• Keine Ergebnisse gefunden

Two-loop evolution equations for light-ray operators

N/A
N/A
Protected

Academic year: 2022

Aktie "Two-loop evolution equations for light-ray operators"

Copied!
7
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Two-loop evolution equations for light-ray operators

V.M. Braun

a,

, A.N. Manashov

a,b

aInstitutfürTheoretischePhysik,UniversitätRegensburg,D-93040Regensburg,Germany bDepartmentofTheoreticalPhysics,St.-PetersburgUniversity,199034,St.-Petersburg,Russia

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received4April2014 Accepted7May2014 Availableonline20May2014 Editor: A.Ringwald

QCDinnon-integerd=42space–timedimensionspossessesanontrivial criticalpointand enjoys exactscaleandconformalinvariance.Thissymmetryimposesnontrivialrestrictionsontheformofthe renormalizationgroupequationsforcompositeoperatorsinphysical(integer)dimensionsandallowsto reconstructfullkernelsfromtheireigenvalues(anomalousdimensions).Weusethistechniquetoderive two-loop evolutionequationsforflavor-nonsingletquark–antiquark light-rayoperatorsthatencode the scale dependenceofgeneralized hadronpartondistributions andlight-conedistributionamplitudesin themostcompactform.

©2014TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/3.0/).FundedbySCOAP3.

1. Studies of hard exclusive reactions contribute significantly tothe research program atall major existing andplanned accel- erator facilities. The relevant nonperturbative input in such pro- cessesinvolvesoperatormatrixelementsbetweenstateswithdif- ferentmomenta, dubbedgeneralized partondistributions (GPDs), orvacuum-to-hadronmatrixelementsrelatedtolight-fronthadron wave functions at small transverse separations, the distribution amplitudes(DAs).Scale dependenceofthesedistributions isgov- ernedbythe renormalizationgroup (RG) equationsforthecorre- sponding(nonlocal)operatorsandhastobe calculatedtoasuffi- cientlyhighorderinperturbationtheoryinordertomaketheQCD descriptionofexclusivereactionsfullyquantitative.Atpresent,the evolution equations for GPDs (and DAs) are known to the two- loopaccuracy[1–3],oneorderlesscomparedtothecorresponding

“inclusive”distributionsthatinvolveforwardmatrixelements[4,5]

andclosingthisgapisdesirable.Thedirectcalculationisverychal- lenging,andalsofinding a suitable representationfor theresults maybecome a problem asthe two-loop evolution equations for GPDsarealreadyverycumbersome.

Ithas beenknown forsome time [6]that conformal symme- try of the QCD Lagrangian allows one to restore full evolution kernels atgiven orderof perturbation theory fromthe spectrum ofanomalous dimensionsat the sameorder, and the calculation of the special conformal anomaly at one order less. This result was used to calculate the complete two-loop mixing matrix for twist-twooperatorsinQCD[7–9],andderivethetwo-loopevolu- tionkernels inmomentumspaceforthe GPDs[1–3].InRef. [10]

we havesuggested an alternative technique, thedifference being

*

Correspondingauthor.

thatinsteadofstudyingconformalsymmetrybreakinginthephys- ical theory [7–9] we make use ofthe exactconformal symmetry of a modified theory – QCD ind=42

dimensionsat critical coupling. Exact conformal symmetry allows one to use algebraic group-theory methodsto resolve the constraints on the operator mixingandalsosuggeststheoptimalrepresentationfortheresults intermsoflight-rayoperators.Inthiswayadelicateprocedureof the restorationofthe evolutionkernels fromtheresults forlocal operatorsiscompletelyavoided.Weexpectthatthesefeatureswill becomeincreasinglyadvantageousinhigherorders.

This modified approach was illustrated in [10] on several ex- amples to the two- and three-loop accuracy for scalar theories.

Application to gauge theories, inparticular QCD, involves several subtleties that are considered in thiswork. The main newresult are thetwo-loop evolutionequationsforflavor-nonsingletquark–

antiquarklight-rayoperators thatencodethescaledependenceof generalizedhadronpartondistributionsandlight-conedistribution amplitudesinthemostcompactform.

