• Keine Ergebnisse gefunden

The Mu3e Experiment Introduction and Current Status

N/A
N/A
Protected

Academic year: 2022

Aktie "The Mu3e Experiment Introduction and Current Status"

Copied!
38
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

The Mu3e Experiment Introduction and Current Status

Moritz Kiehn for the Mu3e Collaboration

Physikalisches Institut, Universität Heidelberg

NuFACT2014, Glasgow, 25. August 2014

(2)

The Mu3e Experiment 2

Precision experiment

Search forµ+→e+ee+

Sensitivity<1 in 1016 decays In this talk

Experimental Concept

Current Status

Pixel Sensor Prototypes

(3)

µ → eee in the Standard Model 3

Features

Charged lepton flavor violating

Via neutrino mixing

Expected BR(µ→eee)≪1050

Current Limit from Sindrum

BR(µ→eee)<1·1012 @90 % CL

Nucl.Phys. B299(1)

Importance

Observable rate only from New Physics

Sensitive New Physics Search

(4)

Muon Beamlines at PSI 4

Paul Scherrer Institute

Villigen, Switzerland

Currently hosts the MEG Experiment Muon Beamlines

Low energy DC beams

Current beam lines:

≈1·108µ/s(πE5)

Future high intensity beam:

>1·109µ/s

(5)

2x109 µ/s

50 ns integration

(6)

Signal and Backgrounds 6

Signal

e+

e+ e-

Backgrounds Internal Conversion

e- e+

e+ ν

ν

Combinatorial

e+

e+ e-

Common vertex

P~pi =0

p <53 MeV

Common vertex

Pp~i 6=0

In-time

No common vertex

Out-of-time Requires σp<0.5 MeV

σt <1 ns

(7)

Multiple Scattering 7

Ω MS

θ

MS

B

θ

MS

1p

p x / X

0

Example

p =35 MeV

200 µm Si

ΩR =5 cm

∆y ≈1 mm

→ Low material budget

(8)

Detector Concept 8

Target μ Beam

Environment

>109 µ+ Decays/s

Electrons p<53 MeV

Multiple scattering dominates

(9)

Detector Concept 8

Target Inner pixel layers μ Beam

Environment

>109 µ+ Decays/s

Electrons p<53 MeV

Multiple scattering dominates

(10)

Detector Concept 8

Target Inner pixel layers

Scintillating fibres

Outer pixel layers μ Beam

Environment

>109 µ+ Decays/s

Electrons p<53 MeV

Multiple scattering dominates

(11)

Detector Concept 8

Target Inner pixel layers

Scintillating fibres

Outer pixel layers Recurl pixel layers

Scintillator tiles

μ Beam

Environment

>109 µ+ Decays/s

Electrons p<53 MeV

Multiple scattering dominates

(12)

Full Detector 9

Magnetic field∼1 T Continuous readout

Tracker Requirements

Fast serial readout ∼20 MHz

Thin<1 ‰X0

80 µm×80 µm pixel

1 cm×2 cm sensor area

Timing

Resolution<1 ns

(13)

Ultra-Lightweight Mechanics 10

50 µm Silicon sensor

25 µm Kapton flexprint

25 µm Kapton support frame

→ ∼1 ‰Radiation length

(14)
(15)

Scintillating Fibres 12

Fibre and SiPM Array

Signal Spectrum

Eciency > 98%

(2 photons or more)

Single Photon

3-5 layers of fibres

Readout with SiPM and custom ASIC (StiC)

Time resolution

∼1 ns (22Na-source)

(16)

Scintillating Tiles 13

Tile Station

Tile Prototype

3.5 cm

Time Resolution

Time Difference [ps]

-7500 -500 -250 0 250 500 750

2000 4000 6000 8000 10000

σ = 79.2 ps

∼0.5 cm3 per tile

Readout with SiPM and custom ASIC (StiC)

Time resolution

∼80 ps(testbeam)

(17)

Monolithic Active Pixel Sensors 14

I. Peric, P. Fischer et al. NIMA 582(2007)876

HV∼70 V (HV-MAPS)

Fast charge collection by drift

Thin active zone<20 µm

Cheap, commercial process

(18)

HV-MAPS Prototypes 15

Design Specifications

80 µm×80 µm pixel size

1 cm×2 cm active area MuPix2

39 µm×30 µm pixel size

1.8 mm×1 mm active area

Proof of Concept MuPix3/4

92 µm×80 µm pixel size

2.9 mm×3.2 mm active area

(19)

MuPix4 HV-MAPS Prototype 16

32 Columns / 2.944 mm

40 Rows / 3.2 mm 92 µm×80 µm pixel size

Global threshold

Zero-suppressed digital readout

Timestamps

Additional readout FPGA

(20)
(21)
(22)

Single Hit Resolution 19

1.5 1.0 0.5 0.0 0.5 1.0 1.5

Column Residuals

1.5 1.0 0.5 0.0 0.5 1.0 1.5

Row Residuals

Pixel 92 µm

80 µm

0 500

Rate / a.u.

0 200

Rate / a.u.

612 1824 3036 4248 54

Rate / a.u.

