• Keine Ergebnisse gefunden

Constraints on the two-pion contribution to hadronic vacuum polarization

N/A
N/A
Protected

Academic year: 2022

Aktie "Constraints on the two-pion contribution to hadronic vacuum polarization"

Copied!
8
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Constraints on the two-pion contribution to hadronic vacuum polarization

Gilberto Colangelo

a

, Martin Hoferichter

a

, Peter Stoffer

b,c,

aAlbertEinsteinCenterforFundamentalPhysics,InstituteforTheoreticalPhysics,UniversityofBern,Sidlerstrasse5,3012Bern,Switzerland bDepartmentofPhysics,UniversityofCaliforniaatSanDiego,LaJolla,CA92093,USA

cUniversityofVienna,FacultyofPhysics,Boltzmanngasse5,1090Vienna,Austria

a rt i c l e i n f o a b s t r a c t

Articlehistory:

Received19October2020

Receivedinrevisedform13December2020 Accepted8January2021

Availableonline13January2021 Editor:B.Grinstein

Atlow energieshadronic vacuumpolarization (HVP)is strongly dominatedby two-pionintermediate states,whichareresponsibleforabout70% oftheHVPcontributiontotheanomalousmagneticmoment ofthemuon,aHVPμ .Lattice-QCDevaluationsofthelatterindicatethatitmightbelargerthancalculated dispersivelyon thebasisof e+ehadrons data,atalevel whichwould contest thelong-standing discrepancywith the aμ measurement.In thisLetterwe study towhichextentthis2π contribution can be modified without, at the same time, producing a conflict elsewhere in low-energy hadron phenomenology.Tothisendweconsideradispersiverepresentationofthee+e2πprocessandstudy thecorrelationswhichtherebyemergebetweenaHVPμ ,thehadronicrunningofthefine-structureconstant, the P-waveπ π phaseshift,andthechargeradiusofthepion.Inelasticeffectsplayanimportantrole, despitebeingconstrainedbytheEidelman–Łukaszukbound.WeidentifyscenariosinwhichaHVPμ canbe alteredsubstantially,drivenbychangesinthephaseshiftand/ortheinelasticcontribution,andillustrate theensuingchangesinthee+e2π crosssection.Inthecombined scenario,whichminimizesthe effectinthecrosssection, auniform shiftaround 4% isrequired.Atthe sametimeboththeanalytic continuationintothespace-likeregionandthepionchargeradiusareaffected atalevelthatcouldbe probedinfuturelattice-QCDcalculations.

©2021TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

The uncertainty in the Standard Model prediction for the anomalousmagneticmomentofthemuon [1–28]

aSMμ

=

116 591 810

(

43

) ×

1011 (1) is currentlydominatedby HVP, whoseleading-order contribution asderivedfrome+e→hadrons crosssectionsreads [1,6–12]

aHVPμ

e+e

=

6 931

(

40

) ×

1011

.

(2) TheresultingSMprediction (1) differsfromexperiment [29]

aexpμ

=

116 592 089

(

63

) ×

1011 (3)

by 3.7

σ

. Ifthis discrepancy were all to be blamed on an incor- rect evaluationoftheHVPcontribution,thiswouldhaveto beas

*

Correspondingauthor.

E-mailaddresses:gilberto@itp.unibe.ch(G. Colangelo),hoferichter@itp.unibe.ch (M. Hoferichter),peter.stoffer@univie.ac.at(P. Stoffer).

large as 7200×1011 to reconcile the central values of the SM andexperiment.Thatsuchapossibilityshouldinfactbeseriously consideredhasbecome apressingissueinview ofrecentlattice- QCDevaluations. Thelattice averageperformedinRef. [1] (based onRefs. [30–38])

aHVPμ

lattice average

=

7 116

(

184

) ×

1011 (4)

isconsistent withboth the e+e value (2) (within 1

σ

), butalso with the experimental value (3). The more recent calculation of Ref. [39],aHVPμ =7087(53)×1011,quotes aslightlysmallercen- tralvalue,butduetotheincreasedprecisionliesabove thee+e valueby2.3

σ

,whilereducingthetensionwithEq. (3) to1.5

σ

.

Forthesecond-most-importantclassofhadroniccontributions, hadroniclight-by-lightscattering(HLbL),thephenomenologicales- timateaHLbLμ =92(19)×1011[1,14–26,40–45] agreeswithaHLbLμ = 82(35)×1011 fromlatticeQCD [27] (includingthephenomeno- logicalestimateforthecharmcontribution),insuchawaythatan averageofthetwohasbeenusedinEq. (1).

