• Keine Ergebnisse gefunden

() ∂ DDt H ∂ ∂∂ ( uH ) ∂∂ Δ − ∂ h + H DuDt u * g * = = + g + u = g = 0 + g = 0 ∂ t t ∂ x x ∂ x € € € €

N/A
N/A
Protected

Academic year: 2021

Aktie "() ∂ DDt H ∂ ∂∂ ( uH ) ∂∂ Δ − ∂ h + H DuDt u * g * = = + g + u = g = 0 + g = 0 ∂ t t ∂ x x ∂ x € € € €"

Copied!
10
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Schär, ETH Zürich

Dynamics and Numerics of Shallow Water Flows

Outline:

• governing equations

• dimensionless parameters

• wave propagation, Tsunamis

• hydraulic jumps

• vortex shedding

• Seiche waves

• numerical implementation Christoph Schär

ETH Zürich schaer@env.ethz.ch Supplement to Lecture Notes

“Numerical Modeling of Weather and Climate”

March 2007

2

Shallow water elquations

h

H ρ

ρ

u

< ρ u

Du

Dt +g*

(

h+H

)

∂x =0

D Dt= ∂

∂t+u

∂x

∂H

∂t +∂(uH)

∂x =0 System of equations

mit

Reduced gravity g*=gΔρ

=gρ − ρu

Approximations

• Horizontal velocity u is

independent of height, i.e. u=u(x)

• The influence of the overlaying layer of fluid (e.g. air) can be neglected.

(2)

Schär, ETH Zürich

Phase speed of shallow-water waves

h

H ρ

ρ

u

< ρ u

c= g*H

Phase speed (non-rotating system, f=0)

Tsunami (g* = g = 10 m/s–2)

H [m] c [m/s] c [km/h]

1 3.2 12

10 10 36

100 32 115

1000 100 360

2000 140 504

4000 200 720

6000 245 882

(non-dispersive)

g*=gΔρ

ρ =gρ − ρu

ρ (reduced gravity)

Froude number

Fr= u g*H

=advection velocity wave velocity Fr < 1: subcritical

Fr > 1: supercritical

Schär, ETH Zürich

4

Tsunami of December 26, 2004

(3)

Schär, ETH Zürich

Banda Aceh, Sumatra

6

Hydraulic jumps

hydraulic jump

subcritical Fr < 1 supercritcal

Fr > 1 z

y x

Mit zunehmender Distanz vom Auftreffpunkt nimmt die Geschwindigkeit aus Gründen der Massenerhaltung ab. Dies provoziert den Übergang von superkritischer zu subkritischer Strömung.

v

Fr= u

g*H =advection velocity wave velocity

(4)

Schär, ETH Zürich

Shallow-water flow past a ridge

Velocity Shallow water surface

Topography

Downstream propagating hydr. jump Supercritical

flow

Schär, ETH Zürich

9

Atmospheric flow past a ridge

Contours:

theta (density) Color:

vertical motion

Downstream propagating

feature Vertically

propagating gravity wave

Shooting flow

(5)

Schär, ETH Zürich

SW flow past a ridge: Regime diagram

Fr = u o H o

M = h

top

H

o

Fr

M

(Houghton and Kasahara 1968)

12

Tidal Bore

(6)

Schär, ETH Zürich

Island Socorro (Mexiko)

Schär, ETH Zürich

16

Shallow-water flow past an isolated mountain

(7)

Schär, ETH Zürich

Acqua Alta, Venice

31

Typical synoptic situation for Acqua Alta

Sea-Level Pressure Geopotential 500 hPa

November 7, 1999, 06 UTC (Buzzi et al. 2003; MAP IOP 15)

Seiche-Wave driven by:

• pressure (10 hPa = 10 cm)

• wind Heavy

precipitation

L H

L L

L L H

H

Alps

(8)

Schär, ETH Zürich

Periods of Seiche waves

P= 2L gH

P= L gH

P= 4L gH

Adriatic sea:

L=700 km H=200 m P=17h P=4.25h P=8.5h 1st order Seiche wave

2nd order Seiche wave

Open Seiche wave of 1st order

Schär, ETH Zürich

33

Dimensionless formulation of shallow-water equations

h

H ρ

ρ

u

< ρ u

Du

Dt +∂

(

h+H

)

∂x =0

D Dt= ∂

∂t+u

∂x

∂H

∂t +∂(uH)

∂x = 0 Dimensionless formulation

with

Du

Dt +g*

(

h+H

)

∂x =0

∂H

∂t +∂(uH)

∂x =0 Dimensional formulation

(9)

Schär, ETH Zürich

Numerical Implementation

h

H ρ

ρ

u

< ρ u

Staggered grid

Hnj−1 hj−1

x

Hjn hj

Hjn+1 hj+1

unj+1/ 2

unj−1/ 2

Δx Array structure

h[j-1] h[j] h[j+1]

u[j] u[j+1]

35

Numerical Integration of Momentum Equation

Du

Dt +∂

(

h+H

)

∂x =0 Dimensionless formulation

1

2Δt

[

un+1j+1/ 2un−1j+1/ 2

]

+ u2nj+1/ 2Δx

[

unj+3 / 2unj−1/ 2

]

+ Δx1

[ (

Hnj+1+hj+1

)

(

Hnj+hj

) ]

= 0

D Dt= ∂

∂t+u ∂ with ∂x

unj+1/ 2+1 = unj+1/ 2−1unj+1/ 2 Δt

Δx

[

unj+3 / 2unj−1/ 2

]

2ΔtΔx

[ (

Hnj+1+hj+1

)

(

Hnj+hj

) ]

Centered differences in space and time

Solve for time level n+1

(10)

Schär, ETH Zürich

Numerical Integration of Mass Equation

∂H

∂t +∂(uH)

∂x =0

Dimensionless formulation

Centered differences in space and time

Solve for time level n+1

1

2Δt

[

Hn+1jHn−1j

]

+ 2Δx1

[

unj+1Hj+1n unj−1Hj−1n

]

=0 with unj=1

2

(

unj−1/ 2+unj+1/ 2

)

Hjn+1 = Hn−1j − Δt

Δx

[

unj+1Hnj+1unj−1Hnj−1

]

with unj =1

2

(

unj−1/ 2+unj+1/ 2

)

Referenzen

ÄHNLICHE DOKUMENTE

Wer im Teil (a) einer Aufgabe eine ausf¨ uhrliche Begr¨ undung gibt, indem er/sie einen diesbez¨ uglichen Satz beweist, erh¨ alt einen Zusatzpunkt (unabh¨angig davon, ob Teil

[r]

[r]

Ubungen zur Analysis I, WWU M¨ ¨ unster, Mathematisches Institut, WiSe 2015/16P. Halupczok

Exercises for Analysis I, WWU M¨ unster, Mathematisches Institut, WiSe 2015/16P. Halupczok

Sie können sich dies an einem konkreten

[r]

[r]