a bilit y di st ri b uti o n f or t h e

tr a n siti o n f r o m st at e i at ti m e t t o s t at e j a t ti m e t a ij

d e p e n d s o n t h e mi x t u r e of t h e v e hi cl es i n t h e r o a d s e cti o n

Fi g ur e s h o w s t h e st a t e tr a nsiti o n pr o b a bili t y dist ri b u ti o n

a ij esti m at e d wit h a s a m pl e of v e hi cl es i n a k m

r o a d s e c ti o n

- 4 0 - 2 0 0 2 0 4 0

0 0. 0 1 0. 0 2 0. 0 3 0. 0 4 0. 0 5 0. 0 6 0. 0 7

j-i → aij=P(qt+1=j|qt=i)

Fi g ur e Esti m at e d s t at e t r a n si ti o n pr o b a bilit y dis tri b u

ti o n a ij f or t h e tr a nsiti o ns f r o m st a t e i a t ti m e t t o s t at e j

Referenzen

ÄHNLICHE DOKUMENTE

Although this way of looking at the data gives us an idea of the share of speaking roles occupied by men and women at European conferences in the five years between 2012 and 2016

However, when the existing data are analysed, a different picture emerges: there has neither been an elite political consensus nor any widespread societal acceptance concerning

Therefore, the delict of violence implies the illegal use of force or threat against another person or objects (Lazarević, 2002: 13). This limitation is indispensable so as to

The SLLN yields an idea called the Monte Carlo Method of direct sim- ulation.. (Interestingly, it is often much easier to find and simulate such an X than to compute

An international conference on the photographs in Sebald's books, and on the meanings of continuous narratives with uncaptioned images both in general and as the problematic applies

(D) Time courses of subunit joining to 30S IC in the presence and absence of IF2 or fMet-tRNA fMet.. The kinetics of 50S joining to the 30S IC is a very sensitive

a certain graph, is shown, and he wants to understand what it means — this corre- sponds to reception, though it involves the understanding of a non-linguistic sign;

Art. Prosecution on request. The prosecution of the offences specified in Articles 197 or 199 § 1, as well as in Article 198, if specified in that provision that the state of