This situation has triggered renewed interest in the conse- quencesof large changes to HVPelsewhere, especially for global https://doi.org/10.1016/j.physletb.2021.136073

0370-2693/©2021TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

electroweakfitsduetoits impactonthehadronicrunningofthe fine-structureconstant

α

[46–49].Theseanalyseshaveshownthat toavoidasignificanttensionwithelectroweakprecisiondata,the changestothehadroniccrosssectionsneedtobeconcentratedat lowenergies,atleastbelow2GeV,ascenarioindeedindicatedby Ref. [39].

Inpreviouswork [47–49] changestothehadroniccrosssections wereconsideredasawhole,withspecificassumptionsontheen- ergydependence.However,ifthechangesareconcentratedinthe low-energyregion,itisclearthatthemostrelevantabsoluteeffect willoccurinthedominant2

π

channel,sincetherequiredrelative changes in the subleading channels would become prohibitively large.Inthisregion,the2

π

channelisessentiallyelasticanddom- inatedbythe

ρ

resonance.Therelevanthadronicmatrixelement, thepion vectorformfactor(VFF),isstrongly constrainedby ana- lyticityandunitarity,whichimplythatbelow1GeV itisessentially determinedbytheP-wave

π π

phaseshift [8],whichisagaincon- strainedbyanalyticity,unitarity,andcrossingsymmetry,takingthe formof Royequations [50–53].The mainconclusion ofthe anal- ysis in Ref. [8] is that the VFF below1GeV can be described in termsofahandfulofparameters,whichcanallbedeterminedby afittothee+e2

π

data.Thefactthat thesedata,whichhave now reacheda remarkable levelof precision, typically below1%, canbewelldescribedbythishighlyconstrainedrepresentation,is anontrivialtestontheirquality.

Within this framework it is possible to address the question which changes becomepossible withoutviolating analyticity and unitarityandwithoutincurringother tensionselsewhere—besides thosewiththee+e2

π

cross-sectiondata.Tothisend,wefirst ofalldeterminewhatchangesintheparametersofthedispersive representationmaygeneratethedesiredchangeinaHVPμ .Withthe same setofparameters we thencalculate the P-wave

π π

phase shifts,the hadronicrunningof

α

, aswellasthe charge radiusof thepion,andtherebyestablishcorrelationsamongallthesequan- tities.

Finally, we identify scenarios in which significant changes to HVP remain possible despite these independent constraints on the pionVFF.The comparisonoftheresultingpredictions forthe e+e2

π

cross section to data allows usto quantify by how much theexperimental crosssections wouldneedto bechanged toaccommodatesuchanincreaseinaHVPμ .

2. Thepionvectorformfactor

The HVP contribution to the anomalous magnetic moment of the muon, expressedin termsof the e+e→hadrons cross sec- tion,reads [54,55]

aHVPμ

= α

mμ

3

π

2

ˆ

sthr

dsK

ˆ (

s

)

s2 Rhad

(

s

),

Rhad

(

s

) =

3s

4

π α

2

σ (

e+e

hadrons

),

(5) withaknownkernelfunction Kˆ(s).WiththepionVFF V(s)de- finedasthematrixelementoftheelectromagneticcurrent

em,

π

±

(

p

) |

jμem

(

0

) | π

±

(

p

) = ± (

p

+

p

)

μFπV

((

p

p

)

2

),

(6) the2

π

contributionbecomes

σ (

e+e

π

+

π

) = π α

2

3s

σ

π3

(

s

)

FπV

(

s

)

2

,

(7) where

σ

π(s)=

1−4M2π/s. Similarly, thetwo-pion contribution tothehadronicrunningof

α

,evaluatedatM2Z,

α

(had5)

(

M2Z

) = α

M2Z 3

π

ˆ

sthr

ds Rhad

(

s

)

s

(

M2Z

s

) ,

(8)

is determined by V(s). In both cases, the integration threshold becomes sthr=4M2π, and radiative corrections to the cross sec- tion are implemented in such a way that vacuum polarization isremoved, but final-stateradiation (FSR)included.Since Eq. (6) defines the matrix element in pure QCD, this implies that FSR correctionsneed tobe included inthe final step,see Ref. [8] for further details. In addition,we consider thecorrelation withthe pionchargeradius

r2π

=

6dFπV

(

s

)

ds

s=0

=

6

π

ˆ

4M2π

dsImFπV

(

s

)

s2

,

(9)

which,contrary toaHVPμ and

α

(had5), isalso explicitlysensitive to thephaseofV(s).