2. Beforegoingovertotechnicaldetails,letusfirstdescribethe generalstructureoftheapproachandtheresultsonamorequal- itativelevel.Inordertomakeuseofthe(approximate)conformal symmetry of QCD it is natural to use a coordinate-space repre- sentation in which the symmetry transformations have a simple form[11].Therelevantobjectsarelight-rayoperatorsthatcanbe understood asgeneratingfunctionsforthe renormalizedleading- twistlocaloperators:

[

O

](

x

;

z1

,

z2

)

¯

q

(

x

+

z1n

)

nq/

(

x

+

z2n

)

m,k

zm1zk2 m

!

k

!

Dmnq

¯ (

x

)

n/

Dknq

(

x

)

.

(1)

http://dx.doi.org/10.1016/j.physletb.2014.05.037

0370-2693/©2014TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/3.0/).Fundedby SCOAP3.

(2)

Hereq(x)isaquarkfield,theWilsonlineisimplied betweenthe quark fields onthe light-cone, Dn=nμDμ is a covariantderiva- tive,isanauxiliary light-likevector,n2=0,thatensures sym- metrizationandsubtractionoftracesoflocaloperators.Thesquare brackets[. . .]standfortherenormalizationusingdimensionalreg- ularization and MS subtraction. We will tacitly assume that the quarkandantiquarkhavedifferentflavorsothatthereisnomix- ingwithgluonoperators.Inmostsituationstheoverallcoordinate isirrelevant andcanbe putto zero;we willoftenabbreviate O(z1,z2)O(0;z1,z2).

Light-rayoperatorssatisfyarenormalization-groupequation of theform[12]

M

M

+ β(

g

)∂

g

+ H

O

(

z1

,

z2

)

=

0

,

(2)

where H is an integral operator actingon the light-cone coordi- natesofthefields.Itcanbewrittenas

H[

O

](

z1

,

z2

) =

1

0

d

α

1

0

d

β

h

( α , β)[

O

]

zα12

,

zβ21

,

(3)

where

zα12

z1

α ¯ +

z2

α , α ¯ =

1

α ,

(4) andh(

α

,β)isacertainweightfunction(kernel).

One can show, see e.g. [10], that the powers [O](z1,z2)(z1z2)N areeigenfunctionsoftheevolutionoperatorH,andthe correspondingeigenvalues

γ

N

=

d

α

d

β

h

( α , β)(

1

αβ)

N1 (5) arenothingelseastheanomalousdimensionsoflocaloperatorsof spinN (withN−1 derivatives).

In generalthe function h(

α

,β) is a function of two variables andthereforethe knowledgeof theanomalous dimensions

γ

N is not sufficient to fix it. However, if the theory is conformally in- variantthentotheone loopaccuracy Hmustcommute withthe generatorsoftheSL(2)transformations[H,S(α0)]=0,where

S(+0)

=

z12

z1

+

z22

z2

+

2

(

z1

+

z2

),

S(00)

=

z1

z1

+

z2

z2

+

2

,

S(0)

= −∂

z1

z2

.

(6) Inthiscaseitcanbeshownthatthefunctionh(

α

,β)(uptotrivial terms∼δ(

α

)δ(β)that correspond to theunit operator)takesthe form[13]

h

( α , β) = ¯

h

( τ ), τ = α β

¯

α β ¯

(7)

andiseffectivelyafunctionofonevariable

τ

calledtheconformal ratio.Thisfunctioncaneasily bereconstructed fromitsmoments (5),aliasfromtheanomalousdimensions.

ConformalsymmetryofQCDisbrokenbyquantumcorrections whichimpliesthatthesymmetryoftheevolutionequationsislost atthetwo-looplevel.Inotherwords,writingtheevolutionkernel asanexpansioninthecouplingconstant

H =

as

H

(1)

+

a2s

H

(2)

+ . . .

h

( α , β) =

ash(1)

( α , β) +

a2sh(2)

( α , β) + . . . ,

(8) where as=

α

s/(4

π

), we expect that h(1)(

α

,β) only dependson theconformalratiowhereas higher-ordercontributionsremainto benontrivialfunctionsoftwovariables

α

andβ.

