• Keine Ergebnisse gefunden

Methoden der Offline Bewegungsplanung Feuerbek¨ampfung Elmar Langetepe

N/A
N/A
Protected

Academic year: 2022

Aktie "Methoden der Offline Bewegungsplanung Feuerbek¨ampfung Elmar Langetepe"

Copied!
114
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Elmar Langetepe

Universit¨at Bonn, Institut f¨ur Informatik

27.01.2014

(2)

Bewegungsplanung: Feuerbek¨ ampfung

Wichtiges Problem:

Schlagen von Feuerschneisen Vorhandene Schneisen Neue Schneisen Einfaches Modell:

Gleichm¨aßige Ausbreitung Geschwindigkeit: s ∈[0,1)

s ≈0.38∈[0,1) s = cos(α), α∈(0, π/2] Feuer schnell umschließen (Zeitminimierung!) l0,l1,l2 gefahrlos minimieren!

(3)

Bewegungsplanung: Feuerbek¨ ampfung

Wichtiges Problem:

Schlagen von Feuerschneisen Vorhandene Schneisen Neue Schneisen Einfaches Modell:

Gleichm¨aßige Ausbreitung Geschwindigkeit: s ∈[0,1)

α∈(0, π/2] Feuer schnell umschließen (Zeitminimierung!) l0,l1,l2 gefahrlos minimieren!

(4)

Bewegungsplanung: Feuerbek¨ ampfung

Wichtiges Problem:

Schlagen von Feuerschneisen Vorhandene Schneisen Neue Schneisen Einfaches Modell:

Gleichm¨aßige Ausbreitung Geschwindigkeit: s ∈[0,1)

s ≈0.38∈[0,1) s = cos(α), α∈(0, π/2]

Feuer schnell umschließen (Zeitminimierung!) l0,l1,l2 gefahrlos minimieren!

(5)

Bewegungsplanung: Feuerbek¨ ampfung

Wichtiges Problem:

Schlagen von Feuerschneisen Vorhandene Schneisen Neue Schneisen Einfaches Modell:

Gleichm¨aßige Ausbreitung Geschwindigkeit: s ∈[0,1)

1

s ≈0.38∈[0,1) s = cos(α), α∈(0, π/2]

l0,l1,l2 gefahrlos minimieren!

(6)

Bewegungsplanung: Feuerbek¨ ampfung

Wichtiges Problem:

Schlagen von Feuerschneisen Vorhandene Schneisen Neue Schneisen Einfaches Modell:

Gleichm¨aßige Ausbreitung Geschwindigkeit: s ∈[0,1)

1

l

s ≈0.38∈[0,1) s = cos(α), α∈(0, π/2]

Feuer schnell umschließen (Zeitminimierung!) l0,l1,l2 gefahrlos minimieren!

(7)

Bewegungsplanung: Feuerbek¨ ampfung

Wichtiges Problem:

Schlagen von Feuerschneisen Vorhandene Schneisen Neue Schneisen Einfaches Modell:

Gleichm¨aßige Ausbreitung Geschwindigkeit: s ∈[0,1)

1 t1= 1 1 +s·t1

s ≈0.38∈[0,1) s = cos(α), α∈(0, π/2]

l0,l1,l2 gefahrlos minimieren!

(8)

Bewegungsplanung: Feuerbek¨ ampfung

Wichtiges Problem:

Schlagen von Feuerschneisen Vorhandene Schneisen Neue Schneisen Einfaches Modell:

Gleichm¨aßige Ausbreitung Geschwindigkeit: s ∈[0,1)

t21.31 1

l 1 +s·t2

s ≈0.38∈[0,1) s = cos(α), α∈(0, π/2]

Feuer schnell umschließen (Zeitminimierung!) l0,l1,l2 gefahrlos minimieren!

(9)

Bewegungsplanung: Feuerbek¨ ampfung

Wichtiges Problem:

Schlagen von Feuerschneisen Vorhandene Schneisen Neue Schneisen Einfaches Modell:

Gleichm¨aßige Ausbreitung Geschwindigkeit: s ∈[0,1)

1

t3= 4 1 +s·t3

l1

s ≈0.38∈[0,1) s = cos(α), α∈(0, π/2]

l0,l1,l2 gefahrlos minimieren!

(10)

Bewegungsplanung: Feuerbek¨ ampfung

Wichtiges Problem:

Schlagen von Feuerschneisen Vorhandene Schneisen Neue Schneisen Einfaches Modell:

Gleichm¨aßige Ausbreitung Geschwindigkeit: s ∈[0,1)

1

l

t3= 4 1 +s·t3

l1

l

s ≈0.38∈[0,1) s = cos(α), α∈(0, π/2]

Feuer schnell umschließen (Zeitminimierung!)

l0,l1,l2 gefahrlos minimieren!