Inthe elastic region, where2

π

is againthe only relevantin- termediate state, V(s)is stronglyconstrainedby analyticity and unitarity.Iftheelasticregionextendedall thewaytoinfinity,the solutiontotheunitarityandanalyticityconstraintswouldbegiven bytheOmnèsfactor [56]

11

(

s

) =

exp

⎧ ⎪

⎪ ⎩

s

π ˆ

4Mπ2

ds

δ

11

(

s

)

s

(

s

s

)

⎫ ⎪

⎪ ⎭ ,

(10) with the P-wave

π π

scattering phase shift δ11(s). This phase shift,in turn, is stronglyconstrained by

π π

Roy equations [50–

53], which further limits the permissible changes in V(s), see Refs. [57–64] forrepresentationsthatexploitthisintimateconnec- tion between the VFF and

π π

scattering. Below 1GeV inelastic effectsaresmall,butatthelevelofprecisionnecessaryhere,have tobe takenintoaccount. Todothiswe multiplythe fullyelastic Omnèsfactor (10) bytwoadditionalfactors,asinRefs. [8,58,59]

FπV

(

s

) =

11

(

s

)

Gω

(

s

)

GinN

(

s

),

(11) where Gω(s) accounts for theisospin-violating 3

π

cut, which is completelydominatedby

ρ

ω

mixing,andthe4

π

cutisexpanded intoaconformalpolynomial

GinN

(

s

) =

1

+

N k=1

ck

(

zk

(

s

)

zk

(

0

)),

(12)

wheretheconformalvariable z

(

s

) =

sin

sc

− √

sin

s

sin

sc

+ √

sin

s (13)

permits inelastic phases above the

π ω

threshold sin=(Mπ0 + Mω)2. The parameter sc is the value of s mapped to the origin, z(sc)=0, and is varied around1GeV2. To ensure the correct thresholdbehavior, the ck are relatedby an additional constraint thatremovestheS-wavesingularity.

In total, the dispersive representation from Ref. [8] then in- volves the following free parameters: first, the solution of the

π π

Roy equations is determined once the phase shifts at s0= (0.8GeV)2 ands1=(1.15GeV)2 are specified, so that δ11(s0) and δ11(s1) are free fit parameters. Second, Gω(s) dependson the

ω

pole parameters as well as the overall strength of

ρ

ω

mixing.

Third,thereareN1 freeparametersinGinN(s)todescribeinelas- ticeffects.

(3)

TheresultsforthephaseshiftsfromafittoVFFdataare [8]

δ

11

(

s0

) =

110

.

4

(

7

)

, δ

11

(

s1

) =

165

.

7

(

2

.

4

)

,

(14) but for the purpose of this work it is crucial to understand to within which ranges they can be constrained withoutrelying on e+e2

π

data (or

τ

π π ν

τ). In principle, one could even considerindirectconstraintsthatarise,viatheRoyequations,from low-energydataincrossedchannels,suchasK4data [65–67],but herewesimplyquotetheresultsfromthepartial-waveanalyses Ref. [68]:

δ

11

(

0

.

79 GeV

) =

97

.

5

(

1

.

5

)

[

103

.

9

(

6

)

] , δ

11

(

0

.

81 GeV

) =

112

.

1

(

8

)

[

116

.

2

(

7

)

] , δ

11

(

1

.

15 GeV

) =

167

.

7

(

3

.

3

)

[

165

.

7

(

2

.

4

)

],

Ref. [69]:

δ

11

(

0

.

795 GeV

) =

105

.

0

(

1

.

5

)

[

107

.

2

(

6

)

], δ

11

(

0

.

81 GeV

) =

114

.

0

(

1

.

4

)

[

116

.

2

(

7

)

],

δ

11

(

1

.

15 GeV

) =

164

(

6

)

[

165

.

7

(

2

.

4

)

],

(15)

whereourvalues,extractedfromtheglobalfittoe+e2

π

data, areshowninbracketsforcomparison.

