• Keine Ergebnisse gefunden

The exclusive limit of the pion-induced Drell–Yan process

N/A
N/A
Protected

Academic year: 2022

Aktie "The exclusive limit of the pion-induced Drell–Yan process"

Copied!
5
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

The exclusive limit of the pion-induced Drell–Yan process

S.V. Goloskokov

a

, P. Kroll

b,c,

aBogoliubovLaboratoryofTheoreticalPhysics,JointInstituteforNuclearResearch,Dubna141980,Moscowregion,Russia bFachbereichPhysik,UniversitätWuppertal,D-42097Wuppertal,Germany

cInstitutfürTheoretischePhysik,UniversitätRegensburg,D-93040Regensburg,Germany

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received23June2015

Receivedinrevisedform10July2015 Accepted10July2015

Availableonline14July2015 Editor:A.Ringwald

Basedonpreviousstudiesofhardexclusiveleptoproductionofpionsinwhichtheessentialroleofthe pionpoleandthetransversitygeneralizedpartondistributions(GPDs)hasbeenpointedout,wepresent predictionsforthefourpartialcrosssectionsoftheexclusiveDrell–Yanprocess,πpll+n.

©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Inrecent years hard exclusive leptoproductionof mesons and photonshas beenstudiedintensivelybybothexperimentalistsand theoreticians.Itbecameevidentinthecourseoftimethat within thehandbag approachwhichisbasedonQCDfactorizationinthe generalized Bjorken regime of large photon virtuality and large photon–proton center-of-mass energy but fixed x-Bjorken, it is possibleto interprettheseprocesses intermsof generalizedpar- ton distributions and hard perturbatively calculable subprocesses with, however, occasionally strong power corrections for meson production(forarecentreview see[1]).Exploiting theuniversal- itypropertyofthe GPDs,one mayusetheset ofGPDsextracted frommesonleptoproduction, inthe calculationof other hardex- clusiveprocesses. Of particular interest are processes with time- like virtual photons. Thus in [2] predictions for time-like DVCS (

γ

pll+p) havebeengiven, theirexperimentalexaminationis stillpending.Thehigh-energypionbeamatJ-PARCputintoopera- tioninthenearfuture,offersthepossibilityofmeasuringanother exclusiveprocesswithtime-likevirtualphotons,namelytheexclu- sivelimitoftheDrell–Yanprocess,

π

pll+n.The purposeof thisletter is to presentpredictions forthe cross sections ofthis process taking into account what has been learned in the anal- yses ofpion leptoproduction[3,4]. The dataon the cross section for

π

+ leptoproduction [5,6] demonstrate the prominent role of thecontributionfromthepionpoleatsmallinvariantmomentum transfer,t, andit becameevident that it isto be calculated asa

*

Correspondingauthorat:FachbereichPhysik,Universität Wuppertal,D-42097 Wuppertal,Germany.

E-mailaddresses:goloskkv@theor.jinr.ru(S.V. Goloskokov), kroll@physik.uni-wuppertal.de(P. Kroll).

one-particle-exchange(OPE)termratherthanfromtheGPDE [7].

Inthelattercasethepion-polecontributiontothe

π

+crosssec- tion is underestimated by order of magnitude. A second impor- tantobservationhasbeenmadein[3,4]:Theinterpretationofthe transverse target spin asymmetries in

π

+ leptoproduction mea- suredby theHERMES Collaboration[8]necessitatescontributions fromtransversely polarizedphotonswhichare to be modeled by transversity GPDs within thehandbag approach.This observation is supported by a recent CLAS measurement of

π

0 leptoproduc- tion[9].