0° incidence angle 70 V high voltage 823 mV threshold

(23)

Global Efficiency 20

820 830 840 850 860 870 880

Global Threshold / mV

0.88 0.90 0.92 0.94 0.96 0.98 1.00

Efficiency

HV = 70V E = 5GeV

0.0° incidence angle 22.5° incidence angle 45.0° incidence angle

Effective thickness∼1/cosα

(24)

Pixel Efficiency 21

0 5 10 15 20 25 30

Column Number

0 5 10 15 20 25 30 35

Row Number

0.980.99 1.00

Efficiency

0.98 1.00

Efficiency

0.0

0.10.2 0.30.4 0.50.6 0.70.8 0.91.0

Efficiency

0° incidence angle 70 V high voltage 823 mV threshold

(25)

Subpixel Efficiency / 4x4 Pixels 22

0 1 2 3

Column Number

0 1 2 3

Row Number

0.980.99 1.00

Efficiency

0.98 1.00

Efficiency

0.0

0.10.2 0.30.4 0.50.6 0.70.8 0.91.0

Efficiency

0° incidence angle 70 V high voltage 823 mV threshold

(26)

Timing 23

-400 -200 0 400

500 1000 1500 2000 2500 3000

200

Difference between trigger and timestamp [ns]

σ = 16.6 ns

Hits per 10 ns bin

Timestamp frequency 100 MHz

Sensor + DAQ

Resolution 17 ns

(27)

Future MuPix Prototypes 24

MuPix6

Currently in the lab

Updated analog part, e.g.

2-stage amplifier

Same geometry MuPix7

Just submitted

Fast serial readout

Full digital logic

Still small scale prototype

(28)

Cooling with Helium 25

Why Helium?

Low density, low scattering

High mobility Temperature Gradient

3.5 m/s in air

(29)

Reconstruction 26

Reconstruction Efficiency

>90 % efficiency for 4-hit tracks

Dropoff is detector acceptance

Momentum Resolution

3-hit track, σ ≈1.5 MeV

6-hit track, σ≈0.2 MeV

Full GEANT4 simulation

Custom reconstruction

Noenergy loss correction

(30)

Expected Sensitivity 27

Phase IA: earliest 2016

2·107µ/s

Central pixel layers Phase IB: 2017+

1·108µ/s + Timing

+ 1st recurl stations Phase II: 2019+

2·109µ/s

Full detector

Future Muon Beamline

(31)

Expected Sensitivity 27

Phase IA: earliest 2016

2·107µ/s

Central pixel layers Phase IB: 2017+

1·108µ/s + Timing

+ 1st recurl stations Phase II: 2019+

2·109µ/s

Full detector

Future Muon Beamline

(32)

Expected Sensitivity 27

Phase IA: earliest 2016

2·107µ/s

Central pixel layers Phase IB: 2017+

1·108µ/s + Timing

+ 1st recurl stations Phase II: 2019+

2·109µ/s

Full detector

Future Muon Beamline

(33)

The Mu3e Collaboration 28

Paul Scherrer Institute University Geneva ETH Zürich University Zürich Heidelberg University

Karlsruhe Institute of Technology Mainz University

(34)

Summary and Outlook 29

Mu3e

Search forµ+→e+ee+

Sensitivity<1 in 1016 decays Features

HV-MAPS silicon sensors

Ultra-thindetector

Down to100 pstiming

Up to2·109µ/s

In the Future

First data in 2016+

Full rate not before 2019

http://www.psi.ch/mu3e

(35)

Backup

(36)

Silicon Pixel Sensors A1

Hybrid

Sensor 250 μm Readou

t chip 180 μm

Pixel

Pixel electronics Connection via solder bump

Global logic and data driver

Monolithic Active Pixel Sensor

Mon olithic Senso

r 50 μm

Pixel

Pixel electronics

Global logic and data driver On-chip interconnect

HV ∼700 V

Sensor thickness∼250 µm

Extra material

Complex and expensive

HV ∼70 V (HV-MAPS)

Thin active zone<20 µm

Cheap, commercial process

(37)

Beyond the Standard Model A2

In Loops At Tree Level

e.g. SUSY e.g new heavy boson

(38)

Global Efficiency / High Voltage A3

820 830 840 850 860 870 880

Global Threshold / mV

0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00

Efficiency

0° incidence angle E = 5GeV

HV = 50V

HV = 70V

ǫ =

NNmatchedtracks

Referenzen

ÄHNLICHE DOKUMENTE

Plant phenotypes demonstrate that restored ABA biosynthesis in both guard cells and phloem companion cells completely rescues plant phenotypes, including plant appearance, stomatal

The aim of the present study is to describe the HPV18 initial amplification and stable maintenance in the U2OS cell line and to identify which HPV18 gene products

In common, it included basic subjects of family and school relationships (parents, teachers, etc.), the basic phenomena of school life (good and bad appraisal, tests, etc.), events

Us- ing RNA-seq data from human lymphoblastoma cell lines obtained from GEUVADIS project we performed statistical fine mapping and colocalization analysis with external databases..

The architecture of the developed star tracker consists of a CMOS image sensor for taking images of the stars, an FPGA for extracting stars from the image and a microcontroller for

Unlike in previous studies (Ratelle et. al, 2007; Marrs and Sigler, 2011), males did not score higher than females in extrinsic motivation. The last hypothesis – that there are

The main joint of the skeleton for the action detection is neck and if the OpenPose algorithm can not detect the human neck, the whole skeleton will not be predicted on the

The report about the quantitative questions concerning employment and studies in retro- spect and the qualitative statements about the lectures form an important basis of informa-