Theparameters inGω(s)donotneedtobeconsidered further becauseeitheronewouldhavetobechangedbeyondanyplausible range toproduce a relevant effectinaHVPμ .Finally, ifseveralfree parameters in the conformal polynomial are introduced, the re- sultinginelasticphaseshiftingeneralleads tounacceptablylarge violationsofWatson’sfinal-statetheorem [70].Aquantitativephe- nomenologicalboundcanbeformulatedbasedontheratio r

= σ

I=1

(

e+e

hadrons

)

σ (

e+e

π

+

π

)

1 (16)

ofnon-2

π

to2

π

hadroniccrosssectionsforisospinI=1,e.g.,for thetotalphaseψ oftheVFF [71,72]

sin2

δ

11

)

1 2

1

1

r2

.

(17)

This EŁboundshowsthat inelastic effectsbelowthe

π ω

thresh- oldareindeednegligible,andlimitsthesizeoftheinelasticphase above. In practice, we use the implementation of the EŁ bound fromRef. [8],butnotethatthesedetailsareoflimitedimportance inthepresentcontext:oncetheEŁboundbecomesactive,thein- crease inthe

χ

2 is rathersteep, so that the excluded parameter spaceisessentiallyinsensitivetotheexactimplementationofthe EŁbound.

3. ChangingHVP

WestartfromthemainresultsofRef. [8],wheretherepresen- tation (11) isfittoacombinationofthedatasetsofRefs. [73–85], leadingtoatwo-pioncontributiontoaHVPμ below1GeV of [8]

aπ πμ

1 GeV

=

495

.

0

(

1

.

5

)(

2

.

1

) ×

1010

=

495

.

0

(

2

.

6

) ×

1010

,

(18) where thefirst erroristhe fituncertainty (inflatedby

χ

2/dof) and thesecond errorincludes all systematic uncertainties of the representation (11). Thecentralconfigurationuses N1=4 free parameters inthe conformalpolynomial.Duetothesensitivityof theradiussumrule (9) tothephaseoftheVFF,fitswithtoomany free parametersinthe conformalpolynomialtend tobecomeun- stableforr2π,becausethephaseneeds tobeextrapolatedabove

theenergyforwhichtheEŁboundcanbeusedinpracticetocon- strainthesizeoftheimaginarypart.Forthisreason,inRef. [8] the centralevaluationofr2πwasobtainedwithN−1=1,butthefull variationwithN waskeptasasystematicuncertainty,whichdom- inatestheuncertaintyassignedtothefinalresult [8]

r2π

=

0

.

429

(

1

)(

4

)

fm2

=

0

.

429

(

4

)

fm2

.

(19) Here,weuseasreferencepointthevalueforN1=4 [8]

r2π

N1=4

=

0

.

426

(

1

)

fm2

,

(20)

wherethe error refers to the fit uncertainty only. Finally,the fit configurationwith N1=4 leadsto a two-pioncontributionto thehadronicrunningof

α

,

α

(π π5)(M2Z),of

α

(π π5)

(

M2Z

)

1 GeV

=

32

.

62

(

10

)(

11

) ×

104

=

32

.

62

(

15

) ×

104

.

(21) Starting fromthe central fit results, we now modify the con- tribution to aHVPμ by including in the fit a hypothetical “lattice”

observationofaπ π

μ 1 GeVintheformofanadditionalcontribution tothe

χ

2 functionthatweminimize.Thefitoutputforaπ π

μ

1 GeV is then pulled away from the central fit result in Eq. (18), de- pending onthe input aπ π

μ

1 GeV and its uncertaintythat acts as a weight. We find it convenient to adopta tiny uncertainty, be- cause it forces the output for aπ π

μ 1 GeV to essentially coincide withthe input. With a larger uncertainty(i.e., a smaller weight) thefitoutputforaπ π

μ 1 GeVwillbesomewherebetweentheinput andEq. (18).However,thechoiceoftheweightsisimmaterialbe- causethefollowingstudiesareallbasedontheoutputaπ π

μ

1 GeV. Foragivenoutput aπ π

μ 1 GeV, thefitalways finds theparameter valuesthatminimize thetensionwiththe cross-sectiondata.We considerthefollowingthreescenarios:

(1) “Low-energy” scenario: we fix all parameters of the disper- sive representation ofthe VFF to the central fit results with N1=4 without “lattice”input foraπ πμ 1 GeV, apart from thetwo phase-shiftparameters δ11(s0) and δ11(s1),which are usedasfreeparametersinafittodataand“lattice”inputfor aπ π

μ

1 GeV.

(2) “High-energy”scenario: we fixall parameters apartfromthe parametersckintheconformalpolynomial.