Sinceforthe process

π

pll+nthe same GPDscontribute as for pion leptoproduction and the corresponding subprocesses arejustˆs↔ ˆucrossedones1

Hπγ

s

,

u

ˆ ) = −

Hγπ+

(

u

ˆ , ˆ

s

)

(1) where ˆs anduˆ denote thesubprocess Mandelstam variables,one can exploit the knowledge acquired there. One thus gains pre- dictivepower, thereis nofree parameteror softhadronicmatrix elementleft fortheDrell–Yanprocess.Ouranalysismarkedlydif- fers froma previous studyperformedby Bergeretal.[11] where onlypredictionsforthelongitudinalcrosssection atleading-twist accuracyhave beengiven.Itshouldbestressedthattheirandour predictions for that cross section differ by about a factor of 40 dueto thedifferenttreatment ofthepion polecontribution.Our findings maybe ofhelp in thepreparationof a Drell–Yanexper- iment [12]. Future data on the exclusive pion-induced Drell–Yan process mayreveal whetheror notour presentunderstanding of hardexclusiveprocessesintermsofconvolutionsofGPDsandhard subprocessesalsoholdsfortime-likephotons.Thisisanon-trivial

1 A detaileddiscussionofthespace- andtime-likeconnectionoftheleading-twist amplitudescanbefoundin[10].

http://dx.doi.org/10.1016/j.physletb.2015.07.016

0370-2693/©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

Fig. 1.TheexclusiveDrell–Yanprocess.Thesymbols inbracketsdenotethemo- mentaoftherespectiveparticles.

issue because the physics in the time-like region is complicated and often not understood. Thus, for instance, there is no expla- nation of the time-like electromagnetic form factors of hadrons [13].Eventhesemi-inclusiveDrell–Yanprocesswasdifficulttoun- derstand.It took alongtime beforethe discrepancybetweenthe theoreticalpredictionsandexperiment,knownastheK-factor,has beenexplainedasthresholdlogarithms[14,15]representinggluon radiationresumed tonext-leading-log(NLL)accuracy.

2. Thehandbagapproach

Here,inthissection,werecapitulatethehandbagapproach.For moredetailsofitwerefertoourpreviouswork[3,4].Theprocess

π

pll+n is depictedinFig. 1.We work ina center-of-mass frameinwhichp+ppointsalongthepositive3-axisandwecon- siderthekinematicalrangeoflargeMandelstams(=(p+q)2)and largephotonvirtuality,2 Q2,butsmall

τ =

Q2

s

m2

,

(2)

thetime-likeanalogueofBjorken-x(mbeingthemassofthenu- cleon).Hence,skewness,definedas

ξ =

p+

p+ p+

+

p+

τ

2

τ ,

(3)

isalsosmall.

Assumingfactorizationwe canexpressthehelicityamplitudes for

π

p

γ

nin termsof convolutionsofGPDs andhard sub- processamplitudes

M0+,0+

=

1

ξ

2 e0 Q

×

H(3)

ξ

2

1

ξ

2

E(n3.p).

+

2

ξ

m 1

ξ

2

π

t

m2π

,

M0−,0+

=

√ −

t 2m

e0

Q

ξ

E(n3.p).

2m

π

t

m2π

,

M−−,0+

=

1

ξ

2 e0

Q2

μ

π

H(T3)

,

M±+,0+

=

√ −

t 4m

e0 Q2

μ

π

¯

E(T3)

8

2m2

ξ

π t

m2π

,

M+−,0+

0

.

(4) Explicithelicitiesarelabeledbytheirsignsorby zero,e0 denotes thepositronchargeandt=tt0 wheret0= −4m2ξ2/(1−ξ2)is theminimalvaluet correspondingtoforwardscattering.Termsof ordert/Q2 areneglectedthroughout.Theamplitudesfornegative helicityoftheinitialstateprotonareobtainedfromthesetofam- plitudes(4)byparityconservation.Theresidueofthepionpoleis givenby

π

= √

2gπN NFπN N

(

t

)

Q2Fπ

(

Q2

)

(5)

2 TheQ2-regionsofquarkoniastateshavetobeexcluded.

where N N (= 13.0.3) is the familiar pion–nucleon cou- pling constant and N N is a form factor that describes the t-dependence ofthe couplingof the virtual pionto the nucleon.

