• Keine Ergebnisse gefunden

Mu3e Experiment

N/A
N/A
Protected

Academic year: 2022

Aktie "Mu3e Experiment"

Copied!
15
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Mu3e Experiment

PhiPsi 2019 Workshop Budker Institute

25.2-1.3. 2019, Novosibirsk

https://www.psi.ch/mu3e/

Search for µ

+

→ e

+

e

+

e

-

(2)

LFV Decay μ + →ee + e + e - LFV Decay μ + →ee + e + e -

Exotic Physics

Supersymmetry

Little Higgs Models Seesaw Models

GUT models (Leptoquarks) many other models

loop diagrams (similar to µ → e γ) tree diagram (Mu3e specific)

Higgs Triplet Model

New Heavy Vector bosons (Z') Extra Dimensions (KK towers)

Most models “naturally” induce lepton flavor violation!

(3)

HiPA @ PSI & PiE5 Area

Compact Muon Beamline for Mu3e:

MEG

Mu3e

World’s most intense continuous muon beam (f=50MHz) World’s most intense continuous muon beam (f=50MHz)

2.4 mA protons at 590 MeV → 1.5 MW 2.4 mA protons at 590 MeV → 1.5 MW

Low momentum muons 29 MeV/c

PiE5 beamline will be shared between MEGII and Mu3e

HiPA and Experimental Hall:

expect 1.4∙10

8

μ

+

/s at 2.4 mA s at 2.4 mA

for a 60 mm target

(4)

Mu3e Experiment

Pixel Tracker

Scintillating Fibers

Scintillating Tiles Aiming for a sensitivity (SES)

BR(μ → e e e ) < 2·10

-15

BR(μ → e e e ) < 10

-16

(phase I) (phase II)

requires:

→ 10

8

muons/s at 2.4 mA s (PiE5)

→ >10

9

muons/s at 2.4 mA s (HiMB)

HiMB = High intensity Muon Beamline (under study)

(5)

e

+

e

+

e

-

i

E

i

= m

μ

i

p

i

= 0

e

+

e

+

e

-

ν ν

B( μ

+

→e e

+

e

+

e

-

νν ) = 3.4 ·10

- 5

Mu3e signal

Irreducible Background Irreducible Background

radiative decay with internal conversion

μ

+

→e e

+

e

+

e

-

(6)

Irreducible Background Irreducible Background

radiative decay with internal conversion

e

+

e

+

e

-

ν ν

missing energy from two neutrinos

steeply falling!

R.M.Djilkibaev, R.V.Konoplich PRD79 (2009)

B( μ

+

→e e

+

e

+

e

-

νν ) = 3.4 ·10

- 5

very good momentum +

total energy resolution required!

missing energy taken

by neutrinos

(7)

Accidental Backgrounds Accidental Backgrounds

Overlays of two ordinary µ

+

decays with a (fake) electron (e

-

)

Electrons from: Bhabha scattering, photon conversion, mis-reconstruction

Need excellent:

Vertex resolution Timing resolution

Kinematic reconstruction

(8)

B = 1 Tesla

transverse view:

helium atmosphere

Mu3e Design

Features:

surface muons (p=29 MeV/c, DC) stopped on target at high rate: 10

8

- 10

9

/s at 2.4 mA s

ultra thin silicon pixel detector (HV-MAPS) with 1 per mill radiation length / layer

high precision tracking using recurling tracks in strong magnetic field

fast timing detectors (scintillating fibers & tiles)

helium gas cooling

E

k

~ 4 MeV

(9)

50 µm

MuPix (HV-MAPS)

High Density Interconnect (< 100 µm)

(LTU, Ukraine)

(Outer) Pixel Tracker Module

Monolithic pixel sensor in

Ultra-thin pixel sensor modules with a radiation length of X/s at 2.4 mA X

0

= 1.15 per mil

(10)

Pixel Detector + Helium Gas Cooling

He gas cooling concept

→ temperatures 20-50 °C

→ no extra material in active volume!

He gas cooling simulation

~15 cm

pixel tracker:

central and two recurl stations

~ 200 million pixel

(11)

Timing Detectors

Scintillating Tiles

tiles 6.5 × 6.5 × 5mm ∼ 6.5 × 6.5 × 5mm

3

SiPM 3 x 3 mm

2

Readout with MuTrig ASIC

time resolution < 100ps

Scintillating Fibres

3 staggered layers of 250 µm scintillating fibres (SCSF-78MJ)

very thin ~0.2% X

0

128 channel SiPM array from Hamamatsu

Readout with MuTrig ASIC

time resolution < 500ps

(12)

Mu3e Mass Plot (Phase I)

(upper limit)

10

-12

10

-13

10

-14

10

-15

Simulation hypothetical signal

(13)

Mu3e Status and Plans

New “Skywalk”

Superconducting Solenoid

B=1 Tesla

Superconduction solenoid produced by Cryogenic (London)

Delivery expected in summer 2019

(14)

Mu3e Status and Plans

Phase I

Comprehensive R&D program for pixel & timing detectors completed

Prototypes for essentially all sub-detectors exist

Production readiness in 2019

Detector construction in 2020

Commissioning start in 2021

Phase II

requires design and approval of High Intensity Muon Beam Line (HiMB)

not before 2025, physics program up to ~2030

Mu3e Phase I detector w/o solenoid

(15)

Mu3e Collaboration

Germany

University Heidelberg

Karlsruhe Institute of Technology

University Mainz

Switzerland

University of Geneva

Paul Scherrer Institute

ETH Zurich

University Zurich

United Kingdom

Bristol

Liverpool

Oxford

UC London

about 60 members; ~15 PhD students

Referenzen

ÄHNLICHE DOKUMENTE

(tracking alone not sufficient to reject accidental background).. magnet) Commissioning earliest 2018..

– detector readout and filter farm (Mainz) – mechanics and cooling (PSI, PI-HD) – experimental infrastructure (PSI) – slow

Paul Scherrer Institute University Geneva ETH Zürich University Zürich Heidelberg University. Karlsruhe Institute of Technology

Simple straight beamline allows to estimate max target acceptance.  57 % on target @ 68 % acceptance is the optimum Optimize

To measure the momentum and vertex position of low momentum electrons (10 - 53 MeV/c) originating from this rare decay with high preci- sion, a tracking detector built from

Andre Schöning, PI-Heidelberg 2 PSI2013 Workshop, Sept 12, 2013 upgrade.. History of LFV Decay experiments History of LFV

• Minimizes scattering angle in middle hit • Linear approximation around circle solution small Multiple Scattering angles.. Efficiency and resolution Short tracks

The improvements are made possible by a novel experimental design based on high voltage monolithic active pixel sensors for high spatial resolution and fast readout