(11)

Schlagen von Feuerschneisen Vorhandene Schneisen Neue Schneisen Einfaches Modell:

Gleichm¨aßige Ausbreitung Geschwindigkeit: s ∈[0,1)

1

t3= 4 1 +s·t3

l1

s ≈0.38∈[0,1) s = cos(α), α∈(0, π/2]

Feuer schnell umschließen (Zeitminimierung!) l ,l ,l gefahrlos

(12)

Bewegungsplanung: Feuerbek¨ ampfung

s ≈0.38 = cos(1.18) Optimale L¨osung!

Minimieren der Werte Passieren des Feuers Zeit und Fl¨ache!

(13)

Theorem: There exists a unique area and completion time optimal axis-parallel firebreak for allα∈(π/4, π/2]. Forα∈(0, π/4] no solution exists.

Beweis!

(14)

Bewegungsplanung: Feuerbek¨ ampfung

Situation erster Teil!

A B= (0, b)

l (0,0) q= (qx,0)

p1

Ccosα(B, A+ cosα× |Πpq1|)

A+ cosα× |Πpq1|

Rp1

Π1

ϕ

qx (qx, b) p1

b

(15)

Bewegungsplanung: Feuerbek¨ ampfung

F¨urα∈(0, π/4] keine L¨osung!

Geht das, wenn die Firefigther beliebig graben d¨urfen?

Idee: Starte nah am Feuer und bleibe dran!

Geschwindigkeit cos(α), α∈(0, π/2]

Kontinuierlich lokal in Richtung α!

(16)

Bewegungsplanung: Feuerbek¨ ampfung

F¨urα∈(0, π/4] keine L¨osung!

Geht das, wenn die Firefigther beliebig graben d¨urfen?

Idee: Starte nah am Feuer und bleibe dran!

Geschwindigkeit cos(α), α∈(0, π/2]

Kontinuierlich lokal in Richtung α!

Weg: Logarithmische Spirale mit Exzentrizit¨atα!

1 + cos(α)·t

(17)

Bewegungsplanung: Feuerbek¨ ampfung

F¨urα∈(0, π/4] keine L¨osung!

Geht das, wenn die Firefigther beliebig graben d¨urfen?

Idee: Starte nah am Feuer und bleibe dran!

Geschwindigkeit cos(α), α∈(0, π/2]

Kontinuierlich lokal in Richtung α!

1 + cos(α)·t

(18)

Bewegungsplanung: Feuerbek¨ ampfung

F¨urα∈(0, π/4] keine L¨osung!

Geht das, wenn die Firefigther beliebig graben d¨urfen?

Idee: Starte nah am Feuer und bleibe dran!

Geschwindigkeit cos(α), α∈(0, π/2]

Kontinuierlich lokal in Richtung α!

Weg: Logarithmische Spirale mit Exzentrizit¨atα!

1 + cos(α)·t

α

(19)

Bewegungsplanung: Feuerbek¨ ampfung

F¨urα∈(0, π/4] keine L¨osung!

Geht das, wenn die Firefigther beliebig graben d¨urfen?

Idee: Starte nah am Feuer und bleibe dran!

Geschwindigkeit cos(α), α∈(0, π/2]

Kontinuierlich lokal in Richtung α!

1 + cos(α)·t

α x

(20)

Bewegungsplanung: Feuerbek¨ ampfung

F¨urα∈(0, π/4] keine L¨osung!

Geht das, wenn die Firefigther beliebig graben d¨urfen?

Idee: Starte nah am Feuer und bleibe dran!

Geschwindigkeit cos(α), α∈(0, π/2]

Kontinuierlich lokal in Richtung α!

Weg: Logarithmische Spirale mit Exzentrizit¨atα!

1 + cos(α)·t

α x

xcos(α)

(21)

Bewegungsplanung: Feuerbek¨ ampfung

F¨urα∈(0, π/4] keine L¨osung!

Geht das, wenn die Firefigther beliebig graben d¨urfen?

Idee: Starte nah am Feuer und bleibe dran!

Geschwindigkeit cos(α), α∈(0, π/2]

Kontinuierlich lokal in Richtung α!

1 + cos(α)·t

α x

(22)

Bewegungsplanung: Feuerbek¨ ampfung

F¨urα∈(0, π/4] keine L¨osung!

Geht das, wenn die Firefigther beliebig graben d¨urfen?

Idee: Starte nah am Feuer und bleibe dran!

Geschwindigkeit cos(α), α∈(0, π/2]

Kontinuierlich lokal in Richtung α!

Weg: Logarithmische Spirale mit Exzentrizit¨atα!

1 + cos(α)·t

α x

xcos(α) α

(23)

Bewegungsplanung: Feuerbek¨ ampfung

F¨urα∈(0, π/4] keine L¨osung!

Geht das, wenn die Firefigther beliebig graben d¨urfen?

Idee: Starte nah am Feuer und bleibe dran!

Geschwindigkeit cos(α), α∈(0, π/2]

Kontinuierlich lokal in Richtung α!

