• Keine Ergebnisse gefunden

Emission spectra and cross-section spectra of neodymium laser glasses

N/A
N/A
Protected

Academic year: 2022

Aktie "Emission spectra and cross-section spectra of neodymium laser glasses "

Copied!
11
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Optical and Quantum Electronics 24 (1992) 591-601

Emission spectra and cross-section spectra of neodymium laser glasses

J . F U R T H N E R , A . P E N Z K O F E R

Naturwissenschaftliche Faku/tat II - Physik, Universitat Regensburg, W-8400 Regensburg, Germany

Received 7 August; revised 15 November; accepted 3 December 1991

Amplified spontaneous emission spectra and light amplification spectra of some Nd3 +:glass rods (silicate glass Schott LG680, phosphate glasses Schott LG760 and Hoya LHG5) are measured by pulsed flashlamp excitation. The spontaneous emission distribution, the stimulated emission cross-section spectra and the excited state absorption cross-section spectra are extracted. Excited state absorption prevents laser action around 1320 nm for the 4F3 /2-4l1 3 /2 transition of N d3 + in the investigated glasses.

1 . I n t r o d u c t i o n

N d3 + d o p e d crystals a n d glasses are w i d e l y a p p l i e d solid-state laser m a t e r i a l s [1-6]. F r o m

the 4F3 / 2 u p p e r laser level o f the 4f3 electrons o f the N d3 + i o n s t r a n s i t i o n s o c c u r to a l l levels

o f the 4Iy m a n i f o l d w i t h J = 15/2 ( t r a n s i t i o n w a v e l e n g t h X « 1.8 / m i ) , J = 13/2 (X « 1.32/mi), / = 11/2 (A « 1.06 / m i ) a n d / = 9/2 (X « 0.88 / m i , g r o u n d state). A n energy level d i a g r a m is i n c l u d e d i n F i g . 8 [2]. T h e N d : glass lasers generally operate o n the 4F3 / 2-4I1 1 / 2 t r a n s i t i o n e m i t t i n g a r o u n d 1.06 / m i where they have great i m p o r t a n c e as h i g h p o w e r a n d short pulse solid-state lasers. L a s e r a c t i o n o f N d : g l a s s lasers o n the

4F3 / 2-4I1 3 / 2 t r a n s i t i o n [7-9] (flashlamp p u m p i n g at r o o m temperature) a n d o n the 4F3 / 2-4I9 / 2

t r a n s i t i o n ( r o o m temperature laser p u m p i n g [10] a n d l o w temperature flashlamp p u m p i n g [8, 11, 12]) has been r e p o r t e d .

T h e luminescence l i n e w i d t h s o f the N d : glass laser t r a n s i t i o n s are rather b r o a d ( A v « 100 to 200 c m- 1) due to S t a r k s p l i t t i n g o f the i n v o l v e d levels a n d i n h o m o g e n e o u s b r o a d e n i n g i n the glass m a t r i x [2-6]. L a s e r w a v e l e n g t h t u n i n g across the luminescence l i n e w i d t h is r e a d i l y a c h i e v e d b y i n s e r t i o n o f a t u n i n g element i n the laser o s c i l l a t o r [13-16].

T h e possible laser t r a n s i t i o n s a n d w a v e l e n g t h t u n i n g ranges d e p e n d o n the effective a m p l i f i c a t i o n cross-section d i s t r i b u t i o n o&(X) = &em(X) oQX{X) where cre m is the stimulated emission cross-section a n d <rex is the excited state a b s o r p t i o n cross-section. F o r the 4F3 / 2-4I1 1 / 2

t r a n s i t i o n cje f f values at the laser frequency were d e t e r m i n e d b y laser t h r e s h o l d measure- ments [17-19]. P e a k s t i m u l a t e d e m i s s i o n cross-sections c re m P for the 4F3 / 2-4I1 1 / 2 [ 2 , 2 0 - 2 3 ] a n d

the 4F3 / 2-4I1 3 / 2 [21] t r a n s i t i o n s were d e t e r m i n e d b y m e a s u r i n g a b s o r p t i o n cross-sections a n d

a p p l y i n g the J u d d - O f e l t m o d e l o f crystal-field i n d u c e d electric d i p o l e t r a n s i t i o n s [2, 20, 24, 25]. T h e r e are few reports o f excited state a b s o r p t i o n measurements i n N d . g l a s s systems [20, 26]. I n [26] excited state a b s o r p t i o n o f the 1.06/mi r a d i a t i o n was extracted f r o m g a i n s a t u r a t i o n measurements (<rex « crem/3), a n d i n [19] the J u d d - O f e l t theory was a p p l i e d to determine the 4F3 / 2-2G9 / 2 o s c i l l a t o r strength f o r the excited state a b s o r p t i o n o f the 1.06 / m i

0306-8919/92 © 1992 Chapman & H a l l 591

(2)

Figure 1 E x p e r i m e n t a l a r r a n g e m e n t . L R , laser r o d ; A 1 , A 2 , a p e r t u r e s ; L 1 , L 2 , lenses; F, filters; M , a l u m i n i u m m i r r o r ; M O , m o n o c h r o m a t o r ; P D , P b S d e t e c t o r .

r a d i a t i o n (4F3 / 2-2G9 / 2 o s c i l l a t o r strength is a p p r o x i m a t e l y e q u a l to one tenth o f 4F3 / 2-4I1 1 / 2

o s c i l l a t o r strength).

