• Keine Ergebnisse gefunden

distribution amplitudes Integrability of the evolution equations for heavy–light baryon Physics Letters B

N/A
N/A
Protected

Academic year: 2022

Aktie "distribution amplitudes Integrability of the evolution equations for heavy–light baryon Physics Letters B"

Copied!
7
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Integrability of the evolution equations for heavy–light baryon distribution amplitudes

V.M. Braun

a

,

, S.E. Derkachov

b

,

c

, A.N. Manashov

a

,

d

aInstitutfürTheoretischePhysik,UniversitätRegensburg,D-93040Regensburg,Germany bSt.PetersburgDepartmentofSteklovMathematicalInstitute,191023St.Petersburg,Russia cSt.PetersburgStatePolytechnicUniversity,195251St.Petersburg,Russia

dDepartmentofTheoreticalPhysics,St.PetersburgUniversity,199034St.Petersburg,Russia

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received4June2014

Receivedinrevisedform22September 2014

Accepted29September2014 Availableonline2October2014 Editor:B.Grinstein

We consider evolution equations describing the scale dependence of the wave functionof a baryon containingan infinitelyheavyquark and apairoflightquarks atsmalltransverse separations,which is the QCD analogueofthe helium atom. Theevolution equations depend onthe relative helicityof the lightquarks.Forthealignedhelicities,wefindthatthe equationis completelyintegrable,that is, it hasanontrivialintegralofmotion,and obtainexactanalyticexpressionsfortheeigenfunctionsand theanomalousdimensions.Theevolutionequationforanti-alignedhelicitiescontainsanextratermthat breaksintegrabilityandcreatesa“boundstate”withtheanomalousdimensionseparatedfromtherest ofthespectrumbyafinitegap. Thecorresponding eigenfunctionisfoundusingnumericalmethods.It describesthemomentumfractiondistributionofthelightquarksin,e.g.,Λb-baryonatlargescales.

©2014TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/3.0/).FundedbySCOAP3.

1. PrecisiontestsoftheflavorsectoroftheStandardModelmay revealnewphysicsandremainhighontheagenda.Mainattention hasbeensofarfocusedonB-mesonsbutinterestisdevelopingto theheavy baryon decaysaswell. Such baryonsare produced co- piouslyattheLHCand,asmoredataarecollected,studiesofrare b-baryon decays involving flavor-changingneutral current transi- tionshavebecomequantitativeinordertomakeanimpactonthe field.Inparticular, the

Λ

b

Λ μ

+

μ

decaysarereceivingalotof attention,seee.g.Ref.[1]andreferencestherein.

Theoreticaldescriptionoftheb-hadrondecaysisbasedonfac- torizationtheoremsthatmakeuseofthelargemassoftheb-quark inordertoseparate calculableeffectsofshortdistancesfromthe nonperturbativelargedistancephysics.The correspondingformal- ismis similar butmuch lessdevelopedfor baryonsascompared tomesons.ArecentdiscussionusingSCETformalismcanbefound in Ref. [2]. For the exclusive decays involving large energy re- lease in the final state, the relevant nonperturbative quantities arebaryonwavefunctionsatsmalltransverseseparations,dubbed light-conedistributionamplitudes (DA).Theirstudywasstartedin Refs. [3–5]where thecompleteclassification andrenormalization groupequations (RGE)that governthe scale-dependencearepre- sented.

*

Correspondingauthor.

In this work we point out that these equations have a hid- densymmetryandcompletelyintegrableinthecasethatthelight quarkshavethesamehelicity.Inotherwords,we identifya non- trivial quantum number that distinguishes heavy baryon states with different scale dependence and obtain exact analytic solu- tion of the evolution equations. This phenomenon is similar to integrabilityofRGEsforthelightbaryons[6,7]and,inamoregen- eralcontext,tointegrabilityinhigh-energyQCD[8–10]andinthe N=4 supersymmetric Yang–Mills theory [11–13] that attracted hugeattentionasatooltochecktheAdS/CFTcorrespondence.The integrablemodelthat weencounterinthepresentcontextisdif- ferent;ithasbeendiscussedrecentlyin[17].