1 + cos(α)·t

α x

α

Z A

B SAB

ZA+ cos(α)·SAB=ZB

(24)

Bewegungsplanung: Feuerbek¨ ampfung

F¨urα∈(0, π/4] keine L¨osung!

Geht das, wenn die Firefigther beliebig graben d¨urfen?

Idee: Starte nah am Feuer und bleibe dran!

Geschwindigkeit cos(α), α∈(0, π/2]

Kontinuierlich lokal in Richtung α!

Weg: Logarithmische Spirale mit Exzentrizit¨atα!

1 + cos(α)·t

α x

xcos(α) α

Z A

B SAB

ZA+ cos(α)·SAB=ZB 1 + cos(α)·(t+SAB)

(25)

F¨urα∈(0, π/4] keine L¨osung!

Geht das, wenn die Firefigther beliebig graben d¨urfen?

Idee: Starte nah am Feuer und bleibe dran!

Geschwindigkeit cos(α), α∈(0, π/2]

Kontinuierlich lokal in Richtung α!

Weg: Logarithmische Spirale mit Exzentrizit¨atα!

1 + cos(α)·t

α x

α

Z A

B SAB

ZA+ cos(α)·SAB=ZB 1 + cos(α)·(t+SAB)

(26)

Bewegungsplanung: Feuerbek¨ ampfung

Mit Spiralen eine bessere/optimale L¨osung erstellen!

Verschiedene Kandidaten!

Optimale L¨osung: Zeitminimierung f¨ur jedes α!!!

Begr¨undung! (Beweis!) Gilt f¨ur alle α∈(0, π/2]

(27)

Mit Spiralen eine bessere/optimale L¨osung erstellen!

Verschiedene Kandidaten!

Optimale L¨osung: Zeitminimierung f¨ur jedes α!!!

Begr¨undung! (Beweis!) Gilt f¨ur alle α∈(0, π/2]

(28)

Bewegungsplanung: Feuerbek¨ ampfung

Mit Spiralen eine bessere/optimale L¨osung erstellen!

Verschiedene Kandidaten!

Optimale L¨osung: Zeitminimierung f¨ur jedes α!!!

Begr¨undung! (Beweis!) Gilt f¨ur alle α∈(0, π/2]

1 x

α

O

a

B Sab

Sab=x 1 + cos(α)·x

A

b

(29)

Mit Spiralen eine bessere/optimale L¨osung erstellen!

Verschiedene Kandidaten!

Optimale L¨osung: Zeitminimierung f¨ur jedes α!!!

Begr¨undung! (Beweis!) Gilt f¨ur alle α∈(0, π/2]

1 x

α

O

a Sab

Sab=x 1 + cos(α)·x

A

b

(30)

Bewegungsplanung: Feuerbek¨ ampfung

Mit Spiralen eine bessere/optimale L¨osung erstellen!

Verschiedene Kandidaten!

Optimale L¨osung: Zeitminimierung f¨ur jedes α!!!

Begr¨undung! (Beweis!) Gilt f¨ur alle α∈(0, π/2]

1 x

α

O

a

B Sab

Sab=x 1 + cos(α)·x

A

b

(31)

Mit Spiralen eine bessere/optimale L¨osung erstellen!

Verschiedene Kandidaten!

Optimale L¨osung: Zeitminimierung f¨ur jedes α!!!

Begr¨undung! (Beweis!) Gilt f¨ur alle α∈(0, π/2]

1 x

α

O

a Sab

Sab=x 1 + cos(α)·x

A

b

(32)

Bewegungsplanung: Feuerbek¨ ampfung

Mit Spiralen eine bessere/optimale L¨osung erstellen!

Verschiedene Kandidaten!

Optimale L¨osung: Zeitminimierung f¨ur jedes α!!!

Begr¨undung! (Beweis!) Gilt f¨ur alle α∈(0, π/2]

1 x

α

O

a

B Sab

Sab=x 1 + cos(α)·x

A

b

Achtung: Nicht optimal f¨ur Fl¨achenminimierung!

(33)

Waldbr¨ande, Grunds¨atze

Ausbreitungsgeschwindigkeit klein: 0.5 km/h Graben mit Winkel

Ver¨anderte Ausbreitungskurven Modellerweiterungen

(34)

Diskrete Problemstellung: Strategic Deployment

Starting form a basis camp with a set of agents Take over and control some settlements

Resistance in the outback

Enough agents for the movements between the settlements and forcontrolling the settlements

Task: Move efficientlyaround and occupy the settlements Historic examples!

Gaius Julius Ceasar: Conquer of the Gauls (58 to 51 B.C.) Alexander the Great (356 B.C. to 323 B.C.): Alexander’s campaign

Modeled by an edge an vertex-weigthed graph

(35)

Diskrete Problemstellung: Strategic Deployment

Starting form a basis camp with a set of agents

Enough agents for the movements between the settlements and forcontrolling the settlements

Task: Move efficientlyaround and occupy the settlements Historic examples!

