• Keine Ergebnisse gefunden

Kern- und Teilchenphysik SS2012

N/A
N/A
Protected

Academic year: 2022

Aktie "Kern- und Teilchenphysik SS2012"

Copied!
28
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

KIT – Universität des Landes Baden-Württemberg und

nationales Forschungszentrum in der Helmholtz-Gemeinschaft

KIT-Centrum Elementarteilchen- und Astroteilchenphysik KCETA

www.kit.edu

KIT – Universität des Landes Baden-Württemberg und

nationales Forschungszentrum in der Helmholtz-Gemeinschaft

KIT-Centrum Elementarteilchen- und Astroteilchenphysik KCETA

www.kit.edu

Kern- und Teilchenphysik SS2012

Johannes Blümer

Vorlesung-Website

(2)

KT2012 Johannes Blümer IKP in KCETA

Übergangsstrahlung,

Fluoreszenz, Radioemission

2

Übergangsstrahlung

Fluoreszenzlicht (in N

2

)

Radioemission (von Schauern)

(3)

KT2012 Johannes Blümer IKP in KCETA

Photonen: Photoeffekt, Comptonstreuung, Paarbildung

3

(4)

KT2012 Johannes Blümer IKP in KCETA

Paarbildung und -Vernichtung in Blasenkammer

4

(5)

KT2012 Johannes Blümer IKP in KCETA 5

(6)

Photon energy 100

10

10–4 10–5 10–6 1 0.1 0.01 0.001

10 eV 100 eV 1 keV 10 keV 100 keV 1 MeV 10 MeV 100 MeV 1 GeV 10 GeV 100 GeV Absorption length (g/cm2 )

Si C

Fe Pb

H

Sn

KT2012 Johannes Blümer IKP in KCETA

6

294

27. Passage of particles through matter

Photon energy 100

10

10–4 10–5 10–6 1 0.1 0.01 0.001

10 eV 100 eV 1 keV 10 keV 100 keV 1 MeV 10 MeV 100 MeV 1 GeV 10 GeV 100 GeV Absorption lengthλ (g/cm2 )

Si C

Fe Pb

H

Sn

Fig. 27.16: The photon mass attenuation length (or mean free path) λ = 1/(µ/ρ) for various elemental absorbers as a function of photon energy. The mass attenuation coefficient is µ/ρ, where ρ is the density. The intensity I remaining after traversal of thickness t (in mass/unit area) is given by I = I0 exp(−t/λ). The accuracy is a few percent. For a chemical compound or mixture, 1/λeff ≈ !

elements wZZ, where wZ is the proportion by weight of the element with atomic number Z. The processes responsible for attenuation are given in Fig. 27.10. Since coherent processes are included, not all these processes result in energy deposition. The data for 30 eV < E < 1 keV are obtained from http://www-cxro.lbl.gov/optical constants (courtesy of Eric M. Gullikson, LBNL). The data for 1 keV < E < 100 GeV are from http://physics.nist.gov/PhysRefData, through the courtesy of John H. Hubbell (NIST).

Photon energy (MeV)

1 2 5 10 20 50 100 200 500 1000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

C Pb

NaI

Fe

Ar

H2O H

P

Figure 27.17: Probability P that a photon interaction will result in conversion to an e+e pair. Except for a few-percent contribution from photonuclear absorption around 10 or 20 MeV, essentially all other interactions in this energy range result in Compton scattering off an atomic electron. For a photon attenuation length λ (Fig. 27.16), the probability that a given photon will produce an electron pair (without first Compton scattering) in thickness t of absorber is P[1 − exp(−t/λ)].

27.4.6. Photonuclear and electronuclear interactions at still higher energies : At very high photon and electron energies, where the bremsstrahlung and pair production cross-sections are heavily suppressed by the LPM effect, photonuclear and electronuclear interactions predominate over electromagnetic interactions. At photon energies above about 1020 eV, for example, photons usually interact hadronically. The exact cross- over energy depends on the model used for the photonuclear interactions. At still higher energies (>∼ 1023 eV), photonuclear interactions can become coherent, with the photon interaction spread over multiple nuclei. Essentially, the photon coherently converts to a ρ0, in a process that is somewhat similar to kaon regeneration [54].