(3) Combinedscenario:allparametersareusedasfreefitparam- eters.

Weareinterestedintheregionoftheparameterspacethatallows forasignificantupwardshiftinaπ π

μ .Fordefiniteness,wetake

aπ πμ

1 GeV

18

.

5

×

1010 (22)

asreference point, which corresponds to the difference between Eqs. (2) and (4).

Thedependenceofthe VFFon thetwo freephase parameters δ11(s0)andδ11(s1)isintertwinedwiththesolutionoftheRoyequa- tions for the phase δ11(s), which in turn determines the Omnès function (10).Incontrast,thedependenceontheparametersinthe conformalpolynomial ismuchmoredirect,astheconstraintthat removestheS-wavesingularityisalinearrelationbetweenthepa- rametersck.Therefore,theVFFislinearintheparametersck and thesame istrue forthe contributionto the charge radius,while aπ π

μ and

α

π π(5)(M2Z)arequadraticintheconformalparametersck. However,intherelevantparameterrangethenon-linearitiesprove tobeverysmall.

(4)

Fig. 1.Impactoftheboundontheχ2forN1=1. . .4 whenvaryingaπ πμ

1 GeV awayfromthecentralfitresult.Theshadedareacorrespondsto0aπ πμ

1 GeV18.5×1010forN1=4.

Inordertofurtherrestrictpossiblevariantsinscenarios(2)and (3),wefirstinvestigatetheroleoftheEŁboundinthecontextof variationsofaπ π

μ

1 GeV.

4. ConstraintsduetotheEŁbound

The EŁ bound (17) provides an additional restriction on the permissible parameterspacethat is independentofthe two-pion cross-sectionmeasurements. UsingtheimplementationofRef. [8]

and the data compilation of Ref. [72], this constraint leads to a steepriseofthe

χ

2functionunlesstheinelasticphasestayssmall.

Toillustratethiseffect,weconsiderscenario(2)andfitconfigura- tionswithN1=1. . .4 freeparametersintheconformalpolyno- mial.Starting fromthecentralfitresults,wevarytheinputvalue foraπ π

μ 1 GeV.TheimpactoftheEŁboundonthe

χ

2isshownin Fig.1,asafunctionofthefitoutputaπ π

μ

1 GeV.Wefindthatthe boundseverelyrestrictsthepossiblechangesinaπ π

μ forN1=1:

inducinglargershiftswithonlyasinglefreeparameterinthecon- formalpolynomialautomaticallyleadstoasignificanteffectinthe inelastic phasethat violatesthe EŁbound, thus excluding sucha scenario. Withtwo free parameters inthe conformal polynomial, the EŁ bound permitslarger changes in aπ π

μ , butstill imposes a restriction.ToevadetheEŁboundforlarge changesinaπ π

μ ,more freedom intheparameterizationisrequired,andindeedthesitu- ationchangesifweconsiderthreeormorefreeparametersinthe conformalpolynomial,seeFig.1.

Inorder tobetterunderstand thiseffect,we considerinsome detailthecaseofN1=2.Thefittodataaloneleadsto aπ πμ

N1=2

1 GeV

=

497

.

0

(

1

.

4

) ×

1010

.

(23)

Varyingthetwoparametersc2,3 awayfromthecentralfitresults, wefindthattheEŁboundgivesacontributiontothe

χ

2 thatre- sults in a strong anti-correlation between permissible values for the two free parameters. This is illustrated in Fig. 2, where we show thecontours for

χ

2 ∈ {0.1,1,10}inthec2–c3 plane.Inthe close-up plot,wealso overlaya heatmap forthe resultingvalue ofaπ π

μ

1 GeV.Accordingly,fortwofree parametersintheconfor- malpolynomialtheEŁboundalonenolongerexcludesvery large shifts in aπ π

μ , asshown by the ellipses in Fig. 2.However, large partsofthe

χ

2 ellipsisareinstrongtensionwiththecross-section data.Minimizingthetotal

χ

2 inscenario(2)resultsinthebrown dashed path in Fig. 2, which corresponds to the brown curve showninFig.1.Forevenmorefreeparameters N1>2,thesit- uation remains qualitatively similar: the EŁbound again strongly

correlatesthefreeparametersoftheconformalpolynomial,essen- tiallyimposing one linear constraint, but the valuesof aπ π