I n this paper spontaneous e m i s s i o n spectra, s t i m u l a t e d e m i s s i o n cross-section spectra, a n d excited-state a b s o r p t i o n cross-section spectra o f some N d : glasses (silicate glass S c h o t t L G 6 8 0 , p h o s p h a t e glasses Schott L G 7 6 0 a n d H o y a L H G 5 ) are d e t e r m i n e d b y a m p l i f i e d spontaneous e m i s s i o n [4] a n d light a m p l i f i c a t i o n measurements [27]. T h e studies give relative cross-section d i s t r i b u t i o n s . A b s o l u t e cross-section d i s t r i b u t i o n s are o b t a i n e d b y c a l i b r a t i n g the results to reported peak s t i m u l a t e d e m i s s i o n cross-sections c re m P at the w a v e l e n g t h AP a r o u n d 1.06 ^ m . ae x(/lP) is assumed to be zero because c re m P c a l c u l a t i o n s [2, 20-23] a n d ce f f( AP) measurements [17-19] gave s i m i l a r results w i t h i n the e x p e r i m e n t a l uncertainties. D e v i a t i o n s f r o m 0"ex(AP) = 0 s h o u l d s h o w u p i n the d e t e r m i n e d spectra i n regions o f negative cre x. I n this case a v o i d i n g negative cre x values w o u l d a l l o w for the d e t e r m i n a t i o n o f ae x( ^P) . T h e 4F3 / 2-4I1 3 / 2,4F3 / 2-4I1 1 / 2 a n d 4F3 / 2-4I9 / 2 e m i s s i o n transitions are considered.

2. E x p e r i m e n t a l d e t a i l s

T h e e x p e r i m e n t a l arrangement for the a m p l i f i e d spontaneous e m i s s i o n ( A S E ) a n d the light a m p l i f i c a t i o n measurements is s h o w n i n F i g . 1. T h e N d : g l a s s r o d L R a n d t w o linear flash l a m p s ( I L C T e c h n o l o g y m o d e l L - 2 4 2 6 ) are m o u n t e d i n a h i g h l y reflective d o u b l e - e l l i p t i c a l c y l i n d e r ( m a t e r i a l is a l u m i n i u m ) . C o o l i n g water c o n t a i n i n g N a N 02 for u l t r a v i o l e t ( U V ) light filtering is c i r c u l a t e d t h r o u g h the p u m p c a v i t y . T h e p o w e r s u p p l y ( J K Lasers type System 2000) has a c a p a c i t o r b a n k o f C = 500 fiF. T h e flash l a m p pulse w i d t h is a p p r o x i - m a t e l y 650 fis. T h e p u m p source a l l o w s a r e p e t i t i o n rate o f u p to a b o u t 0.2 H z . T h e r o d sizes are 3/8" i n diameter a n d 4" i n length.

I n the A S E measurements the right l i g h t p a t h is closed a n d the l i g h t o u t p u t f r o m the left r o d surface is collected b y lens L I a n d transferred to the m o n o c h r o m a t o r b y lens L 2 . T h e m o n o c h r o m a t o r o u t p u t s i g n a l is detected w i t h a P b S p h o t o c o n d u c t o r ( V a l v o S V 6 1 ) . T h e r e c o r d i n g w a v e l e n g t h is tuned m a n u a l l y f r o m shot to shot. T h e measured signals are corrected for the w a v e l e n g t h dependence o f the detection system. T h e spectral sensitivity was d e t e r m i n e d by r e c o r d i n g the spectral d i s t r i b u t i o n o f a h a l o g e n - t u n g s t e n l a m p o f k n o w n c o l o u r temperature ( O s r a m type H L X 64655, T = 3450 K at 12 V voltage) [28]. F r o m the A S E spectra the spontaneous e m i s s i o n spectra a n d the s t i m u l a t e d e m i s s i o n cross-section spectra are extracted (see S e c t i o n 4 b e l o w ) .