Thispredictionisconfirmedbytheexplicitcalculation[12]:

H

(1)f

(

z1

,

z2

)

=

4CF

1 0

d

α α ¯ α

2f

(

z1

,

z2

)

f

zα12

,

z2

f

z1

,

zβ21

1

0

d

α

¯

α

0

d

β

f

zα12

,

zβ21

+

1

2f

(

z1

,

z2

) .

(9) Thecorrespondingone-loopkernelh(1)(

α

,β)canbewritteninthe following,remarkablysimpleform[13]

h(1)

( α , β) = −

4CF

δ

+

( τ ) + θ (

1

τ )

1

2

δ( α )δ(β)

,

(10)

wheretheregularizedδ-function,δ+(

τ

),isdefinedas

d

α

d

β δ

+

( τ )

f

zα12

,

zβ21

1

0

d

α

1

0

d

β δ( τ )

f

zα12

,

zβ21

f

(

z1

,

z2

)

= −

1

0

d

α α ¯ α

2f

(

z1

,

z2

)

f

zα12

,

z2

f

z1

,

zα21

.

(11)

TakingappropriatematrixelementsandmakingaFouriertransfor- mation tothe momentum fraction spaceone can check that the expression inEq. (10) reproduces all classical leading-order (LO) QCDevolutionequations:DGLAPequationforpartondistributions, ERBLequationforthemesonlight-coneDAs,andthegeneralevo- lutionequationforGPDs.

The two-loop kernel h(2)(

α

,β) contains contributions of two colorstructuresandatermproportionaltotheQCDbetafunction, h(2)

( α , β) =

8C2Fh(12)

( α , β) +

4CFCAh(22)

( α , β)

+

4b0CFh(32)

( α , β).

(12)

Let usexplain how it can be calculated.The idea ofRef. [10]

is to consider a modified theory, QCD in non-integer d=42

dimensions.Inthistheorytheβ-functionhastheform

β(

a

) =

M

Ma

=

2a

b0a

+

O

a2

,

b0

=

11

3 Nc

2

3nf

,

(13)

andforalargenumberofflavorsnf thereexistsacriticalcoupling as=

α

s/(4

π

)

suchthat β(as)=0.Thetheorythusenjoysex- actscaleinvariance[14,15]andonecanargue(seebelow)thatfull conformalinvarianceisalsopresent.1Asaconsequence,therenor- malizationgroup equationsare exactlyconformally invariant: the evolution kernels commute withthe generators ofthe conformal group. Thegeneratorsare, however,modifiedby quantumcorrec- tionsascomparedtotheircanonicalexpressions(6):

Sα

=

S(α0)

+

as

Sα(1)

+

as

2

S(α2)

+ . . .

(14)

1 Formallythegauge-fixed QCDLagrangiancontainstwocharges,thecoupling andthegaugeparameter.Thecorrespondingβ-function,βξ=MMξ,vanishesin theLandaugauge,ξ=0,sothatallGreenfunctionsarescale-invariantatthecrit- icalpointinthisgauge;βξ alsodropsoutoftheRGequationsforthecorrelation functionsofgauge-invariantoperators.

(3)

Onecanshowthat

S

=

S(0)

,

S0

=

S(00)

+

1

2

H

as

, H

as

=

as

H

(1)

+ . . .

S+

=

S(+0)

+ (

z1

+

z2

)

+

1

2as

H

(1)

+

as

(

z1

z2

+

+

O

2

,

(15)

where

Δ

+

[

O

] (

z1

,

z2

)

= −

2CF

1

0

d

α α ¯

α +

ln

α [

O

]

zα12

,

z2

− [

O

]

z1

,

zα21

(16)

i.e.the generator S is not modified, the deformation of S0 can be calculated exactly in terms of the evolution operator (to all orders in perturbation theory) [10], whereas the deformation of S+ isnontrivialandhastobecalculatedexplicitlyorderbyorder, totherequired accuracy.The one-loop expressionshownin (15), (16)isderived below,it isa newresult.From thepure technical pointofview,thiscalculationreplacesevaluationoftheconformal anomaly in the theory with brokensymmetry in integer dimen- sionsviatheconformalWardidentities(CWI)intheapproachdue toD. Müller[6].