Thepionmass,,isneglectedexceptinthepionpropagator.As we mentioned in the introduction we treat the pion pole asan OPEterm.Thereforethefulltime-likeelectromagneticformfactor occursin(5).CalculatingthepionpolecontributionfromtheGPD E asitisdone in[11],oneobtains thesameexpressionforitbut withthe leading-order (LO)perturbative resultfor thepionform factor. In(4)it isalsoallowed fora possiblenon-pole (n.p.)part ofE.

Forincident

π

mesonsthepntransitionGPDsarerequired which, as a consequence of isospin invariance, are given by the isovectorcombinationofprotonGPDs[7]

K(3)

=

Ku

Kd

.

(6)

The convolutionsoftheGPDsandtheamplitudesH forthe sub- process

π

q

γ

q read[3,4]

K(3)

=

dxHμλ,0+

(

x

, ξ,

Q2

,

t

0

)

K(3)

(

x

, ξ,

t

) .

(7)

The helicity of the final state quark is λ=

μ

+1/2 with the photon helicity,

μ

,beingeither zeroor−1.Thus, theasymptoti- callyleadinglongitudinalamplitudeisrelatedtoahelicity-non-flip subprocessamplitude while,fortransversephotons, ahelicity-flip amplitude is convoluted with the transversity GPDs HT and the combination E¯T =2HT +ET. As made explicit in (4) the trans- verse amplitudes are suppressed by

μ

π/Q as compared to the longitudinalones. Themassparameter

μ

π isrelatedtothechiral condensate

μ

π

=

m2π mu

+

md

(8)

(mu,md arecurrentquarkmasses).Thesubprocessamplitudesare calculatedtoLOofperturbation theoryretainingquark transverse momenta,k,andtakingintoaccountSudakovsuppressionswhile the emission and reabsorption of partons by the nucleon hap- pens collinearlyto thenucleonmomenta.Thisso-calledmodified perturbative approach turns intothe leading-twist result[11] for Q2→ ∞.

SincetheSudakovfactor,exp[−S],comprisesgluonicradiation, resumed toallordersofperturbationtheoryinNLLapproximation [16]whichcanonlybeefficientlyperformedintheimpactparam- eter space, canonically conjugatedto the k-space, one isforced toworkintheb-space.Hence,

Hμλ,0+

=

dzd2b

ˆ

λ+

(

z

,−

b

)

F

ˆ

μλ,0+

(

x

, ξ,

z

,

Q2

,

b

)

× α

s

( μ

R

)

exp

[−

S

(

z

,

b

,

Q2

)] .

(9) TheFouriertransformsofthehardscatteringkernelandthelight- cone wavefunction ofthepionaredenoted by Fˆ andˆ, respec- tively.Themomentumfractionofthehelicity+1/2 quarkentering the pionisdenotedby z;the helicityoftheantiquarkis−λ.For the renormalization scale we choose

μ

R =max(z Q, (1−z)Q, 1/b) andthefactorizationscale is1/b.Following LiandSterman [16]weonlyretainthemostimportantquarktransversemomenta which appear in the denominators of the parton propagators in the hard scatteringkernels. Therefore,we canuse the light-cone projector ofaqq¯ paironan ingoing pionincollinearapproxima- tion[17]

=

fπ 2

2Nc

γ

5

2

q/

(

z

)

(3)

μ

π

P

(

z

)

i

σ

μν 2Nc

qμnν

q

·

n

σ

(

z

)

qμd

σ

(

z

)

dz

kν (10) andreplacethe distributionamplitudesby light-cone wave func- tions.In(10) (=132 MeV) isthepiondecayconstant, Nc the number of colors and n is a light-like vector which in a frame where the massless pion moves along the z-direction is n= [0,1,0]. Three-particle configurations,qqg,¯ are neglected. Dirac, flavorandcolorlabelsareomittedforconvenience. Thefirstterm in(10)is thewell-known twist-2part whichis employed inthe calculationofH0±,0+.Fortheaccompanyinglight-conewavefunc- tionwetake,asin[3,4],