T h e l i g h t a m p l i f i c a t i o n is measured b y feeding b a c k the light emitted at the right side o f the r o d w i t h the a i d o f the m i r r o r M a n d b y detecting the s i g n a l increase caused b y the feedback light. T h e a m p l i f i c a t i o n is measured at a l o w p u m p voltage a n d a h i g h p u m p

(3)

T—i — i — i — i — i — i — i — i — iIi — i — i — i — i — i — i — iIi — i — i — i — i — i — iii — i — i — i — r

pi i i i I i i i i I i I i l i i i i l i I i i l i i i i l i i i i i

900 950 1050 1100 1300 1350 H 0 0

WAVELENGTH X (nm)

Figure 2 N o r m a l i z e d a m p l i f i e d s p o n t a n e o u s e m i s s i o n p o w e r s p e c t r a ( ) a n d n o r m a l i z e d s p o n t a n e o u s e m i s s i o n p o w e r s p e c t r a ( ) f o r s i l i c a t e laser g l a s s S c h o t t L G 6 8 0 . P u m p v o l t a g e U = 8 0 0 V. T h e c u r v e s in t h e left a n d r i g h t f i g u r e are e x p a n d e d v e r t i c a l l y b y 4 x a n d 5 * , r e s p e c t i v e l y .

voltage. F r o m the a m p l i f i c a t i o n factor o f the feedback l i g h t the effective a m p l i f i c a t i o n cross-section d i s t r i b u t i o n <reff(/l) = &cm(X) — aQX{X) is extracted (see S e c t i o n 4 b e l o w ) .

3. E x p e r i m e n t a l r e s u l t s

T h e n o r m a l i z e d A S E spectra /ASEW/^Wmax of the three investigated N d : g l a s s r o d s are s h o w n i n F i g s 2 (LG680), 3 (LG760) a n d 4 ( L H G 5 ) . PASEfmax is the m a x i m u m spectral p o w e r w h i c h occurs f o r the 4F3 / 2-4I1 1 / 2 t r a n s i t i o n . T h e wavelengths lv o f PAsE,max 0e-

^ A S E ( ^ P ) = ^ASE,max) are ^P = 1061 n m f o r LG680 ( F i g . 2), AP = 1054 n m f o r LG760 ( F i g . 3), a n d AP* = 1055 n m f o r L H G 5 ( F i g . 4). T h e 4F3 / 2-4I9 / 2 A S E spectra are Stokes shifted f r o m the 4l 9 / 2 -4F3 / 2 a b s o r p t i o n spectra ( s h o w n i n F i g s 6 t o 8) because o f fluorescence r e a b s o r p t i o n b y the 4I9 / 2 g r o u n d state level p o p u l a t i o n a n d because o f t h e r m a l i z a t i o n o f e x c i t a t i o n w i t h i n the i n h o m o g e n e o u s l y b r o a d e n e d 4F3 / 2 level.

T h e a m p l i f i c a t i o n o f the l i g h t fed b a c k to the laser r o d is s h o w n i n F i g . 5 f o r LG680. T h e

4F3 / 2-4I1 1 / 2 a n d 4F3 / 2-4I1 3 / 2 t r a n s i t i o n s are c o n s i d e r e d . T h e r a t i o p = (i> t ot"^ASE)/^ASE *s

p l o t t e d versus w a v e l e n g t h f o r t w o sets o f p u m p voltages U{ = 1000 V a n d U2 = 2000 V .

Pt o t is the t o t a l s i g n a l c o m p r i s i n g the A S E s i g n a l PA S E a n d the a m p l i f i e d feedback s i g n a l .

S i m i l a r curves are o b t a i n e d f o r LG760 a n d L H G 5 . I n regions o f p(X, U2) > p{K Ux) the feedback l i g h t is a m p l i f i e d i n the r o d (creffW > 0), w h i l e i n regions o f p(X, U2) < p(K Ux) the feedback l i g h t is attenuated (o&{k) < 0).

4. T h e o r e t i c a l r e l a t i o n s

T h e t h e o r e t i c a l relations between a m p l i f i e d s p o n t a n e o u s e m i s s i o n , light a m p l i f i c a t i o n ,

(4)

WAVELENGTH X (nm)

Figure 3 N o r m a l i z e d a m p l i f i e d s p o n t a n e o u s e m i s s i o n ( ) a n d n o r m a l i z e d s p o n t a n e o u s e m i s s i o n s p e c t r a ( ) f o r p h o s p h a t e laser g l a s s S c h o t t L G 7 6 0 . P u m p v o l t a g e U = 8 0 0 V. T h e c u r v e s in t h e left a n d r i g h t f i g u r e are e x p a n d e d v e r t i c a l l y b y 1 0 * a n d 5 * , r e s p e c t i v e l y .

* A S E ( A > - ^ sP( A > TZr~FT\ _ / 1 MA r J

spontaneous e m i s s i o n , s t i m u l a t e d e m i s s i o n cross-section, a n d excited-state a b s o r p t i o n cross-section are d e r i v e d i n the f o l l o w i n g .

4 . 1 . Relation between spontaneous emission and amplified spontaneous emission

T h e r e l a t i o n between a m p l i f i e d s p o n t a n e o u s e m i s s i o n p o w e r d i s t r i b u t i o n P A S E W and spontaneous e m i s s i o n p o w e r d i s t r i b u t i o n Psp(X) is g i v e n b y [4, 27, 29]

exp{[<xe mffl - Gex(X)]NJ} ~ 1

I n E q u a t i o n 1 it is assumed that the N d3 + e x c i t a t i o n is constant across the r o d diameter, i.e. Nu(r9 z) = Nu(z) where r is the r a d i a l r o d c o o r d i n a t e a n d z is the a x i a l r o d c o o r d i n a t e . Nu is the upper laser level p o p u l a t i o n n u m b e r density averaged over the r o d length, i.e.