Gaius Julius Ceasar: Conquer of the Gauls (58 to 51 B.C.) Alexander the Great (356 B.C. to 323 B.C.): Alexander’s campaign

Modeled by an edge an vertex-weigthed graph

(36)

Diskrete Problemstellung: Strategic Deployment

Starting form a basis camp with a set of agents Take over and control some settlements

Resistance in the outback

Enough agents for the movements between the settlements and forcontrolling the settlements

Task: Move efficientlyaround and occupy the settlements Historic examples!

Gaius Julius Ceasar: Conquer of the Gauls (58 to 51 B.C.) Alexander the Great (356 B.C. to 323 B.C.): Alexander’s campaign

Modeled by an edge an vertex-weigthed graph

(37)

Diskrete Problemstellung: Strategic Deployment

Starting form a basis camp with a set of agents Take over and control some settlements

Resistance in the outback

Historic examples!

Gaius Julius Ceasar: Conquer of the Gauls (58 to 51 B.C.) Alexander the Great (356 B.C. to 323 B.C.): Alexander’s campaign

Modeled by an edge an vertex-weigthed graph

(38)

Diskrete Problemstellung: Strategic Deployment

Starting form a basis camp with a set of agents Take over and control some settlements

Resistance in the outback

Enough agents for themovements between the settlements and forcontrolling the settlements

Task: Move efficientlyaround and occupy the settlements Historic examples!

Gaius Julius Ceasar: Conquer of the Gauls (58 to 51 B.C.) Alexander the Great (356 B.C. to 323 B.C.): Alexander’s campaign

Modeled by an edge an vertex-weigthed graph

(39)

Diskrete Problemstellung: Strategic Deployment

Starting form a basis camp with a set of agents Take over and control some settlements

Resistance in the outback

Enough agents for themovements between the settlements and forcontrolling the settlements

Task: Move efficientlyaround and occupy the settlements

campaign

Modeled by an edge an vertex-weigthed graph

(40)

Diskrete Problemstellung: Strategic Deployment

Starting form a basis camp with a set of agents Take over and control some settlements

Resistance in the outback

Enough agents for themovements between the settlements and forcontrolling the settlements

Task: Move efficientlyaround and occupy the settlements Historic examples!

Gaius Julius Ceasar: Conquer of the Gauls (58 to 51 B.C.) Alexander the Great (356 B.C. to 323 B.C.): Alexander’s campaign

Modeled by an edge an vertex-weigthed graph

(41)

Starting form a basis camp with a set of agents Take over and control some settlements

Resistance in the outback

Enough agents for themovements between the settlements and forcontrolling the settlements

Task: Move efficientlyaround and occupy the settlements Historic examples!

Gaius Julius Ceasar: Conquer of the Gauls (58 to 51 B.C.) Alexander the Great (356 B.C. to 323 B.C.): Alexander’s campaign

Modeled by an edge an vertex-weigthed graph

(42)

Model of the Problem

Edge- and vertex-weigthed graphG, Graph is fully known

Some start vertexvs Rules for the movement:

1 Edgee, weightwe:Lower boundon the number of agents required for traversal ofe.

2 Vertexv, weightwv: Number of agents that have to be placed at the vertex.

3 First visit ofv: Full amountwv have to be placed, these agents cannot be removed any more.

Visit and occupy the vertices accordingly Interesting computational questions:

How many agents are required in total? How long does this take?

k agents given: How many settlements can we get?

(43)

Model of the Problem

Edge- and vertex-weigthed graphG, Graph is fully known Some start vertexvs

Rules for the movement:

at the vertex.

3 First visit ofv: Full amountwv have to be placed, these agents cannot be removed any more.

Visit and occupy the vertices accordingly Interesting computational questions:

How many agents are required in total? How long does this take?

k agents given: How many settlements can we get?

(44)

Model of the Problem

Edge- and vertex-weigthed graphG, Graph is fully known Some start vertexvs

Rules for the movement:

1 Edgee, weightwe:Lower boundon the number of agents required for traversal ofe.

2 Vertexv, weightwv: Number of agents that have to be placed at the vertex.

3 First visit ofv: Full amountwv have to be placed, these agents cannot be removed any more.

Visit and occupy the vertices accordingly Interesting computational questions:

How many agents are required in total? How long does this take?

k agents given: How many settlements can we get?

(45)

Model of the Problem

Edge- and vertex-weigthed graphG, Graph is fully known Some start vertexvs

Rules for the movement:

1 Edgee, weightwe:Lower boundon the number of agents required for traversal ofe.

2 Vertexv, weightwv: Number of agents that have to be placed at the vertex.

3 First visit ofv: Full amountwv have to be placed, these agents cannot be removed any more.

Visit and occupy the vertices accordingly Interesting computational questions:

(46)

Model of the Problem

Edge- and vertex-weigthed graphG, Graph is fully known Some start vertexvs

Rules for the movement:

1 Edgee, weightwe:Lower boundon the number of agents required for traversal ofe.

2 Vertexv, weightwv: Number of agents that have to be placed at the vertex.

3 First visit ofv: Full amountwv have to be placed, these agents cannot be removed any more.

Visit and occupy the vertices accordingly Interesting computational questions:

How many agents are required in total? How long does this take?

k agents given: How many settlements can we get?