The similar equation for the case that the two light quarks haveopposite helicitycontainsan extratermthat breaksintegra- bilityandcreates a“bound state”withtheanomalous dimension separatedfromthe restofthespectrum bya finitegap.Thecor- responding eigenfunction is found numerically. It describes the momentum fractiondistributionofthelightquarks in,e.g.

Λ

b,at large scales andcan be called“asymptoticDA” inanalogy to the acceptedterminologyforhadronsbuiltoflightquarks.

2. Consideratfirsttheleading-twistDAofabaryoncontaining an infinitelyheavy quark anda transverselypolarized “diquark”:

a pair of light quarks with aligned helicities. It can be defined as[4]

http://dx.doi.org/10.1016/j.physletb.2014.09.062

0370-2693/©2014TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/3.0/).Fundedby SCOAP3.

(2)

0

qT1

(

z1n

)

C

/

n

γ

μq2

(

z2n

)

hv

(

0

)

Bj=1

(

v

)

= √

1

3

μu

(

v

)

fB(2)

( μ

(

z1

,

z2

; μ ).

(1) Hereq1,2=u

,

d

,

sarelightquarksseparatedbyalightlikedistance, hv

(

0

)

is theeffectiveheavy quark field withfour-velocity v,C is the charge conjugation matrix, u

(

v

)

is the Diracspinor

/

v u

(

v

)

= u

(

v

)

, and

μ is the diquark polarization vector,

μ=0. The transverseprojections are definedwithrespect tothe two auxil- iary light-like vectorsn and n¯ whichwe choose such that vμ=

(

+ ¯nμ

)/

2, v·n=1,n· ¯n=2:

μ

=

gμν

ν

,

gμν

=

gμν

nμn

¯

ν

+

nνn

¯

μ

/(

n

· ¯

n

),

(2)

andsimilar for

γ

μ.The Wilson linesconnecting thequark fields arenot shownforbrevity. The heavyquark field hv canitself be relatedtotheWilsonlineas[18]

0

hv

(

0

)

h

,

v

=

Pexp ig

0

−∞

d

α

vμAμ

( α

v

)

,

(3)

so that the operator in Eq.(1) can be viewed as a pair of light quarks(adiquark), attachedto the Wilsonlinewith acusp con- tainingone lightlike and one timelike segment. Finally,the cou- pling fB(2) is definedasthe matrixelement ofthe corresponding localq1q2hv operator;itisinsertedfornormalization[4].Thepa- rameter

μ

is the renormalization(factorization) scale. We tacitly implyusingM S scheme.

The product

μu

(

v

)

on the right-hand-side (r.h.s.) of Eq. (1) can be expanded in irreducible representations corresponding to physical baryon states with JP =1

/

2+ and JP =3

/

2+ using suitable projection operators, see [4]. These (ground) statesform the SU

(

3

)

F multiplets (sextets),

Σ

b

, Ξ

b

, Ω

b and

Σ

b

, Ξ

b

, Ω

b, re- spectively, whichare degenerate inthe heavy b-quark limit. The double-strange

Ω

b baryon is ofspecial interest forflavor physics asitonlydecays throughweak interaction.The DA

Ψ

(

z1

,

z2;

μ )

iswrittenusuallyintermsofitsFouriertransform

Ψ

(

z

; μ ) =

0

d

ω

1

0

d

ω

2ei(ω1z1+ω2z2)

Ψ

( ω

1

, ω

2

; μ )

=

0

ω

d

ω

1

0

dueiω(uz2uz1)

Ψ

( ω ,

u

; μ ),

(4)

where z= {z1

,

z2} and in the second line we redefine

ω

1=u

ω

,

ω

2= ¯u

ω

withu¯ =1u.The variables

ω

1 and

ω

2 correspondto theenergies(uptoafactortwo)oflightquarksinthebaryonrest frame.TheDA(4)isthemostimportantnonperturbativeinputin QCDcalculationsofexclusive heavy baryon decaystothe leading poweraccuracyintheheavyquarkmass.