Conformalsymmetry ofthe modified QCD atthe critical cou- plingimpliesthatthegenerators(15)satisfy theusualSL(2)com- mutationrelations

[

S0

,

S±

] = ±

S±

, [

S+

,

S

] =

2S0

.

(17) Expandingtheminpowersofthecouplingas oneobtainsanested setofcommutatorrelations[10]

S(+0)

, H

(1)

=

0

,

S(+0)

,H

(2)

=

H

(1)

, Δ

S(+1)

,

S(+0)

,H

(3)

=

H

(1)

, Δ

S(+2)

+

H

(2)

, Δ

S(+1)

,

(18)

etc.NotethatthecommutatorofthecanonicalgeneratorS(+0)with the evolution kernel at order k on the l.h.s. of each equation is givenin terms of theevolution kernels H(k) and thecorrections to the generators ΔS(+m) at one order less, mk1. The com- mutationrelationsEq.(18)canbeviewedas,essentially,inhomo- geneousfirst-orderdifferentialequationsontheevolutionkernels.

TheirsolutiondeterminesH(k)uptoanSL(2)-invariantterm(solu- tionofahomogeneousequation[H(invk),S(α0)]=0),whichcan,again, berestoredfromthespectrumoftheanomalousdimensions.This procedureisdescribedindetailforscalartheoriesinRef.[10].

Last but not least, in MS-like schemes the evolution kernels (anomalousdimensions)donotdependonthespace–timedimen- sionby construction. Indeed,therenormalization Zfactors relat- ing the renormalized and bare light-ray operators [O](z1,z2)= ZO(z1,z2)aregivenbytheexpansion

Z =

1

+

j=1

j

k=j

aks

Z

jk

,

(19)

whereZjkhavetheintegral representationsimilarto(3)interms offunctionsoftwo variables, Zjk(

α

,β) thatdonot dependon

. Thus,eliminatingthe

-dependenceoftheexpressions derivedin thed-dimensional (conformal)theory forthe criticalcoupling by theexpansion = −b0as+O(as2)allows onetorestore theevo- lution kernels for the theory in integer dimensions for arbitrary couplingasas;thisrewritingissimpleandexacttoallorders.

3. The statement ofconformal invarianceof QCDin ddimen- sionsatthecriticalcouplingisnottrivial.Itisbelievedthat“phys- icallyreasonable”scale-invarianttheoriesare alsoconformallyin- variant,seeRef.[16] fora discussion,however,tothebestofour knowledgethereisnoproofofthisstatementford>2 dimensions (buttherearenocounterexamplesaswell).Innon-gaugetheories conformalinvariancefortheGreenfunctionsofbasicfieldscanbe checkedinperturbativeexpansions[17].Ingaugetheoriesconfor- malinvariancedoesnotholdforthecorrelatorsofbasicfieldsand can be expected only forthe Green functionsof gauge-invariant operators. Forlocal compositeoperators a proof ofconformal in- variance is based on the analysis of pair counterterms for the product of the trace of energy-momentum tensor and local op- erators [18]. This analysis is beyond the scope of this Letter; it becomes rather complicated in gauge theories due to mixing of gauge invariant operators with BRST variations and equation of motion(EOM)operators[19].

Ashort commentmay,nevertheless, berelevant. LetON bea gauge-invariantmultiplicativelyrenormalizableoperator

M

M

+ β(

a

)∂

a

+ γ

N

(

a

)

[

ON

] =

0

,

(20) where

γ

N(a) is the anomalous dimension. As a consequence, it possessesacertain(critical)dimensionforthefine-tunedvalueof thecoupling(criticalpoint)a=a∗,β(a)=0:

i

D

, [

ON

] (

x

)

=

x

x

+ Δ

N

[

ON

] (

x

),

(21) where D is the operator of dilatations, ΔN is the canonical di- mension of the operator ON, and ΔN =ΔN+

γ

N is the scaling dimension,

γ

N=

γ

N(a).