Nu = ^ A Tu( z ) d z / / . Nu depends o n the flashlamp p u m p p o w e r , the 4F3 / 2 spontaneous emission lifetime a n d the a m p l i f i c a t i o n o f the spontaneous emission [27,29]. A n a c c u m u l a t i o n o f p o p u l a t i o n i n the t e r m i n a l laser levels is neglected.

T h e g a i n factor G o f light a m p l i f i c a t i o n is

G(X) = e x p { Km( A ) - aex(X)]NJ} (2) Insertion o f E q u a t i o n 2 i n t o E q u a t i o n 1 a n d r e a r r a n g i n g the terms gives

PVW = PASEW^Z! (3)

(5)

Figure 4 N o r m a l i z e d a m p l i f i e d s p o n t a n e o u s e m i s s i o n ( ) a n d n o r m a l i z e d s p o n t a n e o u s e m i s s i o n s p e c t r a ( ) f o r p h o s p h a t e laser g l a s s H o y a L H G 5 . P u m p v o l t a g e U = 7 0 0 V. T h e c u r v e s in t h e left a n d r i g h t f i g u r e are e x p a n d e d b y 1 0 * a n d 5 x , r e s p e c t i v e l y .

F o r w e a k a m p l i f i c a t i o n G 1 ( l o w f l a s h l a m p p u m p v o l t a g e o r s m a l l cre f f) the s p o n t a n e o u s e m i s s i o n Ps p becomes e q u a l to the a m p l i f i e d s p o n t a n e o u s e m i s s i o n PASE-

4.2. Relation between spontaneous emission and stimulated emission cross- section

T h e r e l a t i o n between the s p o n t a n e o u s e m i s s i o n d i s t r i b u t i o n E(X) = Psp(X)/jPsp(X)dl ( i n t e g r a t i o n over a l l 4F3 / 2 -> % transitions) a n d the s t i m u l a t e d e m i s s i o n cross-section d i s t r i b u t i o n <7e m(A) is [4, 20, 30, 31]

ff«nW = o in\ — (4)

where rr a d is the r a d i a t i v e lifetime o f the u p p e r laser level, c0 is the l i g h t v e l o c i t y i n v a c u u m , a n d n(X) is the refractive i n d e x at the e m i s s i o n w a v e l e n g t h . T h e refractive indices at 632.8 n m a n d at the peak l a s i n g w a v e l e n g t h AP a r o u n d 1.06/mi are g i v e n i n the N d : g l a s s d a t a sheets o f S c h o t t [32] a n d H o y a [33]. n(X) is a p p r o x i m a t e l y d e t e r m i n e d b y a p p l y i n g the single o s c i l l a t o r d i s p e r s i o n r e l a t i o n [n2(X) \]j[n2{X) + 2] = C / ( A0"2 — I '2) where C a n d

are fitting constants [34].

I n o u r studies the s t i m u l a t e d e m i s s i o n cross-sections oem{kv) at the peak l a s i n g w a v e - length i P a r o u n d 1.06/im are t a k e n f r o m d a t a sheets [32, 33] a n d the spectral dependence o f the s t i m u l a t e d e m i s s i o n cross-sections is c a l c u l a t e d b y

^ psp( i y qP)

(6)

0.61—I 1 1 1 I =1 0.71 I I 1 1 I I 1 1 1 1 I—

1050 1100 1300 1350 U 0 0

WAVELENGTH X (nm)

Figure 5 N o r m a l i z e d a m p l i f i e d f e e d b a c k l i g h t p o w e r (left o r d i n a t e s ) a n d a m p l i f i c a t i o n f a c t o r G ( r i g h t o r d i n a t e s ) v e r s u s w a v e l e n g t h f o r S c h o t t glass L G 6 8 0 . U = 1 0 0 V ( ), U = 2 0 0 0 V ( ) . T h e ( ) c u r v e s r e p r e s e n t t h e a v e r a g e f e e d b a c k f a c t o r / = Pbi-m/PASE ( ' e f t o r d i n a t e a p p l y ) .

E q u a t i o n 5 is d e r i v e d b y a p p l i c a t i o n o f E q u a t i o n 4 f o r <7e m(A) a n d c re m( AP) w i t h E(X) p r o p o r t i o n a l t o Ps p( A ) .

C a r e has t o be t a k e n f o r the 4F3 /2 -4l 9/2 t r a n s i t i o n since Ps p( A ) is reduced b y luminescence r e a b s o r p t i o n d u e t o ground-state a b s o r p t i o n . E q u a t i o n 5 applies o n l y to the l o n g w a v e - length side where the t h e r m a l p o p u l a t i o n o f the S t a r k split 4I9 / 2 levels becomes s m a l l a n d the luminescence r e a b s o r p t i o n becomes w e a k (see S e c t i o n 5).