Thescaledependenceof

Ψ

( ω ,

u

, μ )

or,equivalently,

Ψ

(

z;

μ )

, isgovernedbytherenormalizationgroupequation[3,4]

μ

μ + β( α

s

)

α

s

+

2

α

s

3

π H

fB(2)

( μ

(

z

; μ ) =

0

.

(5)

Theevolution kernel H is an integral operatorwhich can be de- composedas

H =

H12

+

Hh1

+

Hh2

4

.

(6) ThekernelsHhkareduetoheavy–lightquarkinteractions,

Hh1f

(

z

) =

1

0

d

α α

f

(

z

) − ¯ α

f

( α ¯

z1

,

z2

)

+

ln

(

iz1

μ )

f

(

z

),

Hh2f

(

z

) =

1

0

d

α α

f

(

z

) − ¯ α

f

(

z1

, α ¯

z2

)

+

ln

(

iz2

μ )

f

(

z

).

(7)

Theyare identicalto theLange–Neubert kernels[19–21].The re- mainingcontribution

H12f

(

z

) =

1

0

d

α α

2f

(

z

) − ¯ α

f

zα12

,

z2

− ¯ α

f

z1

,

zα21

(8)

takesinto account theinteraction betweenthelight quarks; itis similartothestandardEfremov–Radyushkin–Brodsky–Lepageevo- lutionkernelforthepionDA.Hereandbelowweusethenotation

zα12

= ¯ α

z1

+ α

z2

, α ¯ =

1

α .

(9) Theevolutionkernels(7),(8)canbewrittenintermsofthegen- eratorsofthecollinearsubgroupofconformaltransformations

S+

=

z2

z

+

2jz

,

S0

=

z

z

+

j

,

S

= −

z

,

(10) where j=1 istheconformal spinofthelightquark.The genera- torssatisfythestandardSL

(

2

)

commutationrelations

[

S+

,

S

] =

2S0

, [

S0

,

S±

] = ±

S±

.

(11) Onecanshowthat[23]

Hh1

=

ln

i

μ

S(+1)

ψ (

1

),

Hh2

=

ln

i

μ

S(+2)

ψ (

1

),

where S(+1), S+(2)actonthefirst,z1,andthesecond,z2,light-cone coordinate,respectively.The last kernel(8)iswritten intermsof thetwo-particleCasimiroperator S212[24]

H12

=

2

ψ (

J12

)ψ (

1

)

,

(12)

where S212=S+S+S0

(

S01

)

= J12

(

J121

)

, S+=S(+1)+S(+2) etc.,and

ψ(

x

)

is Euler’sdigammafunction.Thus,thecompleteevo- lutionkerneltakesaverycompactform

H =

ln

i

μ

S(+1)

+

ln

i

μ

S(+2)

+

2

ψ (

J12

)

4

ψ (

2

).

(13) The evolution equation for the DA in momentum space,

Ψ

(

w1

,

w2;

μ )

, is given by the same expression with the SL

(

2

)

generatorsinthemomentumspacerepresentation[22].Eigenfunc- tions of H correspond to the statesthat have autonomousscale dependenceandthe corresponding eigenvaluesdefine anomalous dimensions.

3. Ourmainresultisthatthisevolutionequationcanbesolved explicitly.Tothisendweconsiderthefollowingoperators

Q

1

=

i

S(+1)

+

S(+2)

, Q

2

=

S(01)S(+2)

S(02)S(+1)

.

(14) It ispossibleto show that Q1 andQ2 commutewitheach other andwiththeevolutionkernelH:

[Q

1

, Q

2

] = [Q

1

, H] = [Q

2

, H] =

0

.

(15) Thefirsttworelationsaretrivial,thelastonecanbeverifiedusing theexplicitexpressionsforQ2 andH.

If H is interpreted as a Hamiltonian of a certain quantum- mechanical model, the operators Q1 and Q2 correspond to the conservedcharges.Intheformalismofthequantuminversescat- teringmethod(QISM)thechargesQ1

,

Q2appearintheexpansion

(3)

oftheelementC

(

u

)

ofthemonodromymatrix,

C

(

u

) =

u

Q

1

+ Q

2

.