The statement that [ON](x) becomes a conformal operator at thecriticalpoint,aswidelyexpected,meansthatactionofthegen- eratorofspecialconformaltransformationsonthisoperatortakes theform

i

Kμ

, [

ON

] (

x

)

=

2xμ

(

x

∂)

x2

μ

+

2

Δ

Nxμ

+

2xν

nμ

nν

nν

nμ

[

ON

] (

x

).

(22) Equivalently,acorrelationfunctionofsuchoperatorsatthecritical pointmustsatisfytheWardidentity

Kxμ1

+ . . . +

Kxμn

[

O1

](

x1

) . . .[

On

](

xn

)

=

0

,

(23)

whereitisassumedthatallspace–timepointsxiaredifferent.Cal- culatingthel.h.s.inperturbationtheory(seeRef.[18])andmaking useofthedilatationWardidentityproducestheexpressionofthe form

Kxμ1

+ . . . +

Kxμn

[

O1

] (

x1

) . . . [

On

] (

xn

)

=

N

i=1

[

O1

] (

x1

) . . .

O

μi

(

xi

) . . . [

On

] (

xn

)

,

(24)

whereOi(xi)arelocaloperatorinsertionsthatinvolveseveralcon- tributions:EOMoperators,operatorsrepresentingaBRSTvariation of another operator, andgauge-invariant operators. The first two canbeneglectedastheydonotcontributetothecorrelationfunc- tion(assumingxj =xk,forall j =k).The lastonescanfurtherbe expanded in terms of gauge invariant operators [Oμiq](xi) witha certaincriticaldimension,

O

μi

(

xi

) =

q

cq

(

a

)

Oμiq

(

xi

).

(4)

Dilatationinvarianceimpliesthat thebothsidesofEq.(24)must have the same scaling dimension at the critical point. Note that applicationof lowersthescaling dimensionofan operatorby one. As a consequence,foreach contributionon the r.h.s., either cq(a)vanishes, orthescalingdimensionsof[Oμiq]and[Oi]must differby one, dimOμiq=dimOi1, toall orders ofperturbation theory. If such operators do not exist, then all coefficient cq(a) havetovanishatthecritical pointthat impliesconformal invari- ance Eq.(23). Forthe leading-twist operators that are subject of thisLetter,absenceofoperatorswiththesameanomalousdimen- sionandthecanonicaldimensionlessbyoneiseasytoverify.For thegeneralcase,it wouldbequiteunexpected thattwo different operatorshavethesameanomalousdimensionifthey arenotre- lated by some exact symmetry, although existence of such pairs cannotbeexcluded.

4. The correction ΔS+, S+=S+(0)+ΔS+, to the generator of special conformal transformations atthe criticalpoint inQCD in ddimensions(inthelight-rayoperatorrepresentation)canbede- rivedfromtheanalysisofCWIsforsuitablecorrelation functions.

ThestandardprocedureistoconsidertheGreenfunctionsoftwist- twooperators withquark fields,seeRefs. [3,7](ford=4), which arenotgaugeinvariantthatcomplicatestheanalysis.Thisdifficulty canbeavoidedbyconsidering,instead,thecorrelatoroftwolight- rayoperatorsthatdependondifferentauxiliaryvectorsnandn:¯ G

(

x

,

z

,

w

) =

O(n)

(

0

,

z

)

On)

(

x

,

w

)

=

N1

D

Φ

eSR(Φ)

O(n)

(

0

,

z

)

On)

(

x

,

w

),

(25) where Φ ≡ {A,q,q¯,c,c¯} is the set of fundamental fields, z≡ {z1,z2}, w≡ {w1,w2}andweassumethattheauxiliarylight-like vectorsarenormalizedas(n· ¯n)=1.