−+

=

2Nc

fπ exp

[−

a2πk2

/(

z

(

1

z

))]

(11)

withthe transverse size parameter =√ 8

π

1

fixed from

π

0

γ γ

decay[18].Thiswavefunctionhasfrequentlybeenused, see for instance [18,19]. The twist-3 part of (10) is utilized in thecalculationofH−−,0+.Sinceforthispartquarkandantiquark formingthe pionhave thesame helicityorbital angular momen- tum,representedby factorsof k,is required.Asthe calculation revealsH−−,0+ isdominatedby thecontributionfromP while thetensortermprovidesacorrectionofordert/Q2whichisne- glected for consistency. For the wave function associated to P (≡1 asfollowsfromtheequationofmotion[17,20]),weuseasin ourpreviouswork3

++

=

16

π

3/2

2Nc

fπa3P

|

k

|

exp

[−

a2Pk2

] .

(12)

The simple z-independent exponential is forced by the require- mentsofaconstantdistributionamplitudeandthenormalizability of the wave function. For the transverse size parameter, aP, we take1.8 GeV1.

3. Predictionsforthepartialcrosssections

Before we presentour predictions for the exclusive Drell–Yan processwespecifythevariousparametersandsofthadronicfunc- tionsweuseintheevaluation.Theformfactor N N appearingin (5),isparametrizedas

FπN N

=

2N

m2π

2N

t (13)

withN=0.44±0.04 GeV.Forthetime-likepionelectromagnetic formfactoralsooccurring in(5),wetake theaverageofthedata fromCLEO[22]andBaBar[23]aswellasavaluederivedfromthe

J/

π

+

π

decay[24]

Q2

|

Fπ

(

Q2

)| =

0

.

88

±

0

.

04 GeV2

.

(14) Foritsphase,exp[iδ(Q2)],werelyonarecentdispersionanalysis [25]which,for2 GeV2Q25 GeV2,provides

δ =

1

.

014

π +

0

.

195

(

Q2

/

GeV2

2

)

0

.

029

(

Q2

/

GeV2

2

)

2

.

(15)

3 Itmayseemappropriatetouseanlz= ±1 wavefunction(foraparticlemoving alongthez-direction).Suchawavefunctionhasbeenproposedin[21].Itispro- portionaltok±=kx±iky.Itscollinearreductionleadstothetensorpiecein(10) whichgoesalongwithσ anditsderivative;theimportanttermP islacking inthisansatz.

Intheabsenceofanyotherinformationonthisphaseweusethis parametrizationup to≈8.9 GeV2 whereδ=

π

. Forlarger values of Q2 wetake δ=

π

,theasymptoticphaseofthetime-likepion formfactor obtainedby analytic continuation ofthe perturbative resultforthespace-likeformfactor[13].

The GPDs are constructed with the help of the familiar dou- ble distribution ansatz from the zero-skewness GPDs which are parametrizedas4

K

(

x

, ξ =

0

,

t

) =

k

(

x

)

exp

[

t

(

b

+ α

lnx

) ]

(16)

where the forward limit, k(x), is an appropriate parton distribu- tion(PDF)orisparametrizedlikeaPDFwithparametersfittedto experiment. The GPD H(x,ξ=0,t) (including an error estimate) istakenfromtherecentanalysisofthenucleonformfactors[26]

which, for this GPD, is based on the DSSV polarized PDFs [27].