The commutation relation [C

(

u

),

H]=0, and its generalization to more degrees offreedom then follow directly from the QISM [14–16]. Note that in classical applications of integrable models one encounters Hamiltonians that commute with the sumof di- agonal elements, A

(

u

)

+D

(

u

)

, of the monodromymatrix. In our casetheHamiltoniancommuteswithC

(

u

)

,which correspondsto anew,nonstandardintegrablemodel.

The conserved chargesQ1, Q2 are self-adjoint operators with respecttotheSL

(

2

,

R

)

invariantscalarproduct

Φ|Ψ =

1

π

2

C

d2z1

C

d2z2

Φ(

z

)

Ψ (

z

),

(16)

where the integration goes over the lower complex half-plane, Imzi

<

0. The eigenfunctions of C

(

u

)

provide the basis of the so-calledSklyanin’srepresentationofSeparatedVariablesandare knowninexplicitform[25].Theyarelabeled,forthepresentcase, bytworealnumbers:s

>

0 andx∈Rsuchthat

C

(

u

s,x

(

z1

,

z2

) =

s

(

u

x

s,x

(

z1

,

z2

),

(17) with

φ

s,x

(

z

) =

s z21z22

1

0

d

α α

¯ α

ix

exp

is

( α ¯ /

z1

+ α /

z2

)

=

s

ρ (

x

)

e

is/z1

z21z221F1

1

+

ix

,

2

,

is

z21

z11

,

(18)

where

ρ (

x

) = π

x

/

sinh

( π

x

).

(19) Theeigenfunctions

φ

s,x

(

z

)

forma completesysteminthe Hilbert spacedefinedbythescalarproduct(16)

φ

s,x

| φ

s,x

=

2

π

s

δ

s

s

δ

x

x

.

(20)

SincetheconservedchargesQ1andQ2commutewiththeHamil- tonianH,theysharethesamesetofeigenfunctions,

s,x

(

z

) = γ (

s

,

x

s,x

(

z

).

(21) The simplestway to calculate the eigenvalues is to comparethe large-z asymptotics of the expressions on the both sides of this equation.Inthiswayoneobtainstheanomalousdimensions

γ (

s

,

x

; μ ) =

2 ln

( μ

s

/

s0

) +

E

(

x

),

E

(

x

) = ψ (

1

+

ix

) + ψ (

1

ix

) +

2

γ

E (22) wheres0=e2γE.GoingbacktotheRGEequation(5),weexpand theDA

Ψ

(

z

, μ )

overtheeigenfunctionsofH

Ψ

(

z

, μ ) =

0

ds s

−∞

dx

2

π η

(

s

,

x

; μ

s,x

(

z

).

(23)

The expansion coefficients

η

(

s

,

x;

μ )

=

φ

s,x|

Ψ

evolve au- tonomously,

fB(2)

( μ ) η

(

s

,

x

; μ ) =

fB(2)

( μ

0

) η

(

s

,

x

; μ

0

) μ

μ

0

3β8

0

× μ

0s

s0

38β

0lnL

L34β0[E(x)− 4

π β0αs(μ0)]

,

(24)

where L=

α

s

( μ )/ α

s

( μ

0

)

,

β

0=113Nc23nf. For large scales, the coefficients

η

(

s

,

x;

μ )

slowlydrifttowardssmallervaluesofboth parameters:s0,thankstothefactors8 lnL/3β0,and|x|→0,tak- ingintoaccountthat

ψ(

1+ix

)

ln|x|forx→ ±∞.

GoingovertotheDAinmomentumspace,

Ψ

( ω ,

u;

μ )

,wede- finethecorrespondingeigenfunctionsas

φ

s,x

( ω ,

u

) =

eiωuz1+uz2)

φ

s,x

(

z1

,

z2

)

.