TheQCDLagrangianind=42

dimensionalEuclideanspace–

timeincovariantgaugehastheform2 L

= ¯

q

(

/

ig

/

A

)

q

+

1

4Fμνa Fa,μν

+

μc

¯

a

Dμc

a

+

1 2

ξ

Aa

2

.

(26) Therenormalizedaction SR isobtainedfrom(26)by thereplace- ment

ΦΦ

0

=

ZΦ

Φ,

g

g0

=

MZgg

,

ξξ

0

=

Zξ

ξ,

(27)

i.e. SR(Φ,g,ξ )=S0,g00). Note that we do not send

0 in the renormalized correlation functions so that they explicitly dependon .

TheformoftheCWIissimplerforthespecialchoice (n·x)= (¯n·x)=0 thatweacceptforthiscalculation.Forthelocalconfor- maloperatorsdefinedwithrespecttothen¯ vector,ONn)(x),cf.[11], itfollowsfrom Eq.(22)that

i

nK

),

ONn)

(

x

)

= −

x2

(

n

¯

x

)

ONn)

(

x

).

(28) Goingovertothelight-rayoperatorsoneobtains,therefore i

nK

),

On)

(

x

,

w

)

= −

x2

(

n

¯

x

)

On)

(

x

,

w

).

(29) Thus conformal invarianceof thecorrelation function (25)atthe criticalpointimpliestheconstraint

2 OurnotationfollowscloselyRef.[20]

i 2

(

nK

¯ ),

O(n)

(

0

,

z

)

On)

(

x

,

w

) +

O(n)

(

0

,

z

)

nK

),

On)

(

x

,

w

)

=

S(+z)

1 2x2

(

n

¯

x

)

G

(

x

,

z

,

w

) =

0

,

(30) wherethesuperscriptS(+z)remindsthatitisadifferentialoperator actingon z1,z2 coordinates.

ExplicitexpressionforS(+z)canbederivedfromtheCWI 0

= −

δ

+SR

O(n)

(

z

)

On)

(

x

,

w

) +

δ

+

O(n)

(

z

)

On)

(

x

,

w

) +

O(n)

(

z

) δ

+

On)

(

x

,

w

)

,

(31)

where[O](z1,z2)≡ [O](x=0;z1,z2),thatfollowsfrominvariance ofthecorrelation function(25)undera changeofvariablesΦΦ+δ+Φ inthepathintegral,

δ

+q

(

x

) = ¯

nμ

2xμ

(

x

∂)

x2

μ

+

2

Δ

qxμ

q

(

x

) +

1

2

[ γ

μ

,

/x

]

q

(

x

)

, δ

+Aρ

(

x

) = ¯

nμ

2xμ

(

x

∂)

x2

μ

+

2

Δ

Axμ

Aρ

(

x

) +

2gμρ

(

x A

)

2xρAμ

(

x

)

, δ

+c

(

x

) = ¯

nμ

2xμ

(

x

∂)

x2

μ

+

2

Δ

cxμ

c

(

x

), δ

+c

¯ (

x

) = ¯

nμ

2xμ

(

x

∂)

x2

μ

+

2

Δ

c¯xμ

¯

c

(

x

).

(32)

ThechoiceoftheparametersΔΦ isamatterofconvenience.They can betaken, e.g.,equaltothecanonicaldimensionsofthefields indspace–timedimensions,asin[10].ForQCDadifferentchoice proves tobemoreconvenient:Δq=3/2−

,ΔA=1,Δc¯=2 and Δc=0.Inthiscasethe quark partoftheLagrangian isinvariant andvariationoftheactiontakestheform

δ

+SR

=

4

ddx

(

xn

¯ )(

LA

+

+

Lghost

) +

2

(

d

2

nμ

ddx

Z2c

¯

c Dμc

1

ξ

Aμ

(∂

A

)

.

(33)

Thereasonforchoosingdifferentscalingdimensionsfortheghost andanti-ghostfieldsisthatinthiscasethelastterm∼(d−2)that doesnotvanishinfourdimensionsisaBRSTvariation[1]

Z2c

¯

caDμca

1

ξ

A

aμ

Aa

= δ

BRST

c

¯

aAaμ

.