27.5. Electromagnetic cascades

When a high-energy electron or photon is incident on a thick absorber, it initiates an electromagnetic cascade as pair production and bremsstrahlung generate more electrons and photons with lower energy. The longitudinal development is governed by the high-energy part of the cascade, and therefore scales as the radiation length in the material. Electron energies eventually fall below the critical energy, and then dissipate their energy by ionization and excitation rather than by the generation of more shower particles. In describing shower behavior, it is therefore convenient to introduce the scale variables

t = x/X0 , y = E/Ec , (27.32) so that distance is measured in units of radiation length and energy in units of critical energy.

Longitudinal profiles from an EGS4 [55] simulation of a 30 GeV electron-induced cascade in iron are shown in Fig. 27.18.

The number of particles crossing a plane (very close to Rossi’s

(7)

IKP in KCETA KT2012 Johannes Blümer

Detektorbeispiele

Pionierarbeiten und Beispiele

Positron; Anderson 1933 Blasenkammer, CERN Gasdetektoren

Cherenkov-Detektor Szintillator

Halbleiterdetektoren Kalorimeter

Moderne Grossdetektoren

CMS, Pierre Auger, AMS

Rutherford-Streuung

Experiment

Ableitung der Rutherford-Streuformel Größe von Atomkernen

7

(8)

KT2012 Johannes Blümer IKP in KCETA

Entdeckung

des Positrons:

Anderson 1933

8

(9)

KT2012 Johannes Blümer IKP in KCETA

Blasenkammer

9

(10)

KT2012 Johannes Blümer IKP in KCETA

Blasenkammer

10

(11)

KT2012 Johannes Blümer IKP in KCETA

Gasdetektoren

11

(12)

KT2012 Johannes Blümer IKP in KCETA

Gasdetektoren

12

(13)
(14)

KT2012 Johannes Blümer IKP in KCETA 14

(15)
(16)

KT2012 Johannes Blümer IKP in KCETA

Cherenkov-Detektor

16

(17)

Ionization excitation of base plastic Forster energy transfer

base plastic

primary fluor (~1% wt / wt )

secondary fluor (~0.05% wt / wt )

photodetector emit UV, ~340 nm

absorb blue photon absorb UV photon emit blue, ~400 nm 1 m

10

4

m 10

8

m

KT2012 Johannes Blümer IKP in KCETA

Szintillator; Photomultiplier

17

(18)

KT2012 Johannes Blümer IKP in KCETA

Szintillator

18

(19)

KT2012 Johannes Blümer IKP in KCETA

Halbleiterdetektoren

19

(20)

KT2012 Johannes Blümer IKP in KCETA

Energieauflösung

20

(21)

KT2012 Johannes Blümer IKP in KCETA

Kalorimeter

21

(22)

KT2012 Johannes Blümer IKP in KCETA 22

(23)

KT2012 Johannes Blümer IKP in KCETA

Compact Muon Solenoid CMS am LHC

23

(24)

KT2012 Johannes Blümer IKP in KCETA

Pierre Auger-Observatorium

(25)

solar panel GPS

+data electronics

1 of 3 PMTs

battery 12 m

3

pure water in Tyvek liner

25

(26)
(27)

KT2012 Johannes Blümer IKP in KCETA

Alpha Magnetic Spectrometer AMS an der ISS

27

(28)

KT2012 Johannes Blümer IKP in KCETA 28

Referenzen

ÄHNLICHE DOKUMENTE

ist schlicht durch nichts Bekanntes zu beeinflussen. 4 Sie hat für jedes Radionuk- lid einen bestimmten Wert und konnte daher auch erfolgreich zur Identifizierung bekannter oder

Das kontinuierliche β-Spektrum wäre dann verständlich unter der Annahme, daß beim β-Zerfall mit dem Elektron jeweils noch ein Neutron emittiert wird, derart, daß die Summe

Einer der Gründe für ihre Begeisterung: SUSY könnte endlich erklären, woraus die Dunkle Materie besteht, über die Astronomen seit den 1930er Jahren rätseln.. Schritt für

Formfaktoren des Nukleons Quasielastische Streuung Ladungsradius von π, K.

The smaller the momentum fractions x are to which the HERA microscope is set, the more quark-antiquark pairs and gluons are seen in the proton!. This high density of gluons

The Daya Bay experiment is supported in part by the Min- istry of Science and Technology of China, the United States Department of Energy, the Chinese Academy of Sciences, the

THE SUCCESS OF THE CERN PROTON – ANTIPROTON COLLIDER HAS OPENED THE ROAD TO THE LHC. di

Figures 1 and 2 illustrate the above results on limits on and positive claims of cross sections, normalized to nucleon, for spin independent and spin dependent couplings,