(47)

Model of the Problem

Edge- and vertex-weigthed graphG, Graph is fully known Some start vertexvs

Rules for the movement:

1 Edgee, weightwe:Lower boundon the number of agents required for traversal ofe.

2 Vertexv, weightwv: Number of agents that have to be placed at the vertex.

3 First visit ofv: Full amountwv have to be placed, these agents cannot be removed any more.

Visit and occupy the vertices accordingly Interesting computational questions:

(48)

Model of the Problem

Edge- and vertex-weigthed graphG, Graph is fully known Some start vertexvs

Rules for the movement:

1 Edgee, weightwe:Lower boundon the number of agents required for traversal ofe.

2 Vertexv, weightwv: Number of agents that have to be placed at the vertex.

3 First visit ofv: Full amountwv have to be placed, these agents cannot be removed any more.

Visit and occupy the vertices accordingly

Interesting computational questions:

How many agents are required in total? How long does this take?

k agents given: How many settlements can we get?

(49)

Model of the Problem

Edge- and vertex-weigthed graphG, Graph is fully known Some start vertexvs

Rules for the movement:

1 Edgee, weightwe:Lower boundon the number of agents required for traversal ofe.

2 Vertexv, weightwv: Number of agents that have to be placed at the vertex.

3 First visit ofv: Full amountwv have to be placed, these agents cannot be removed any more.

Visit and occupy the vertices accordingly Interesting computational questions:

(50)

Model of the Problem

Edge- and vertex-weigthed graphG, Graph is fully known Some start vertexvs

Rules for the movement:

1 Edgee, weightwe:Lower boundon the number of agents required for traversal ofe.

2 Vertexv, weightwv: Number of agents that have to be placed at the vertex.

3 First visit ofv: Full amountwv have to be placed, these agents cannot be removed any more.

Visit and occupy the vertices accordingly Interesting computational questions:

How many agents are required in total?

How long does this take?

k agents given: How many settlements can we get?

(51)

Model of the Problem

Edge- and vertex-weigthed graphG, Graph is fully known Some start vertexvs

Rules for the movement:

1 Edgee, weightwe:Lower boundon the number of agents required for traversal ofe.

2 Vertexv, weightwv: Number of agents that have to be placed at the vertex.

3 First visit ofv: Full amountwv have to be placed, these agents cannot be removed any more.

Visit and occupy the vertices accordingly Interesting computational questions:

How many agents are required in total?

How long does this take?

(52)

Model of the Problem

Edge- and vertex-weigthed graphG, Graph is fully known Some start vertexvs

Rules for the movement:

1 Edgee, weightwe:Lower boundon the number of agents required for traversal ofe.

2 Vertexv, weightwv: Number of agents that have to be placed at the vertex.

3 First visit ofv: Full amountwv have to be placed, these agents cannot be removed any more.

Visit and occupy the vertices accordingly Interesting computational questions:

How many agents are required in total?

How long does this take?

k agents given: How many settlements can we get?

(53)

Edge- and vertex-weigthed graphG, Graph is fully known Some start vertexvs

Rules for the movement:

1 Edgee, weightwe:Lower boundon the number of agents required for traversal ofe.

2 Vertexv, weightwv: Number of agents that have to be placed at the vertex.

3 First visit ofv: Full amountwv have to be placed, these agents cannot be removed any more.

Visit and occupy the vertices accordingly Interesting computational questions:

How many agents are required in total?

How long does this take?

k agents given: How many settlements can we get?

(54)

Example: Minimal number of agents required is 23!

1 At least we for traversing edgee are required

2 At the first visit of v exactlywv have to be placed and will never by removed!

1

1 1

15 1 v3

v5 v1=vs

v2

v4 25

1 1

20 22

23

7

4 agents remain unsettled! No other strategy is better!! Is the problem clear?

(55)

Example: Minimal number of agents required is 23!

1 At least we for traversing edgee are required

2 At the first visit of v exactlywv have to be placed and will never by removed!

v3

v5 v1=vs

v2

v4 25

1 1

20 22 2223

1

1

1

1

15 7

(56)

Example: Minimal number of agents required is 23!

1 At least we for traversing edgee are required

2 At the first visit of v exactlywv have to be placed and will never by removed!

v3

v5 v1=vs

v2

v4 25

1 1

20 22

7 2123

1

1

1

15

1

4 agents remain unsettled! No other strategy is better!! Is the problem clear?

(57)

Example: Minimal number of agents required is 23!