(25)

Usingthateikz|z2eis/z= −

(

1

/

ks

)

J1

(

2√

ks

)

[23]oneobtains

φ

s,x

( ω ,

u

) =

1

ω

uu

¯

1

0

d

α

α α ¯ α

ix

α ¯

ix

×

J1

(

2

ws

α ¯

u

¯ )

J1

(

2

ws

α

u

).

(26)

Theeigenfunctions

φ

s,x

( ω ,

u

)

areorthogonalandformacomplete set:

s 2

π

0

ω

3d

ω

1

0

du uu

¯ φ

s,x

( ω ,

u

) φ

s,x

( ω ,

u

) = δ

s

s

δ

x

x

,

(27)

ω

3uu

¯

0

sds

−∞

dx

2

π φ

s,x

( ω ,

u

) φ

s,x

ω

,

u

= δ

ωω

δ

u

u

.

(28) Making useof Bateman’s expansionfortheproductoftwo Bessel functionsweobtainaseriesrepresentation

φ

s,x

( ω ,

u

) =

1

ω

n=0

in

n1Cn3/2

(

1

2u

)

Hn

(

x

)

1

s

ω

J2n+3

(

2

s

ω ).

(29) Here Cn3/2

(

x

)

aretheGegenbauerpolynomials, J2n+3

(

x

)

areBessel functions,and

n

= (

n

+

1

)(

n

+

2

)

4

(

2n

+

3

) .

(30)

ThefunctionsHn

(

x

)

aregivenbythecontinuousHahnpolynomials uptotheprefactor

ρ (

x

)

:

Hn

(

x

) =

in

1

0

du

u

¯

u

ix

Cn3/2

(

1

2u

)

= (

n

+

1

)(

n

+

2

)

2 in

ρ (

x

)

3F2

n

,

n

+

3

,

1

+

ix 2

,

2

1

,

(31) e.g.

ρ

1

(

x

)

H0

(

x

) =

1

, ρ

1

(

x

)

H1

(

x

) =

3x

,

ρ

1

(

x

)

H2

(

x

) =

5x2

1

,

(32) etc. Hahn polynomials are real functions, have the symmetry Hn

(

x

)

=

(−

1

)

nHn

(−

x

)

,andformacompleteorthogonalsystem.In ournormalization

−∞

dx

2

π

Hn

(

x

)

Hm

(

x

) =

n

δ

mn

.

(33)

Collectingeverythingweobtainthefinalresult:

(4)

Ψ

( ω ,

u

; μ ) = ω

2uu

¯

−∞

dx 2

π

0

sds

φ

s,x

( ω ,

u

) η

(

s

,

x

; μ ),

(34)

wherethescaledependenceof

η

(

s

,

x;

μ )

isgiveninEq.(24).The expansioncoefficients of

η

(

s

,

x;

μ )

in Hahnpolynomialsare re- latedto theexpansion coefficientsof

Ψ

( ω ,

u;

μ )

inGegenbauer polynomials,

η

(

s

,

x

; μ ) =

n

in

η

n

(

s

; μ )

Hn

(

x

)

Ψ

( ω ,

u

; μ ) =

uu

¯

n

ψ

n

( ω ; μ )

Cn3/2

(

2u

1

),

(35) bytheBesseltransform(cf.Eq. (30)inRef.[23])

ψ

n

( ω ; μ ) =

0

ds

s

ω

J2n+3

(

2

s

ω ) η

n

(

s

; μ ).

(36)

Making use of the asymptotic expansion for the Bessel function onefindsthatthesmall-sbehavior

η

n

(

s

)

spn translatesintothe large-

ω

asymptoticsofthefunction

ψ

n

( ω )

ω

1pn unlessthere issomecancellation,seebelow.

Theexpansion coefficientsat thereference(low) scale can be calculatedfromagivenmodeloftheDAas

η

(

s

,

x

; μ

0

) =

0

ω

d

ω

1

0

du

φ

s,x

( ω ,

u

) Ψ

( ω ,

u

; μ

0

).