μ that canbereachedarenolongerbounded.Therefore,inthefollowing wewill onlyconsider fitvariantswith N1=3 and N1=4, wheretheEŁboundiseasilyfulfilledevenforlargeshiftsinaπ π

μ . 5. Correlationswith

α

(had5) andr2π

Wenowturnourattentiontothecorrelationsamongthethree quantities derived from HVP—the two-pion contribution to the anomalous magnetic momentof the muon aπ π

μ ,the pion charge radius r2π, and the two-pion contribution to the hadronic run- ningof

α

,

α

π π(5)(M2Z).Wevarythehypothetical“lattice”inputfor aπ π

μ

1 GeV, perform thefits according to the three scenarios de- finedin Sect.3,andcompute the resultingoutput valuesforthe threequantities.TheresultsinFigs.3and4showthecorrelations ofaπ π

μ withrπ2and

α

(π π5)(M2Z),respectively,asinducedineach ofthescenarios.

Ifthechanges inaπ π

μ 1 GeV are inducedonly by variations of thetwo phase-shiftparameters δ11(s0) andδ11(s1),they haveonly littleimpactonthechargeradiusr2π,seeFig.3.Hence,inpractice changes ofaπ π

μ induced by these parameters cannot be detected by a precision measurement of r2π. However, a scenario where the changes in aπ π

μ 1 GeV are induced by shifts in the parame- tersck oftheconformalpolynomial generateslargeshifts inr2π andcouldbe constrainedbyadditionalinformationonthecharge radiusof the pion,atleastin principle. Atpresent, lattice deter- minations of the charge radius [86,87] have not yet reachedthe precisionthatcouldexcludetheseshifts:thecurrentlatticeuncer- taintiescovertheentireplotrangeinFig.3,butfutureprogresson thedeterminationofthechargeradiuscouldfurtherconstrainthe allowedparameterrange.Interestingly,thecombinedscenario(3) whereall parameters are allowedto vary leads tothe largestef- fectinthepioncharge radius,evenslightlylargerthantheeffect inthescenarios (2).By definition,thisisthe scenariowithmini- maltensionwiththecross-sectiondata,butFig.3showsthatthis comesattheexpenseofthelargestshiftinthechargeradius.

Incontrasttothepionchargeradius,allscenariosleadtovery similarcorrelations withthehadronicrunningof

α

,asshownin Fig.4.Ashiftinaπ π

μ

1 GeVby18.1010correspondstoashift in

α

(π π5)(M2Z)1 GeVbetween1.104and1.104,asshown inFig.4.1 Theexistenceofsuchacorrelationemergesbecausewe donot allow forarbitrary changes inthe hadroniccross section:

whileingeneralthetwoquantitiesneednot becorrelateddueto thedifferentenergydependenceoftheirkernelfunctions,wefind that a correlation doesarise ifonly changes in the

π π

channel areconsideredasallowedby analyticityandunitarityconstraints, while trying to minimize the tension withthe

π π

cross-section data.

6. Impactonthephaseshiftandcrosssection

Inscenario (1) we only allowthe two phase-shift parameters δ11(s0)andδ11(s1)todeviatefromthecentralfitresultstodata.If onlythe phase at s0=(0.8GeV)2 were varied, a huge changein

1 Thisshiftisslightlysmallerthanthe1.8×104estimatedinRef. [47] iftherel- ativechangesoccurbelow1.94GeV butareotherwiseenergyindependent.Shiftsof thissizeviolatetheboundonα(had5)(M2Z)derivedinRef. [88].Sincethisboundwas derivedonthebasisofassumptions(dim-6 operatorassoleoriginoftheshiftin α(had5)(M2Z)andanarbitraryscalechoicewhenconvertingthederivativeoftheHVP functiontoα(had5)(M2Z)),wehavetoconcludethattheseassumptionsarenotten- able.Theresultforα(had5)(M2Z)indicatedbyRef. [39] leadstothesameconclusion.

(5)

Fig. 2.Impactoftheboundontheχ2forN1=2 whenvaryingthefreeparametersc2andc3awayfromthecentralfitresult(denotedbydottedlines).Shownare theregionscorrespondingtoχ2∈ {0.1,1,10}.Therightplotshowsinmoredetailtheparameterregionofinterestandtheresultsforaπ πμ 1 GeVasaheat-mapoverlay.The browndashedlineshowsthepathofthefitinscenario(2).