A non-polecontributiontoE isneglected,thereisnoclearsignal foritin thedataonpionleptoproduction. Forthezero-skewness transversity GPDs, HT and E¯T, the actual values of the parame- tersarespecifiedin[28].TheyareorientedonlatticeQCDresults [29,30]andleadtofairfitsofthepionleptoproductiondata[5,8,9]

aswell asofthespindensitymatrixelements andtransversetar- getspinasymmetriesforvectormesons[31,28].Theerrorsofthe transversity GPDsareestimatedfromthe p-polefits presentedin [29,30]. Forthemass parameter (8)that controlsthe strength of thetwist-3amplitudes,weadoptthevalue5

μ

π=2 GeV validat the scale 2GeV. Forits errorwe choose +0.55 and−0.15 [24].

The QCD coupling constant,

α

s, is evaluated from the one-loop expression forfourflavorsandQCD=182MeV.Thetime-likeSu- dakovfactoris unknown,thecontinuation fromthespace-liketo thetime-likeregionisnotwellunderstood(see[32]).Thereplace- ment of Q2 by −Q2 (see [32,33]) leads to an oscillating phase but it is unclear whether these oscillations are physical or not.

WethereforefollowGoussetandPire[32] andusethespace-like Sudakovfactor,asutilizedinourpreviouswork,alsointhetime- likeregion(with Q2Q2).Asshownin[19],forQ2lessthan 10GeV2 the Sudakov factor isalways closeto unity except near b=1/QCD where it drops to zero sharply. With the exception of this region the wave function provides the main suppression.

Therefore,thedetailedbehavioroftheSudakov factorisnotvery important.

Thefour-folddifferentialcrosssectionfor

π

pll+nreads d

σ

dtd Q2dcos

θ

d

φ

=

3 8

π

sin2

θ

d

σ

L

dtd Q2

+

1

+

cos2

θ

2

d

σ

T

dtd Q2

+

sin

(

2

θ )

cos

φ

2

d

σ

LT

dtd Q2

+

sin2

θ

cos

(

2

φ)

d

σ

T T

dtd Q2

(17)

wheretheanglesφandθ,specifyingthedirectionsoftheleptons, are definedinFig. 2.The partialcrosssections arerelatedto the

π

p

γ

nhelicityamplitudes(4)by d

σ

L

dtd Q2

= κ

ν

|

M0ν,0+

|

2

,

d

σ

T

dtd Q2

= κ

μ1

|

Mμν,0+

|

2

,

4 A morecomplicatedprofilefunctionisadoptedforH,see[26].

5 Accordingtotherecentparticledatatables[24]μπ israther2.6 GeV.Using thisvaluethenormalizationsofHT and E¯T havetobealteredaccordinglysince thefittothepionleptoproductiondatafixestheproductofμπandthetransversity GPDs.

(4)

Fig. 2.Definition of the anglesφandθ. The latter angle is defined in the rest frame of the virtual photon.

Fig. 3.ThelongitudinalcrosssectionsdσL/dtd Q2(left)atQ2=4 GeV2 versust anddσL/d Q2(right)versusQ2.Thethinsolidlineswitherrorbandsrepresent ourfullresultsats=20 GeV2,thethickdashedonesthoseat30 GeV2.Thethick solid(dotted,thindashed)lineistheinterferenceterm(contributionfrom|H(3)|2, leadingtwist).Thelattertworesultsaremultipliedby10fortheeaseoflegibility.

d

σ

LT

dtd Q2

= κ

Re

ν

M0ν,0+

(

M+ν,0+

Mν,0+

) ,

d

σ

T T

dtd Q2

= κ

Re

ν

M+ν,0+Mν,0+

.

(18)

Thenormalizationfactorreads(leptonmassesareneglected)

κ = α

em

48

π

2

1

(

s

m2

)

2Q2

.