(37)

Intheexisting studies itis usually assumedthat

Ψ

( ω ,

u;

μ

0

)

is decreasingexponentiallyatlargeenergies

ω

.Forarather general modelofthistype

Ψ

( ω ,

u

; μ

0

) = ω

2uu

¯

n

cn

ω

n

κneω/n

n4 C

3/2

n

(

2u

1

)

(38)

oneobtains

η

(

s

,

x

; μ

0

) =

s

n

incn

(

s

n

)

nHn

(

x

)

× Γ (

n

+

4

+ κ

n

) Γ (

2n

+

4

)

1F1

n

+

4

+ κ

n

2n

+

4

s

n

.

(39)

In particular, for the simplest phenomenologically acceptable model[3–5]

Ψ

( ω ,

u

; μ

0

) = ω

2uu

¯

eω/0

04

η

(

s

,

x

; μ

0

) = ρ (

x

)

ses0

.

(40) Exponentialdecrease ∼eω/n ofeach Gegenbauerharmonics in (38)amounts,fromtheviewpointoftherelationinEq.(36),tothe finetuning such that all leading powerterms inthe asymptotics

ω

→ ∞drop out. This finetuning is, however,destroyed by the evolutionsothatapower-likeasymptoticsisalwaysgenerated.

Toseethis, considerthesimplestmodelin(40)corresponding tothetermn=0 in(38)asanexample.Astheresultoftheevo- lution(24)allharmonicswithn

>

0 becomeexcited

η

n

(

s

, μ ) =

cn

( μ )

s

( μ

0s

)

δes0 (41) where

δ

= −8

/

3

β

0lnLand

cn

( μ )

dx H0

(

x

)

L4/3β0E(x)Hn

(

x

).

(42)

For the corresponding coefficients in the Gegenbauer expansion (35)oneobtainsusing(36)

ψ

n

( ω , μ ) =

cn

( μ )

02

0

μ

0

δ

ω

0

n+2

× Γ (

n

+

4

δ) Γ (

2n

+

4

)

1F1

n

+

4

δ

2n

+

4

ω

0

.

(43)

The confluenthypergeometricfunction 1F1

(

a

,

b|

ω )

decreases asa powerof

ω

at

ω

→ ∞,cf.Eq.(62)below,unlessabisanonneg- ativeinteger,inwhichcasetheasymptoticbehaviorisexponential.

Thus,unless

δ

=0 andn=0,weobtain

ψ

n

( ω , μ )( ω /

0

)

2+δ

.

(44) Notethattheasymptoticbehavioristhesameforanyn.

4. Next,weconsiderheavybaryonswiththelightquarkshav- ing opposite helicity. The scale dependence of the leading twist DAs does not depend on the spin ofthe light quark pair andis thesame forthe jP=0+ SU

(

3

)

F triplet andall longitudinalDAs ofheavybaryonsinthe jP=1+ sextets,see[4].Fordefiniteness, considerthe

Λ

b-baryonDA[3,4]definedas

0

uT

(

z1n

)

C

γ

5nd

/ (

z2n

)

hv

(

0

)Λ(

v

)

=

fΛ(1)

( μ

Λ

(

z1

,

z2

; μ )

uΛ

(

v

).

(45) The evolution equation for

Ψ

Λ

(

z1

,

z2;

μ )

contains an additional term corresponding to the gluon exchange between the light quarks(inFeynmangauge)

H12

H12

δ

H12

, δ

H12f

(

z

) =

1

0

d

α

¯

α

0

d

β

f

zα12

,

zβ21

(46) thatcorrespondstoH→H−1

/

J12

(

J121

)

intheSL

(

2

)

-invariant representation of the evolution kernel in Eq. (13). Expanding

Ψ

Λ

(

z1

,

z2;

μ )

intermsoftheeigenfunctions(18)oftheintegrable Hamiltonian(13)

Ψ

Λ

(

z

, μ ) =

0

dss

−∞

dx

2

π η

Λ

(

s

,

x

; μ

s,x

(

z

)

(47)

one obtains the RGE equation for the expansion coefficients

η

Λ

(

s

,

x

, μ )

μ

μ + β( α

s

)

α

s

+

2

α

s

3

π

2 ln

μ

s

s0

+

E

(

x

)

×

fΛ(1)

( μ ) η

Λ

(

s

,

x

, μ )

=

2

α

s

3

π

f

(1) Λ

( μ )

−∞

dxV

x

,

x

η

Λ

s

,

x

, μ ,

(48)

whereE

(

x

)

isdefinedinEq.(22)andthekernel V

(

x

,

x

)

isgiven bythematrixelement

φ

s,x

| δ

H12

| φ

s,x

= δ

s

s

V

x

,

x

.