Fig. 3.Correlationsbetweenaπ πμ andr2πasinducedinthreedifferentscenarios:a

“low-energy”scenario(1),whereshiftsinaπ πμ areinducedbychangesinthephase- shiftparametersδ11(s0),δ11(s1);two“high-energy”scenarios(2),wheretheshifts areduetochangesintheconformalpolynomialwithN1=3 orN1=4;anda combinedscenario(3)withN1=4,whereallfreeparametersinthedispersive representationofthepionVFFareallowedtovary.

Fig. 4.Correlationsbetweenaπ πμ andα(π π5)(M2Z)forthesamescenariosasinFig.3.

thephaseshiftofaboutδ11(s0)=10 wouldbenecessarytoob- tainashiftinaπ π

μ

1 GeVby18.1010.Ontheotherhand,such a changeinaπ π

μ couldbe induced bytheparameter δ11(s1) alone witha shiftby1.8.Ifwe fitthetwo parameters simultaneously toacombinationofthespace- andtime-likedataontheVFFand thehypothetical“lattice”inputonaπ π

μ

1 GeV,ashiftinaπ π μ

1 GeV by18.1010thencorrespondstomodestchangesinthephase

Fig. 5.Changeinthephaseshiftδ11 ats0=(0.8GeV)2 ands1=(1.15GeV)2 asa functionofaπ πμ .Inscenario(1)onlythesetwoparametersareusedtoachieve thechangeinaπ πμ ,whileinthecombinedscenario(3)allparametersarechanged simultaneously.

byδ11(s0)=0.8andδ11(s1)=1.7,seeFig.5.Wenotethatthe partial-wave solutions giveninEq. (15) wouldactually favorval- uesslightlybelowour referencepoint (14),butcertainly exclude the requiredchange in δ11(s0) if the shiftin aπ π

μ 1 GeV were in- ducedbythisparameteralone.

AsdiscussedinSect.5,indirectconstraintsonscenario(1)from adeterminationofthepionchargeradiusseemoutofreach.How- ever, direct constraints on δ11(s0) and δ11(s1) could be obtained fromlatticedeterminationsoftheelastic

π π

phaseshift [93–102], notonlyattheseexactpoints inenergy,butinthewhole

ρ

res- onance region: giventhephase valuesδ11(s0,1), theRoy solutions determinethemodified phase shiftoverthewhole energyrange.

However, theprecision oflattice data isnot yet sufficientto add meaningfulconstraintstotheparameterspace,andonlyasignifi- cantincreaseinprecisionwillhaveanimpactonaHVPμ determina- tions.

Fig.5 alsoshowsthe resultingshifts inthe phase parameters for scenario (3), δ11(s0)= −0.2 and δ11(s1)= −0.3. As dis- cussedinSect.5,itismostpromisingtoindirectlyconstrainsuch ascenariowithanimproveddeterminationofthepionchargera- dius.Infact,notonlytheradiusisrelevantinthisregard,butthe VFFin thewhole space-likeregion,asshowninFig. 6.Scenarios (2) and (3) move the curve outside the error band of the cen- tralfittodata.Preciselattice-QCDdeterminationsofthespace-like VFF [87] couldstart to discriminatebetweenthe centralsolution andthese shifted variants. Consistently with the small effect on theradius,scenario(1)withshiftsonlyinthetwophase-shiftpa-

(6)

Fig. 6.Close-upviewofthespacelikeregion.TheJLabdata [89–92] arenotusedin thefit.

Fig. 7.Close-up view of theρωinterference region.

rametershasanegligibleeffectonthespace-likeVFF:theshifted solutionremainswellwithintheuncertaintiesofthecentralfitre- sult.

Finally,we take acloserlook atthepionVFF inthetime-like region.ThedispersiverepresentationoftheVFFallowsustoquan- tifyin detailhow thecrosssectionswould needto bealteredto achieveagivenchangeinaπ π

μ

1 GeV,ineachofthethreescenar- ios. In Fig. 7, a close-up view ofthe

ρ

ω

interference region is shown. Itrevealsthat ifthe changeinaπ π

μ

1 GeV were explained withthehelpofδ11(s0,1),adramaticshiftofupto8% ofthecross sectionwouldbenecessary.Iftheshiftwereobtainedbychanging the parameters ck, the effectin the cross section at the

ρ

reso- nance would be only abouthalf as large, although the resulting cross section would still lie far outside the combined fit to the data.Thecombinedscenarioisveryclosetotheonewhereshifts areonlyallowedintheparametersck.