(19)

In Fig. 3 we show our predictions for d

σ

L/dtd Q2 at Q2= 4 GeV2 ands=20 GeV2 andd

σ

L/d Q2 integratedovert from0 to−0.5 GeV2.Thelongitudinalcrosssectionisheavilydominated bythe contributionfromthepionpole,that onefrom H,includ- ingitsinterferencewiththepionpole,amountsonlytoabout10%

in the kinematical range of interest. The full result is markedly largerthanourleading-twistresultwhichisofthesameorderas that one quoted in [11]. This amplification is due to the use of theexperimental valueofthepionformfactor(14)insteadofits leading-twistresult(≈0.15 GeV2).Westress thattheOPEcontri- butionfromthepionpole doesneither relyonQCD factorization noronahardscattering.Itisthereforenotsubjecttoevolutionand higher-order perturbative QCD corrections. Because of the domi- nantcontribution fromthepion-pole andsincewe onlyconsider asmallrangeof Q2 around 4 GeV2 theevolutionoftheGPDs is insignificantandisthereforeneglected.Asopposedto[11]ourin- terferencetermispositive.Itis generatedbytheimaginaryparts

Fig. 4.ThetransversecrosssectionsdσT/dtd Q2(left)at Q2=4 GeV2versust and dσT/d Q2 (right)versus Q2. Thethinsoliddashedlineswith errorbands representthefullresultats=20 GeV2,thethickdashedones thoseat30 GeV2 whilethedottedlineisthecontributionfromHT.Thethicksolidlinerepresents thelongitudinal–transverseinterferencecrosssection.

of H and the pion-pole contribution while, in an LO leading- twistcalculation,itisevidentlyundercontrolofthecorresponding realparts.Constructing H fromthepolarizedPDFsderivedin[34]

insteadfromtheDSSVones[27]altersthepredictionsforthelon- gitudinalcrosssectionbylessthantheestimatederrorsdisplayed inFig. 3.

The transverse cross section is shown in Fig. 4. It is sub- stantially smaller than the longitudinal cross section but much largerthantheleading-twistresult.Theuncertaintyofourpredic- tions isratherlargeandasymmetricduetotheasymmetricerror of

μ

π.Thetransversecrosssectioncanbedecomposedas(cf.(18) and(4))6

d

σ

T

dtd Q2

= κ |

M−−,0+

|

2

+

2

|

M++,0+

( π )|

2

+

2

|

M++,0+

(

E

¯

T

)|

2

.

(20) Thefirsttermin(20),beingrelatedtotheGPDHT,isdisplayed in Fig. 4 separately; it dominates this cross section. The second term, thepion-pole contribution,is rathersmall;itgenerates the littledifferencebetweenthecontribution from HT andthefullre- sultford

σ

T.ThecontributionfromE¯T istiny.

6 TheE¯T(π)termbehavesas anatural(unnatural)parityexchangewhiletheHT hasnospecificparitybehavior[3,4].

(5)

The longitudinal–transverse interference cross section is also shown in Fig. 4. The width of its error band is about a half of thatofthetransversecrosssection.d

σ

LT canbewrittenas

d

σ

LT

dtd Q2

= κ

Re

2M0+,0+M++0+

( π )

M0−,0+M−−,0+

.

(21) Both the terms significantly contribute to d

σ

LT. The transverse–

transverseinterferencecrosssectionisgivenby d

σ

T T

dtd Q2

= κ |

M++,0+

(

E

¯

T

)|

2

− |

M++,0+

( π )|

2

.

(22)

Thiscrosssectionisverysmall.Forinstance,atQ2=4GeV2 and s=20 GeV2itislessthan0.3 pb/GeV4.

Thecrosssectionsdecreasewithgrowing s.Asanexamplewe showresultsats=30 GeV2 intheplots.At,say,s360 GeV2 as is available from the pion beamat CERN, the longitudinal cross section is about 30 fb/GeV2 at Q2=4GeV2. This is likely too smalltobemeasured.