(49)

Weobtain V

x

,

x

=

1 2

π

n=0

n1 H

n

(

x

)

Hn

(

x

) (

n

+

1

)(

n

+

2

)

=

1

2 sinh

π (

x

x

)

x

x

xx

π

sinh

π (

x

x

)

sinh

π

xsinh

π

x

.

(50)

(5)

Fig. 1.ThespectrumofeigenvaluesE(xn)EnofthediscretizedversionofEq.(51) xxn=(2n+1)/200,n=0,1,. . . ,99 (bluedots)comparedtothe“unperturbed”

spectrumE(xn)(redsolidcurve).Inordernottooverloadtheplot,onlyeverysec- ondeigenvalueisshown.(Forinterpretationofthereferencestocolorinthisfigure legend,thereaderisreferredtothewebversionofthisarticle.)

Fig. 2.Thex-eveneigenfunctionsηk+(xn)=η+k(−xn)fork=0 (thegroundstate), andk=10,50,100,150 (fromlefttoright),forL=5 andN=500.Normalization isarbitrary.

Itiseasytoseethat V

(

x

,

x

)

1

/(

2

π

x2

)

forlarge x,anddecreases exponentiallyin|xx|.

Inorder tosolve (48)one needs tofindthe eigenfunctionsof theintegralequation

E

(

x

) η

E

(

x

) − [

V

η

E

] (

x

) =

E

η

E

(

x

).

(51) If V0,obviously all eigenfunctions are localizedin x,

η

a

(

x

)

δ(

xa

)

.Thespectrumofeigenvaluesiscontinuous, Ea=E

(

a

)

0, and double degenerate since E(a

)

=E

(−

a

)

. In order to under- stand the effect of the “perturbation” V we consider the dis- cretizedversionofthisequation:xxn=

(

n+1

/

2

)

x,

x=L

/

N, n = −N

, . . . ,

N1. The unperturbed eigenfunctions,

η

k

(

xn

)

=

δ

nk, correspond to local excitations at the k-th site. Discretiz- ing the integral in (48) one replaces the original eigenvalue problem (51) by the eigenvalue problem for the matrix Vnk=

δ

nkE

(

xn

)

xV

(

xn

,

xm

)

.SinceV

(

x

,

x

)

=V

(

x

,

x

)

,alleigenstates have definite parity with respect to x→ −x; the double degen- eracy is lifted and one can study x-even and x-odd eigenstates separately.Diagonalizing thismatrixnumericallywefindthatthe shiftof eigenvaluesas comparedto theunperturbed spectrumis surprisinglysmall,

δ

E=EE0

.

003, forall eigenstates except forthelowestone,cf.Fig. 1,andthecorrespondingeigenfunctions

η

k

(

xn

)

remainwelllocalizedaroundthepointxk,seeFig. 2.Atthe sametimethelowestx-eveneigenstatechangesdrastically:Itbe- comes delocalized, seeFig. 2,andseparatedfrom therestof the spectrumbyafinitegap1

E

=

E0

0

.

3214

.

(52)

Inthecontinuumlimit

(

x0

,

L→ ∞)thisphenomenoncanbe understoodascreationofaboundstateinadditiontothecontin- uum spectrumthatremainstobe largelyunperturbed.The“wave function”ofthis(lowest)statecanbeapproximatedtoagoodac- curacy(betterthat1%for|x|

<

3)bythefollowingexpression:

η

0

(

x

)

2E0

2

+

x2

ρ (

x

)

[

E0

E

(

x

)] , η

0

(

0

) =

1

.