1 At least we for traversing edgee are required

2 At the first visit of v exactlywv have to be placed and will never by removed!

v3

v5 v1=vs

v2

v4 25

1 1

20 22

7

2023 1

1

1

1

15

(58)

Example: Minimal number of agents required is 23!

1 At least we for traversing edgee are required

2 At the first visit of v exactlywv have to be placed and will never by removed!

v3

v5 v1=vs

v2

v4 25

1 1

20 22

7

1

15 1

2023 1

1

4 agents remain unsettled! No other strategy is better!! Is the problem clear?

(59)

Example: Minimal number of agents required is 23!

1 At least we for traversing edgee are required

2 At the first visit of v exactlywv have to be placed and will never by removed!

v3

v5 v1=vs

v2

v4 25

1 1

20 22

7 523

1

1

1

1

15

(60)

Example: Minimal number of agents required is 23!

1 At least we for traversing edgee are required

2 At the first visit of v exactlywv have to be placed and will never by removed!

v3

v5 v1=vs

v2

v4 25

1 1

20 22

7

1

15 1

2023 1

1

4 agents remain unsettled! No other strategy is better!! Is the problem clear?

(61)

Example: Minimal number of agents required is 23!

1 At least we for traversing edgee are required

2 At the first visit of v exactlywv have to be placed and will never by removed!

v3

v5 v1=vs

v2

v4 25

1 1

20 22

7 2023

1

1

1

1

15

(62)

Example: Minimal number of agents required is 23!

1 At least we for traversing edgee are required

2 At the first visit of v exactlywv have to be placed and will never by removed!

v3

v5 v1=vs

v2

v4 25

1 1

20 22

7 1

1

1

15

1 1923

4 agents remain unsettled! No other strategy is better!! Is the problem clear?

(63)

Example: Minimal number of agents required is 23!

1 At least we for traversing edgee are required

2 At the first visit of v exactlywv have to be placed and will never by removed!

v3

v5 v1=vs

v2

v4 25

1 1

20 22

7 1923

1

1

1

15

1

(64)

Example: Minimal number of agents required is 23!

1 At least we for traversing edgee are required

2 At the first visit of v exactlywv have to be placed and will never by removed!

v3

v5 v1=vs

v2

v4 25

1 1

20 22

7 1

1

1

15 1923 1

4 agents remain unsettled! No other strategy is better!! Is the problem clear?

(65)

Example: Minimal number of agents required is 23!

1 At least we for traversing edgee are required

2 At the first visit of v exactlywv have to be placed and will never by removed!

v3

v5 v1=vs

v2

v4 25

1 1

20 22

7 423

1 1

1

1

15 Done!!

(66)

Example: Minimal number of agents required is 23!

1 At least we for traversing edgee are required

2 At the first visit of v exactlywv have to be placed and will never by removed!

v3

v5 v1=vs

v2

v4 25

1 1

20 22

7 423

1 1

1

1

15 Done!!

4 agents remain unsettled! No other strategy is better!!

Is the problem clear?

(67)

e

2 At the first visit of v exactlywv have to be placed and will never by removed!

v3

v5 v1=vs

v2

v4 25

1 1

20 22

7 423

1 1

1

1

15 Done!!

4 agents remain unsettled! No other strategy is better!!

(68)

Number of agents required: Simple bounds!

G = (V,E),N :=P

v∈V wv wmax := max{we|e ∈E}

N+wmax onG is sufficient! Strategy S:

wS := max{we|e was visited byS} S requires at most N+wS

S requires at least max{N,wS}

Minimum Spanning Tree (MST), wMST := max{we|e ∈ MST} N+wMST on MST is sufficient

Any Strategy S onG requires at least max{N,wMST}

Lemma: Optimal Strategy for MST gives 2-Approximation for G

1

1

v3

v5 v1=vs

v2

v4 25

1 1

20

22 1

1

15 7

(69)

Number of agents required: Simple bounds!

G = (V,E),N :=P

v∈V wv wmax := max{we|e ∈E}

N+wmax onG is sufficient! Strategy S:

Minimum Spanning Tree (MST), wMST := max{we|e ∈ MST} N+wMST on MST is sufficient

Any Strategy S onG requires at least max{N,wMST}

Lemma: Optimal Strategy for MST gives 2-Approximation for G

1

1

v3

v5 v1=vs

v2

v4 25

1 1

20

22 1

1

15 N= 19

7 wmax= 25

(70)

Number of agents required: Simple bounds!

G = (V,E),N :=P

v∈V wv wmax := max{we|e ∈E} N+wmax onG is sufficient!

Strategy S:

wS := max{we|e was visited byS} S requires at most N+wS

S requires at least max{N,wS}

Minimum Spanning Tree (MST), wMST := max{we|e ∈ MST} N+wMST on MST is sufficient

Any Strategy S onG requires at least max{N,wMST}

Lemma: Optimal Strategy for MST gives 2-Approximation for G

1

1

v3

v5 v1=vs

v2

v4 25

1 1

20

22 1

1

15 N= 19

7 wmax= 25

(71)

Number of agents required: Simple bounds!