4. Conclusions

WecalculatedthepartialcrosssectionsfortheexclusiveDrell–

Yanprocess,

π

pll+n,withinthehandbag approach.Incon- trast to a previous studyof this process [11] we treat the pion poleasan OPEtermandtakeintoaccounttransversityGPDs.The parametrizationsoftheGPDsH, HT andE¯T aswellasthevalues ofotherparametersappearinginthepresentcalculationaretaken frompreviouswork[3,4,26].Thegeneralizationofourapproachto Kpll+isstraightforward.

Futuredata on

π

pll+n measured at J-PARC may allow fora test offactorizationofthe process amplitudesin hard sub- processesandsoftGPDs.Incontrasttopionleptoproductionwhere thereisarigorousproofforfactorizationoftheamplitudesforlon- gitudinallypolarizedphotons,factorizationoftheexclusiveDrell–

Yanprocessisanassumptionalthoughitseemsplausiblethatthe factorizationarguments alsoholdfortime-like photons. However, Qiu[35] conjecturedthatfactorizationmaybebrokenforthe ex- clusiveDrell–Yanprocess. Ifhoweverfactorizationholdstoa suf- ficientdegree of accuracy futuredata on the exclusive Drell–Yan processmayimproveourknowledgeoftheGPDs.

Theexclusive Drell–Yanprocess also offersthe opportunity to check the dependence of the

π π γ

vertex on the pion virtual- ityby comparing data on the time-like form factor measured in l+l

π

+

π

withparametrizationsof

π

π

+∗ll+ aspartof theDrell–Yananalysis.Theextractionofthespace-likeformfactor fromlpl

π

+ndatamaybenefitfromthatcheck.

Acknowledgements

Oneofus(P.K.)likes tothankMarkus DiehlandOleg Teryaev forusefuldiscussionsandremarks.Theworkissupported inpart

by the Heisenberg–Landau program and by the BMBF, contract number05P12WRFTE.

Appendix A. Supplementarymaterial

Supplementarymaterialrelatedtothisarticlecanbefoundon- lineathttp://dx.doi.org/10.1016/j.physletb.2015.07.016.

References

[1]P. Kroll,EPJWebConf.85(2015)01005.

[2]H. Moutarde,B. Pire,F. Sabatie,L. Szymanowski,J. Wagner,Phys.Rev. D87 (5) (2013)054029.

[3]S.V. Goloskokov,P. Kroll,Eur.Phys.J. C65(2010)137.

[4]S.V. Goloskokov,P. Kroll,Eur.Phys.J. A47(2011)112.

[5]A. Airapetian,etal.,HERMESCollaboration,Phys.Lett. B659(2008)486.

[6]H.P. Blok,etal.,JeffersonLabCollaboration,Phys.Rev. C78(2008)045202.

[7]L. Mankiewicz,G. Piller,A. Radyushkin,Eur.Phys.J. C10(1999)307.

[8]A. Airapetian,etal.,HERMESCollaboration,Phys.Lett. B682(2010)345.

[9]I. Bedlinskiy,etal.,CLASCollaboration,Phys.Rev.Lett.109(2012)112001.

[10]D. Mueller,B. Pire,L. Szymanowski,J. Wagner,Phys.Rev. D86(2012)031502.

[11]E.R. Berger,M. Diehl,B. Pire,Phys.Lett. B523(2001)265.

[12] W.C. Chang, Presentation at the J-PARC Workshop in2015, http://research.

kek.jp/group/hadron10/j-parc-hm-2015/.

[13]A.P. Bakulev,A.V. Radyushkin,N.G. Stefanis,Phys.Rev. D62(2000)113001.

[14]G.F. Sterman,Nucl.Phys. B281(1987)310.

[15]S. Catani,L. Trentadue,Nucl.Phys. B327(1989)323.

[16]H.n. Li,G.F. Sterman,Nucl.Phys. B381(1992)129.

[17]M. Beneke,T. Feldmann,Nucl.Phys. B592(2001)3.

[18]S.J. Brodsky,T. Huang,G.P. Lepage,Conf.Proc. C810816(1981)143.