4.3. A m p l i f i c a t i o n of feedback A S E light

T h e a m p l i f i c a t i o n factor G = Ph,0utlFh;m o f the feedback A S E l i g h t is g i v e n b y E q u a t i o n 2.

T h e i n p u t feedback l i g h t p o w e r is PB I N = / PAS E where / is the feedback f r a c t i o n . T h e a m p l i f i e d feedback l i g h t p o w e r is Phout = Piot — PASE. These relations give

1 7 w

- 1 = e x p { [ ae m( / l ) - ffcxWR'} (6) K n o w i n g c re m( AP) — c re x( AP) ( = < 7e m( AP) i n o u r case) then aem(X) — <rex(A) m a y be expressed by

In

^emW - tfexOO = K m ( A p ) — 0"e x(/lP)]

1

In 1

1

FASE(^P)

- 1

(7)

T h e d e t e r m i n a t i o n o f aem(X) — <7e x(A) relative to < 7e m( Ap) — c re x( AP) a v o i d s the necessity to determine Nu e x p l i c i t l y .

(7)

i I i i i — i—r~ n — i — i — i |_ i i i i — i I i i i i — i — [ - Imir

0 61 I 1 I I I I 1 I I I I

1

I I I I I

I

I I I I I I I I I 1 I

850 900 950 1050 1100 1300 1350 U 0 0

WAVELENGTH X (nm)

Figure 6 C r o s s - s e c t i o n s o f S c h o t t G l a s s L G 6 8 0 . C u r v e s are c a l i b r a t e d t o oem? = < 7e m( AP) = 2 . 9 * 1 0 "2 0c m2

w i t h XP = 1 0 6 1 n m [ 3 2 ] . c re x( AP) = 0 is a s s u m e d . A b s o r p t i o n s p e c t r u m ffabs(^) is c a l c u l a t e d f r o m t r a n s - m i s s i o n s p e c t r u m i n [ 3 2 ] .

T h e feedback f r a c t i o n f(X) is nearly wavelength-independent. A s s u m i n g a l i n e a r r e l a t i o n between the u p p e r laser level p o p u l a t i o n NU a n d the square o f the f l a s h l a m p p u m p voltage U, the feedback f r a c t i o n/ ( 2 ) m a y be d e t e r m i n e d f r o m E q u a t i o n 6 b y the f o l l o w i n g r e l a t i o n :

A*) = - 1 QXp[-K(X)Uf] (8)

PA S E( i , U{)

where K(X)U2 = [<7e m(T) — oex(A)]NU(U)l = \n[G(l, U)]. K(2) m a y be expressed b y l n [ G 0 l , U2)] - ln[G(l, U,)]

K(1) = V\ - Uf

l n [ Pt o t( A , U2)/PASE(^ U2) - 1] - l n [ Pt o t( A , U^/P^X, Ux) - 1]

F o r s m a l l p u m p voltages f(X) a p p r o a c h e s [Piot(X, U - > 0 ) / PA S E( A , £ / - » ( ) ) ] — 1. W i t h i n the

4F3 / 2-4I1 3 / 2 a n d the 4F3 / 2-4I1 1 / 2 e m i s s i o n b a n d s average f(X) values are used.

T h e analysis described a b o v e is n o t a p p l i c a b l e to the 4F3 / 2-4I9 / 2 t r a n s i t i o n because ground-state light a b s o r p t i o n has n o t been i n c l u d e d . F o r this case E q u a t i o n 2 has to be rewritten to

G{X) = exp{[cre mW - <reK(X)]NJ - <7abs(A)7Vg/}

where <rahs(l) is the 4I9/2-4F3 / 2 ground-state a b s o r p t i o n cross-section a n d JVg is the 4I9 / 2 ground-state level p o p u l a t i o n . N e t g a i n G > 1 requires Nu > Nga&hs(X)l[(Tem(X) — vex(X)]

as i n three-level laser systems [ 4 ] .

(8)

WAVELENGTH X (nm)

Figure 7 C r o s s - s e c t i o n s o f S c h o t t Glass L G 7 6 0 . C u r v e s are c a l i b r a t e d t o < re m( ^P) = 4 . 2 x 1 0 2 0c m2

(/lp = 1 0 5 3 . 5 n m [ 3 2 ] ) . c re x( lP) = 0 is a s s u m e d . o -a b s( 2 ) is c a l c u l a t e d f r o m t r a n s m i s s i o n s p e c t r u m in [ 3 2 ] .