G = (V,E),N :=P

v∈V wv wmax := max{we|e ∈E} N+wmax onG is sufficient!

Strategy S:

wS := max{we|e was visited byS} S requires at most N+wS

S requires at least max{N,wS} Minimum Spanning Tree (MST), wMST := max{we|e ∈ MST} N+wMST on MST is sufficient

Lemma: Optimal Strategy for MST gives 2-Approximation for G

1

1

v3

v5 v1=vs

v2

v4 25

1 1

20

22 1

1

15 N= 19

7 wmax= 25

(72)

Number of agents required: Simple bounds!

G = (V,E),N :=P

v∈V wv wmax := max{we|e ∈E} N+wmax onG is sufficient!

Strategy S:

wS := max{we|e was visited byS}

S requires at most N+wS S requires at least max{N,wS} Minimum Spanning Tree (MST), wMST := max{we|e ∈ MST} N+wMST on MST is sufficient

Any Strategy S onG requires at least max{N,wMST}

Lemma: Optimal Strategy for MST gives 2-Approximation for G

1

1

v3

v5 v1=vs

v2

v4 25

1 1

20

22 1

1

15 N= 19

7 wmax= 25

(73)

Number of agents required: Simple bounds!

G = (V,E),N :=P

v∈V wv wmax := max{we|e ∈E} N+wmax onG is sufficient!

Strategy S:

wS := max{we|e was visited byS} S requires at most N+wS

S requires at least max{N,wS}

Minimum Spanning Tree (MST), wMST := max{we|e ∈ MST} N+wMST on MST is sufficient

Lemma: Optimal Strategy for MST gives 2-Approximation for G

1

1

v3

v5 v1=vs

v2

v4 25

1 1

20

22 1

1

15 N= 19

7 wmax= 25

(74)

Number of agents required: Simple bounds!

G = (V,E),N :=P

v∈V wv wmax := max{we|e ∈E} N+wmax onG is sufficient!

Strategy S:

wS := max{we|e was visited byS} S requires at most N+wS

S requires at least max{N,wS} Minimum Spanning Tree (MST), wMST := max{we|e ∈ MST}

N+wMST on MST is sufficient

Any Strategy S onG requires at least max{N,wMST}

Lemma: Optimal Strategy for MST gives 2-Approximation for G

1

1

v3

v5 v1=vs

v2

v4 25

1 1

20

22 1

1

15 N= 19

7 wmax= 25

(75)

Number of agents required: Simple bounds!

G = (V,E),N :=P

v∈V wv wmax := max{we|e ∈E} N+wmax onG is sufficient!

Strategy S:

wS := max{we|e was visited byS} S requires at most N+wS

S requires at least max{N,wS} Minimum Spanning Tree (MST), wMST := max{we|e ∈ MST}

N+wMST on MST is sufficient

Lemma: Optimal Strategy for MST gives 2-Approximation for G

1

1

v3

v5 v1=vs

v2

v4 25

1 1

20

22 1

1

15 N= 19

7 wmax= 25 wMST= 20

(76)

Number of agents required: Simple bounds!

G = (V,E),N :=P

v∈V wv wmax := max{we|e ∈E} N+wmax onG is sufficient!

Strategy S:

wS := max{we|e was visited byS} S requires at most N+wS

S requires at least max{N,wS} Minimum Spanning Tree (MST), wMST := max{we|e ∈ MST} N+wMST on MST is sufficient

Any StrategyS onG requires at least max{N,wMST}

Lemma: Optimal Strategy for MST gives 2-Approximation for G

1

1

v3

v5 v1=vs

v2

v4 25

1 1

20

22 1

1

15 N= 19

7 wmax= 25 wMST= 20

(77)

Number of agents required: Simple bounds!

G = (V,E),N :=P

v∈V wv wmax := max{we|e ∈E} N+wmax onG is sufficient!

Strategy S:

wS := max{we|e was visited byS} S requires at most N+wS

S requires at least max{N,wS} Minimum Spanning Tree (MST), wMST := max{we|e ∈ MST} N+wMST on MST is sufficient Any StrategyS on G requires at least max{N,wMST}

1

1

v3

v5 v1=vs

v2

v4 25

1 1

20

22 1

1

15 N= 19

7 wmax= 25 wMST= 20

(78)

Number of agents required: Simple bounds!

G = (V,E),N :=P

v∈V wv wmax := max{we|e ∈E} N+wmax onG is sufficient!

Strategy S:

wS := max{we|e was visited byS} S requires at most N+wS

S requires at least max{N,wS} Minimum Spanning Tree (MST), wMST := max{we|e ∈ MST} N+wMST on MST is sufficient Any StrategyS on G requires at least max{N,wMST}

Lemma: Optimal Strategy for MST gives 2-Approximation for G

1

1

v3

v5 v1=vs

v2

v4 25

1 1

20

22 1

1

15 N= 19

7 wmax= 25 wMST= 20

(79)

Variants: Return or No-Return!