(34)

Hence,itdoesnotcontributetothevariationof(25).

In this work we are interested in the one-loop correction to thegeneratorS+.Tothisaccuracy,obviously,theghostLagrangian Lghost andgluonself-interactiondonot contributei.e.wehaveto keep termsquadraticingluon fieldsonly. Oneobtainsaftersome algebra

δ

+SR

= −

2

ddx

(

xn

¯ )

AaαKαβAaβ

+

1

+

1

ξ

n A

¯

a

Aa

+ . . . ,

(35)

wherethe ellipsesstands forthe termsthatare irrelevant atone looporderand

Kαβ

=

gαβ

2

α

β

1

1

ξ

(36)

is nothingbutthe inversegluon propagator(with a minus sign).

Moreover, asfollows fromEq.(34), thelast term ∼(n A¯ )(∂A) can be written asa combinationoftheBRST variation andthe ghost term, so that it doesnot contribute to the one-loop accuracy as well. Thus, to our accuracy, the insertion of δ+SR generates an effectivevertexinsertion−2

(¯nx)Aaα(x)KαβAaβ(x)inagluonline inoneloopdiagrams:

(5)

Fig. 1.One-loopdiagramscontributingtothecorrelationfunctionoftwolight-rayoperatorswithaninsertionofδ+SR (greyblobs).Wilsonlinesbetweenthequarkfields areshownbythedasheddoublelines.

=

2

n

¯ · (

x

+

y

)

(37)

Feynman diagrams contributing to the correlation function δ+SR[O(n)](z)[On)](x,w)onther.h.s.oftheCWI(31)areshown inFig. 1.Sincetheδ+SR insertion bringsthefactor

g2,weonly needthedivergentparts.Thecalculationisveryeasy.Fordefinite- ness let us choose the Feynman gauge, ξ=1, and consider the first diagram in Fig. 1 as an example. This diagram, potentially, hastwodivergent subgraphs—leftandright—buttherightone doesnot contribute dueto our choice (¯n,x)=0, takinginto ac- countthattheoperatorOn)(x,w)onlyinvolvesquarkfieldsalong thelinen¯μ.Thanksto(37)thedivergentpartoftheleftsubgraph coincides upto a prefactor2

(n¯,y+y),withthe corresponding counterterm for the operator O(n)(z1,z2), which is known from Ref.[12].Oneobtainsforthiscontribution

(

nn

¯ ) α

s

π

CFH

(+)

(

z1

+

z2

)

G(0)

(

x

,

z

,

w

),

(38)

whereG(0)(x,z,w) isthe tree-levelcorrelation function(25) and theintegraloperatorH(+)isdefinedasfollows:

H(+)f

(

z1

,

z2

) =

1

0

d

α

¯

α

0

d

β

f

zα12

,

zβ21

.

(39)

TheotherdiagramsinFig. 1,similarly,arewrittenintermsofcon- tributionsofthecorrespondingcountertermstoO(n)(z1,z2)deco- ratedbymultiplicativefactors.Forthesumofalltermsoneobtains

δ

+SR

O(n)

(

0

,

z

)

On)

(

x

,

w

)

= (

nn

¯ ) α

s

π

CF

−{

H

1

,

z1

} − {

H

2

,

z2

}

+

H(+)

1 2

(

z1

+

z2

) +

z12H

G(0)

(

x

,

z

,

w

)

+

O

( ),

(40)

where{∗,∗}standsforananticommutatorand

H

1f

(

z1

,

z2

) =

1

0

d

α α ¯ α

f

(

z1

,

z2

)

f

zα12

,

z2

,

H

2f

(

z1

,

z2

) =

1

0

d

α α ¯ α

f

(

z1

,

z2

)

f

z1

,

zα21

,

H

f

(

z1

,

z2

) =

1

0

d

α

ln

α

f

zα12

,

z2

f

z1

,

zα21

.

(41)

Theone-loopevolutionoperatorH(1)inEq.(8)iswritteninterms ofthesekernelsas

H

(1)

=

4CF

H

1

+

H

2

H(+)

+

1 2

.