5. T h e o r e t i c a l r e s u l t s

A v e r a g e feedback factors / are d e t e r m i n e d f r o m the ( Pt o t — P A S E V ^ A S E curves b y a p p l i c a - t i o n o f E q u a t i o n s 8 a n d 9. T h e y are s h o w n b y the d a s h - d o t t e d lines i n F i g . 5 for L G 6 8 0 . U s i n g the r i g h t ordinates o f F i g . 5 the d a s h e d a n d s o l i d curves present the g a i n curves G = ( Pt o t - PAsE)l(FASEf) for the p u m p voltages o f 1000 V (dashed) a n d 2000 V (solid).

G > 1 represents d o m i n a n t a m p l i f i c a t i o n a n d G < 1 represents d o m i n a n t a t t e n u a t i o n . K n o w i n g G(A, U), the PASEWIPASE^X curves o f F i g s 3 a n d 4 ( s o l i d curves) m a y be transferred to PSP(X)IPSP^MAX curves b y a p p l i c a t i o n o f E q u a t i o n 3. T h e y are s h o w n b y the dashed curves i n F i g s 2, 3 a n d 4. T h e spectral n a r r o w i n g o f the A S E curves c o m p a r e d to the s p o n t a n e o u s e m i s s i o n curves is s m a l l because the g a i n G(XP) is s m a l l for d i s p l a y e d A S E spectra (G(AP, 800 V ) « 1.1 for L G 6 8 0 , G(AP, 800 V ) « 1.25 for L G 7 6 0 , a n d G(AP, 700 V ) « 1.19 for L H G 5 ) . T h e 4F3 / 2-4I1 3 / 2 fluorescence peaks a r o u n d 1 3 3 0 n m are a p p r o x i m a t e l y a factor o f 9.3 smaller t h a n the 4F3 / 2-4I1 1 / 2 fluorescence peaks Ps p > m a x at AP a r o u n d 1055 n m for a l l three investigated N d : g l a s s rods. T h e 4F3 / 2-4I9 / 2 fluorescence peaks o f the phosphate laser rods L G 7 6 0 a n d L H G 5 o c c u r a r o u n d 907 n m a n d are a p p r o x i m a t e l y a factor o f 11 smaller t h a n Ps p ? m a x, while the 4F3 / 2-4I9 / 2 fluorescence peak o f the silicate laser r o d L G 6 8 0 is located at 918 n m a n d its relative height is Ps p( 9 1 8 n m ) / Ps p m a x = 0.21.

T h e stimulated emission cross-sections <7em(A) are derived f r o m E q u a t i o n 5 a n d are dis- p l a y e d by the s o l i d curves i n F i g s 6, 7 a n d 8 for the laser glasses L G 6 8 0 , L G 7 6 0 a n d L H G 5 , respectively. T h e curves are adjusted to the <xe m(AP) values o f the d a t a sheets [32, 33]. F o r the

4F3 / 2-4I9 / 2 t r a n s i t i o n o n l y the long-wavelength part o f the s o l i d curves (X > 930 n m for

L G 6 8 0 , X > 910 n m for L G 7 6 0 a n d L H G 5 ) gives correct cre m values. T h e dotted curves s h o w

(9)

Figure 8 C r o s s - s e c t i o n s o f H o y a Glass L H G 5 . C u r v e s are c a l i b r a t e d t o <7e m( ^ p ) = 3 . 9 * 1 0 "2 0c m2

( 2P = 1 0 5 4 n m in [ 3 3 ] ) . oex(X?) = 0 is a s s u m e d . < ra b s( A ) is r e d r a w n f r o m [ 3 5 ] . T h e i n s e r t e d level d i a g r a m is r e d r a w n f r o m [ 2 ] .

the expected wavelength dependence o f oem. T h e y are d r a w n by assuming a m i r r o r symmetry between <rem a n d <rabs [5, 31]. T h e 4F3 /2 -4I9 /2 a b s o r p t i o n spectra are s h o w n b y the short-dashed curves. T h e y are calculated f r o m transmission spectra displayed i n [32] for the Schott glasses L G 6 8 0 a n d L G 7 6 0 a n d f r o m a n o p t i c a l density spectrum o f L H G 5 given i n [35].

T h e (Teff(A) curves are d e r i v e d f r o m E q u a t i o n 7 a n d are d i s p l a y e d b y the d a s h e d curves i n the F i g s 6 to 8. <rex(AP) = 0 is assumed. F o r the 4F3 / 2-4I9 / 2 t r a n s i t i o n s the <reff spectra are n o t s h o w n because o f the g r o u n d state l i g h t a b s o r p t i o n . T h e difference o f <re m(^) — G^{X) gives the excited state a b s o r p t i o n cross-section. F o r the 4F3 / 2-4I i3 / 2 t r a n s i t i o n s a r o u n d

1.32 / m i the crex(A) spectra are s h o w n b y the d a s h - d o t t e d curves.