[19]R. Jakob,P. Kroll,Phys.Lett. B315(1993)463;

R. Jakob,P. Kroll,Phys.Lett. B319(1993)545(Erratum).

[20]V.M. Braun,I.E. Filyanov,Z. Phys. C48(1990)239;

V.M. Braun,I.E. Filyanov,Sov.J.Nucl.Phys.52(1990)126;

V.M. Braun,I.E. Filyanov,Yad.Fiz.52(1990)199.

[21]X.d. Ji,J.P. Ma,F. Yuan,Eur.Phys.J. C33(2004)75.

[22]K.K. Seth,S. Dobbs,Z. Metreveli,A. Tomaradze,T. Xiao,G. Bonvicini,Phys.Rev.

Lett.110 (2)(2013)022002.

[23]B. Aubert,etal.,BaBarCollaboration,Phys.Rev.Lett.103(2009)231801.

[24]K.A. Olive,et al.,ParticleDataGroupCollaboration,Chin. Phys. C38(2014) 090001.

[25]M. Belicka, S. Dubnicka, A.Z. Dubnickova, A. Liptaj,Phys. Rev. C 83 (2011) 028201,arXiv:1102.3122[hep-ph].

[26]M. Diehl,P. Kroll,Eur.Phys.J. C73 (4)(2013)2397.

[27]D. deFlorian,R. Sassot,M. Stratmann,W. Vogelsang,Phys.Rev. D80(2009) 034030.

[28]S.V. Goloskokov,P. Kroll,Eur.Phys.J. C74(2014)2725.

[29]M. Gockeler,etal.,QCDSFandUKQCDCollaborations,Phys.Lett. B627(2005) 113.

[30]M. Gockeler,etal.,QCDSFandUKQCDCollaborations,Phys.Rev.Lett.98(2007) 222001.

[31]S.V. Goloskokov,P. Kroll,Eur.Phys.J. A50 (9)(2014)146.

[32]T. Gousset,B. Pire,Phys.Rev. D51(1995)15.

[33]L. Magnea,G.F. Sterman,Phys.Rev. D42(1990)4222.

[34]J. Blümlein,H. Böttcher,Nucl.Phys. B636(2002)225.

[35] J.Qiu,Talkpresentedat the KEKworkshopon HadronPhysicswith High- MomentumHadronBeamsatJPARC,March2015.

Abbildung

Fig. 1. The exclusive Drell–Yan process. The symbols in brackets denote the mo- mo-menta of the respective particles.
Fig. 3. The longitudinal cross sections d σ L / dtd Q  2 (left) at Q  2 = 4 GeV 2 versus t  and d σ L / d Q  2 (right) versus Q  2

Referenzen

ÄHNLICHE DOKUMENTE

[59,60], for the explicit NLO and NNLO expressions of the ππ partial waves and the pion decay constant as well as the details of the lattice data, fit strategy, error

(In TMD factorisation, production of additional jets is power suppressed due to the requirement of small transverse momentum for the produced gauge bosons.) For each leading

Within the framework of hard scattering factorization, cross sections are calcu- lated as a convolution of parton distribution functions, hard scattering cross sections at the

Abstract The role of transversity or helicity-flip general- ized parton distributions (GPDs) in leptoproduction of vector mesons is investigated within the framework of the

We calculated the respective leading T -odd contributions to the partonic hard-scattering functions in SIDIS, which are of O (α 2 s ), and presented a formula for the calculation of

Our final predictions combining the perturbative effects to NNLO accuracy in the CS scheme and the twist-four corrections are shown by thick curves in Fig3. 7 and compared to

The structure of the title complex appears to rep- resent an intermediate state between a fully ionic ex- treme with linearly two-coordinate silver in a cation [RNCAgCNR] +

The calorimeter readout and the trigger system For the measurement of the pion polarizability in 2009 the assumption απ = − β π was used.. In this case the value of απ can be