(42)

ThisrepresentationisequivalenttotheoneinEq.(10)and,asitis easytoshow,H(1)commuteswith S(+0).

Next, we have to consider the second contribution on the r.h.s. of the CWI (31), which involves the conformal variation of [On)](x,w),

δ

+

On)

(

x

,

w

) = Zδ

+On)

(

x

,

w

)

= Z

x2

n

x

)

On)

(

x

,

w

)

= −

x2

n

x

)

On)

(

x

,

w

),

(43)

and,finally,thethirdcontribution

δ

+

O(n)

(

z

) =

2

(

nn

¯ ) Z δ

+

O(n)

(

z

)

=

2

(

nn

¯ ) Z

S(+0)

(

z1

+

z2

) Z

1

O(n)

(

z

)

=

2

(

nn

¯ )

S(+0)

(

z1

+

z2

)

as 2

H

(1)

,

z1

+

z2

O(n)

(

z

).

(44)

ThislastcontributionisdiscussedindetailinRef.[10] wherethe chain of equations in (44) is explained. Collecting all terms we obtain the resultquoted in Eq.(15). Notethat this expression is differentfromthecorrespondingresultinscalarfieldtheories, S+

=

S(+0)

+ (

z1

+

z2

)

+

1 2a

H

(1)

,

seeRef.[10].

5. WeproceedtocalculatetheNLOevolutionkernels(12)mak- ing use of the commutator relation [S(+0),H(2)]= [H(1),S(+1)], Eq.(18).NotethatS(+1)(15)containstermsinb0andCF.3Hence thecommutator [S(+1),H(1)] containstwo colorstructures, b0CF andC2F,respectively.ItfollowsthatthekernelCFCAh(22)(

α

,β)(12) satisfies the homogeneous equation [S(+0),H(22)]= 0, alias it is SL(2)-invariantandcanbewrittenasafunctionoftheconformal ratio,h(22)(

α

,β)=h(22)(

τ

).

Calculatingthecommutatorweobtainaftersomealgebra

S(+1)

, H

(1)

=

8C2F

A

1

+

4CFb0

A

3

,

(45) whereA1 andA3 areintegraloperatorsoftheform

A

if

(

z1

,

z2

) =

z12

1

0

d

α

Ai

( α )

f

zα12

,

z2

f

z1

,

zα21

+

z12

1

0

d

α

¯

α

0

d

β

Bi

( α , β)

f

zα12

,

zβ21

,

with

3 Totheone-loopaccuracyonecanreplace=(4d/2)byb0as.

Abbildung

Fig. 1. One-loop diagrams contributing to the correlation function of two light-ray operators with an insertion of δ + S R (grey blobs)

Referenzen

ÄHNLICHE DOKUMENTE

PLAN OF STORAGE RES_ERVOIR; SECTIONS OE EMBANKMENT, BYEWASH, &c.; VALVE WELL, FOOT BRIDGE, FILTER BEDS, &C.; PORT GLASGOW WATERWORRS: EMEANKMENT, FILTERS, &C.;

We consider evolution equations describing the scale dependence of the wave function of a baryon containing an infinitely heavy quark and a pair of light quarks at small

To summarize, we have constructed a conformal expansion of the distribution amplitudes of heavy–light mesons in terms of eigenfunctions of the generator of special conformal

It has been known for some time [6] that conformal symmetry of the QCD Lagrangian allows one to restore full evolution kernels at given order of perturbation theory from the spectrum

contributions to the critical quark mass stemming from the Pauli term and chiral symmetry breaking four-quark operators in Symanzik’s effective action, which is used in an

Conformal symmetry of QCD in d-dimensions at the critical point means that evolution equations in physical QCD in minimal subtraction schemes to all orders in perturbation theory have

We advance perturbative approaches for out-of-equilibrium quantum many-body systems by applying unitary perturbation theory to the real-time evolution of the weakly interacting

The new application accelerates the rapid convergence of the series solutions and is used for analytic treatment of these equations.. Some illustrative examples are given to