T h e excited state a b s o r p t i o n cross-sections are r e m a r k a b l y large i n the r e g i o n o f the peak s t i m u l a t e d e m i s s i o n cross-section o f the 4F3 / 2-4I1 3 / 2 t r a n s i t i o n . T h i s f i n d i n g is i n agreement w i t h the o b s e r v a t i o n o f a l o n g - w a v e l e n g t h shift o f laser a c t i o n to the r e g i o n between

1.35 / m i a n d 1 40 / m i [7-9] w h i l e the p e a k o f spontaneous e m i s s i o n is between 1.325 / m i a n d 1.335 / m i . T h e excited state a b s o r p t i o n is due to t r a n s i t i o n s f r o m the 4F3 / 2 level to the 2K1 3 / 2,

4G7 / 2, a n d 4G9 / 2 levels as is seen b y the level d i a g r a m inserted i n F i g . 8. T h e s t r o n g excited

state a b s o r p t i o n a r o u n d 1.32/mi is u n f a v o u r a b l e f o r the a p p l i c a t i o n o f N d : g l a s s lasers o n the 4F3 / 2-4I1 3 / 2 t r a n s i t i o n .

T h e ce f f(A) a n d <7em(/l) curves f o r the 4F3 / 2-4I1 1 / 2 t r a n s i t i o n a r o u n d 1.06 / m i agree w i t h i n the uncertainties. T h e p e a k heights at kv are adjusted to the same v a l u e . Gex(X) values u p to a b o u t 2 0 % o f the <rem(/lp) values c a n n o t be e x c l u d e d because the a s s u m p t i o n c re x( 2P) = 0 is o n l y v a l i d w i t h i n this l i m i t [20,26] a n d the d e v i a t i o n s between cjem a n d <7EFF are o f this order.

(10)

T h e ground-state a b s o r p t i o n o c c u r r i n g for the 4F3 / 2-4I9 / 2 t r a n s i t i o n hinders a d e t e r m i n a - t i o n o f cre f f(A) a n d o"ex(/l). T h e cre m(A) d i s t r i b u t i o n s c o u l d be d e t e r m i n e d r o u g h l y f r o m the

4F3 / 2-4I9 / 2 a b s o r p t i o n spectra. L a s e r a c t i o n o n the 4F3 / 2-4I9 / 2 t r a n s m i s s i o n seems to

be possible u n d e r s t r o n g p u m p i n g c o n d i t i o n s as they are necessary for three-level laser systems [4, 5].

6. C o n c l u s i o n s

S t i m u l a t e d e m i s s i o n cross-section, c re m, a n d excited-state a b s o r p t i o n cross-section, ere x, d i s t r i b u t i o n s for n e o d y m i u m d o p e d glasses have been d e t e r m i n e d b y a m p l i f i e d s p o n t a n e o u s emisssion a n d light a m p l i f i c a t i o n measurements o f flashlamp p u m p e d r o d s . T h e o b t a i n e d effective s t i m u l a t e d e m i s s i o n cross-section curves, <jeff = aem — ce x, give a clear i n d i c a t i o n o f the possible l a s i n g regions o f the glass r o d s . T h e described measurement technique m a y also be a p p l i e d to other solid-state laser materials e m p l o y i n g four-level laser transitions.

T h e absolute p e a k s t i m u l a t e d e m i s s i o n cross-sections, c re m( 2P) , were t a k e n f r o m the literature. I f a d d i t i o n a l l y the r a d i a t i v e lifetime, ir a d, o f the u p p e r laser level is d e t e r m i n e d (see E q u a t i o n 4 [31]), e.g. b y fluorescence lifetime, Tf, a n d fluorescence q u a n t u m y i e l d , 0F, measurement ( rr a d = Tf/ 0f) , then absolute o"e m(A) curves are o b t a i n a b l e .

A c k n o w l e d g e m e n t s

T h e a u t h o r s t h a n k the D e u t s c h e F o r s c h u n g s g e m e i n s c h a f t for financial s u p p o r t .

R e f e r e n c e s

1. A. A. KAMINSKII, 'Laser Crystals their Physics and Properties', Springer Series in Optical Sciences, V o l . 14 (Springer-Verlag, Berlin, 1981).

2. D. C. BROWN, 'High-Peak Power N d : G l a s s Systems', Springer Series in Optical Sciences, V o l . 25 (Springer- Verlag, Berlin, 1981).

3. S. E. STOKOWSKI, in C R C 'Handbook of Laser Science of Technology', V o l . 1, Lasers and Masers, edited by M . J . Weber ( C R C Press, Florida, 1982) p. 215.

4. A. PENZKOFER, Prog. Quantum Electron. 12 (1988) 291.

5. W. KOECHNER, 'Solid-State Laser Engineering', Springer Series in Optical Sciences, V o l . 1, 2nd edition (Springer-Verlag, Berlin, 1988).

6. P. F. MOULTON, in C R C 'Handbook o f Laser Science and Technology', V o l . 1, Lasers and Masers, edited by M . J . Weber ( C R C Press, Florida, 1982) p. 21.