(53) ItcanbeconvenienttoexpandthisfunctioninHahnpolynomials

η

0

(

x

) =

n=0,2,...

χ

nHn

(

x

),

(54)

wherethefirstfewcoefficientsread

χ

0

0

.

612

, χ

2

0

.

126

, χ

4

0

.

0574

,

χ

6

0

.

0338

, χ

8

0

.

0226

, χ

10

0

.

0163

.

(55) Thenormalizationisgivenby

−∞

dx

2

π η

02

(

x

) =

n=0

n

χ

n2

0

.

0758

.

(56)

Coming backtotherepresentationoftheDAintheform(47)we canseparatethecontributionofthediscrete(lowest)levelas

η

Λ

(

s

,

x

, μ ) = ξ

0

(

s

, μ ) χ

01

η

0

(

x

) + η

Λ

(

s

,

x

, μ ).

(57) wherethefunction

η

Λ

(

s

,

x

, μ )

accountsforthecontributionofthe continuumspectrumandmustbeorthogonalto

η

0

(

x

)

,

dx

η

0

(

x

) η

Λ

(

s

,

x

, μ ) =

0

.

(58)

Goingovertothemomentumspaceweobtainforthecontribution oftheloweststate(asymptoticDA)

fΛ(1)

( μ ) Ψ

Λ(0)

( ω ,

u

; μ )

=

fΛ(1)

( μ

0

) χ

01

ω

2uu

¯ μ

μ

0

38β

0L

4

3β0[E0β0α4sπ(μ0)]

−∞

dx 2

π η

0

(

x

)

×

0

sds

φ

s,x

( ω ,

u

0

(

s

, μ

0

) μ

0s

s0

3β8

0lnL

,

(59)

cf. Eq. (24). Note that the restriction to the contribution of the discrete level impliesa certain relation betweenthe momentum fractiondistribution betweenthe twolight quarksandtheir total momentum

ω

, the remaining freedom is encodedin the “profile function”

ξ

0

(

s

, μ

0

)

atthereferencescale,which canbe arbitrary.

Forthesimplestansatz

ξ

0

(

s

, μ

0

) =

ses0

,

(60)

1 Thesizeofthegapcoincideswiththegapinthespectrumofanomalousdimen- sionsofthree-light-quarkoperatorsinthelarge-Nlimit[7],indicatingthatthese problemsarerelated.Unraveling thisconnectiongoesbeyondthetasksofthislet- ter.

Abbildung

Fig. 2. The x-even eigenfunctions η k + ( x n ) = η + k (− x n ) for k = 0 (the ground state), and k = 10 , 50 , 100 , 150 (from left to right), for L = 5 and N = 500
Fig. 3. Asymptotic Λ b distribution amplitude for the simplest choice (60) of the profile function ξ 0 ( s , μ 0 ) .

Referenzen

ÄHNLICHE DOKUMENTE

Abstract: We present results of the first ab initio lattice QCD calculation of the nor- malization constants and first moments of the leading twist distribution amplitudes of the

Simultaneously we obtain the quark mass dependence of the amplitudes at leading one-loop accuracy by the use of three-flavor baryon chiral perturbation theory (BChPT),

It has been known for some time [6] that conformal symme- try of the QCD Lagrangian allows one to restore full evolution kernels at given order of perturbation theory from the

It has been known for some time [6] that conformal symmetry of the QCD Lagrangian allows one to restore full evolution kernels at given order of perturbation theory from the spectrum

For each twist, the set of quasipartonic operators is closed under renormalization and the renor- malization group (RG) equation can be written in a Hamiltonian form that

The analysis of renormalization kernels based on conformal symmetry and our one-particle light-ray operators basis are not limited to the case of twist-4 baryon

Most importantly, we introduce two approaches to deal with heavy quarks on the lattice: Heavy Quark Effective Field Theory (HQET) and nonrelativistic QCD (NRQCD).. In Chapter 3

Water exhibits many unusual properties which in their combination make it unique among molecular liquids [1—4]. They all originate from long-ranged structural cor- relations