InFig. 8,wecompare boththedata setsandtheshifted vari- antsoftheVFFtothecentralfitresult,astherelativedifferences normalizedtothefitresult.Weagainseethatbyusingtheconfor- malpolynomialtoinducetheshift,theeffectonthecrosssections issmalleraroundthe

ρ

resonancethaninthescenariowithashift inδ11(s0,1),whiletheeffectislarger belowabout0.72GeV.Com- paredto thespreadofthedatapoints, thenecessary shiftinthe crosssectionsisagainsignificant,althoughlessdrasticthaninsce- nario(1),wherethechangesareconcentratedinthe

ρ

region.This isconsistentwiththefactthattheconformalpolynomialparame- terizestheeffectsofinelasticitiesabovethe

π ω

threshold.

Fig. 8.ComparisonofthedatasetsandtheshiftedvariantsoftheVFF,relativeto thecentralfitsolution.

Fig. 9.Increaseintheχ2 asafunctionofthefitoutputaπ πμ 1 GeV inthethree scenarios,excludingthecontributionofthe“lattice”input(sincethisdependson thearbitraryuncertaintythatactsasaweight,seeSect.3).

While Figs. 7 and 8 make it evident that the changes in the crosssectionthatwouldgeneratethedesiredchangeinaπ π

μ 1 GeV are incompatible with the data, Fig. 9 shows the corresponding changein

χ

2 asafunctionofaπ π

μ

1 GeV,andprovidesaquantita- tivemeasureofthediscrepancy.Themostdramaticclashwiththe datawouldbe inscenario (1),butevenintheothertwoanysig- nificantchangeinaπ π

μ

1 GeVcomesatthepriceofhugeincreases in

χ

2.Theseincreasescanbecomparedtothewell-knowntension betweenindividuale+edatasets.ThecentralfitresultsofRef. [8]

reachatotal

χ

2 of776 with627 degreesoffreedom.Thetension isreflectedbyanerrorinflationincludedinEq. (18) of

χ

2/dof= 1.11.Forthetargetshiftofaπ π

μ

1 GeV=18.1010,evensce- nario(3)leadstoatotal

χ

2 of941.

The results in Figs. 7 and 8 show that to minimize the ef- fect in the cross section, the changes mainly affect the inelastic partoftheVFFparameterizationandthusenergiesabovethe

π ω

threshold.Inprinciple, theseinelasticcontributions couldbe fur- ther constrained by e+e2

π

data above 1GeV [81,83,103],

τ

π π ν

τ [104],andexplicitinputontheinelasticchannels, but thisrequiresanextensionofourdispersiveformalismthatwillbe left forfuture work. We remark that anychanges in the physics above1GeV willalsohaveanimpacton

α

π π(5)(M2Z),whichisnot yet accounted for here: the higher in energy these changes are pushed, the higher the risk to exacerbate tensions in the global electroweakfit [46–49].

Referenzen

ÄHNLICHE DOKUMENTE

[59,60], for the explicit NLO and NNLO expressions of the ππ partial waves and the pion decay constant as well as the details of the lattice data, fit strategy, error

Concerning engine types, we assume that the energy required for the propulsion of the mining and transport vessels is generated by the ship’s main engine

While both models simulated reduced soil water content and above-ground biomass in response to drought, the strength and duration of these responses differed4. Despite

Effects of electrokinetic phenomena on bacterial deposition monitored by quartz crystal microbalance with dissipation

The world needs effective thermal insulation of buildings for pollution control and energy savings. Optimum thermal, fire and acoustic insulations are achieved by using

In particular, we focus on the thermodynamic aspects of the adsorption process, including dimensional inconsistency of fitted parameters, Temkin isotherm assumptions,

The calorimeter readout and the trigger system For the measurement of the pion polarizability in 2009 the assumption απ = − β π was used.. In this case the value of απ can be

"Community Medicine" aufgebaut. Ein Eckpfeiler dieses Schwerpunktes ist die Integration der Problemstellungen der Lehre, Forschung und medizinischen Versorgung.