7. P. B. MAUER, Appl. Opt. 3 (1964) 153.

8. A. D. PEARSON, S. P. S. PORTO and W. R. NORTHOVER, J. Appl. Phys. 35 (1964) 1704.

9. A. A. KAMINSKII, S. E. SARKISOV, T. NGOC, B. I. DENKER, V. V. OSIKO and A. M. PROKHOROV, Phys. Stat.

Sol. A50 (1978) 745.

10. E. F. ARTEM'EV, A. G. MURZIN and V. A. FROMZEL, Sov. Phys. Tech. Phys. 22 (1977) 274.

11. R. D. MAURER, Appl. Opt. 2 (1963) 87.

12. O. D. GAVRILOV, A. A. MAK, D. S. PRILEZHAEV, V. I. USTYUGOV and V. A. FROMZEL, Opt. Spektrosk. 34 (1973) 141.

13. L. A. LOMPRE, G. MAINFRAY and J. THEBAULT, J. Appl. Phys. 48 (1977) 1570.

14. H. SCHILLINGER and A. PENZKOFER, Opt. Commun. 68 (1988) 45.

15. J. FURTHNER, H. SCHILLINGER and A. PENZKOFER, ibid., 78 (1990) 41.

16. U. CZARNETZKI and V. SCHULZ VON DER GATHEN, Appl. Opt. 25 (1986) 2912.

17. J. G. EDWARDS, Brit. J. Appl. Phys. (J. Phys. D) 1 (1968) 449.

18. M. BIRNBAUM and J. A. GELBWACHS, J. Appl. Phys. 43 (1972) 2335.

19. A. W. TUCKER, M. BIRNBAUM and C. L. FINCHER, ibid., 53 (1982) 161.

20. W. F. KRUPKE, IEEE J. Quantum Electron. QE-10 (1974) 450.

21. R. R. JACOBS and M. J. WEBER, ibid., QE-11 (1975) 846.

22. R. R. JACOBS and M. J. WEBER, ibid., QE-12 (1976) 102.

23. G. J. LUIFORD, R. A. SAROYAN, J. B. TRENHOLME and M. J. WEBER, ibid., QE-15 (1979) 510.

(11)

24. B. R. JUDD, Phys. Rev. Ill (1962) 750.

25. G. S. OFELT, J. Chem. Phys. 37 (1962) 511.

26. M. E. VANCE, IEEE J. Quantum Electron. Q E - 6 (1970) 249.

27. P. SPERBER, W. SPANGLER, B. MEIER and A. PENZKOFER, Opt. Quantum Electron. 20 (1988) 395.

28. W. BAUMLER and A. PENZKOFER, Chem. Phys. 140 (1990) 75.

29. P. SPERBER, M. WEIDNER and A. PENZKOFER, Appl. Phys. B42 (1987) 185.

30. A. V. DESHPANDE, A. BEIDOUN, A. PENZKOFER and G. WAGENBLAST, Chem. Phys. 142 (1990) 123.

31. O. G. PETERSON, J. P. WEBB, W. C. MCCOLGIN and J. H. EBERLY, J. Appl. Phys. 42 (1971) 1917.

32. Laser Glass, data sheet 2301/88 (printed in U S A , 1988), F r o m Schott Glaswerke, Optics division, M a i n z , Fed. Rep. Germany.

33. H o y a Laser Glasses, data sheet M a y 1982-500 (printed in Japan, 1982) from H o y a Corporation, Optical division, T o k y o , Japan.

34. A. PENZKOFER, H. GLAS and J. SCHMAILZL, Chem. Phys. 70 (1982) 47.

35. L. I. AVOKYANTS, I. M. BUZHINSKII, E. I. KORYAGINA and V. F. SURKOV, Sov. J. Quantum Electron. 8 (1978) 423.

Referenzen

ÄHNLICHE DOKUMENTE

The two-stage estimation procedure of the multi-factor asset pricing model allows us to measure time-varying risk premiums embedded in convenience yields of commodity futures

Theorem 2.1 shows that in a market with two risky assets and a risk-free asset, as the admissible probability level in the safety-first utility tends to zero, the asset with a

For evaluating the accuracy of the chosen QM model (particle in a box), the difference between theoretical and empirical value of ∆E can be calculated. Normalizing that difference

● Unter denen, die die Richtung ändern kommt es zu großen Streuwinkeln (bis zu 180 Grad)... Beobachtung

Die Bestimmung der Energie während Strahlkollisionen erfordert eine Extrapolation unter genauer Kenntnis des B-Felds.. − Die Länge der Umlaufbahn ist durch die Frequenz

Damit wird der von KEK ausgehende Neutrinosfluss bestimmt, und eine erwartete totale Zählrate im 250 km entfernten Super-Kamiokande Detektor von.. 80.1 + 6.2 − 5.4

To further characterize this isomer, we report its optical excitation and absorption spectra calculated by the time-dependent density functional theory.. Its rich spectral features

Based on the optimized ground-state structure, we computed the energy (1) E i [ (3) E i ] of the ith singlet (triplet) ex- cited state, the oscillator strengths f osc , and the