(No-return) It suffices to fill the vertices as required, no agents have to return to the start vertex.

Comparable toroutes(round-trips) andtours (open paths) in TSP Reporting the success formally means:

Set,M, of agents return to vs, the union of allvertices visited by the members ofM equals V.

(80)

Variants: Return or No-Return!

(No-return) It suffices to fill the vertices as required, no agents have to return to the start vertex.

(Return) Finally some agents have to return to the start vertex and report the success of the whole operation.

Comparable toroutes(round-trips) andtours (open paths) in TSP Reporting the success formally means:

Set,M, of agents return to vs, the union of allvertices visited by the members ofM equals V.

(81)

Variants: Return or No-Return!

(No-return) It suffices to fill the vertices as required, no agents have to return to the start vertex.

(Return) Finally some agents have to return to the start vertex and report the success of the whole operation.

Comparable toroutes(round-trips) andtours (open paths) in TSP

(82)

Variants: Return or No-Return!

(No-return) It suffices to fill the vertices as required, no agents have to return to the start vertex.

(Return) Finally some agents have to return to the start vertex and report the success of the whole operation.

Comparable toroutes(round-trips) andtours (open paths) in TSP Reporting the success formally means:

Set,M, of agents return to vs, the union ofall vertices visited by the members ofM equals V.

(83)

Optimal Algorithm for Trees: Return Variant

Computational lower bound and algorithmic idea! Example!

vs

n

1 1

0

n1 2

1 1

1 1

n2

Example: Visitn−2 before n

Lemma:Computational lower bound Ω(nlogn) by sorting (both variants, but real weights)!

(84)

Optimal Algorithm for Trees: Return Variant

Computational lower bound and algorithmic idea! Example!

vs

n

1 1

0

n1 2

1 1

1 1

n2

Optimal strategy:n+ 1 agents, visit vertices in order of decreasing edge weights:n,n−1,n−2,. . . ,2,1

Any other order will increase the number! Example: Visitn−2 before n

Lemma:Computational lower bound Ω(nlogn) by sorting (both variants, but real weights)!

(85)

Optimal Algorithm for Trees: Return Variant

Computational lower bound and algorithmic idea! Example!

vs

n

1 1

0

n1 2

1 1

1 1

n2

Optimal strategy:n+ 1 agents, visit vertices in order of decreasing edge weights:n,n−1,n−2,. . . ,2,1

Any other order will increase the number!

(86)

Optimal Algorithm for Trees: Return Variant

Computational lower bound and algorithmic idea! Example!

vs

n

1 1

0

n1 2

1 1

1 1

n2

Optimal strategy:n+ 1 agents, visit vertices in order of decreasing edge weights:n,n−1,n−2,. . . ,2,1

Any other order will increase the number!

Example: Visitn−2 before n

Lemma:Computational lower bound Ω(nlogn) by sorting (both variants, but real weights)!

(87)

Optimal Algorithm for Trees: Return Variant

Computational lower bound and algorithmic idea! Example!

vs

n

1 1

0

n1 2

1 1

1 1

n2 n+ 1

Optimal strategy:n+ 1 agents, visit vertices in order of decreasing edge weights:n,n−1,n−2,. . . ,2,1

Any other order will increase the number!

Example: Visitn−2 before n

(88)

Optimal Algorithm for Trees: Return Variant

Computational lower bound and algorithmic idea! Example!

vs

n

1 0

n1 2

1 1

1 1

n2 1

nn+ 1

Optimal strategy:n+ 1 agents, visit vertices in order of decreasing edge weights:n,n−1,n−2,. . . ,2,1

Any other order will increase the number!

Example: Visitn−2 before n

Lemma:Computational lower bound Ω(nlogn) by sorting (both variants, but real weights)!

(89)

Optimal Algorithm for Trees: Return Variant

Computational lower bound and algorithmic idea! Example!

vs

n

1 0

n1 2

1 1

1 1

n2 1 nn+ 1

Optimal strategy:n+ 1 agents, visit vertices in order of decreasing edge weights:n,n−1,n−2,. . . ,2,1

Any other order will increase the number!

Example: Visitn−2 before n

(90)

Optimal Algorithm for Trees: Return Variant

Computational lower bound and algorithmic idea! Example!

vs

n

1 0

n1 2

1 1

1 1

n2 1 nn+ 1 currentnnot enough,

at leastn+ 2 in total!

Optimal strategy:n+ 1 agents, visit vertices in order of decreasing edge weights:n,n−1,n−2,. . . ,2,1

Any other order will increase the number!

Example: Visitn−2 before n

Lemma:Computational lower bound Ω(nlogn) by sorting (both variants, but real weights)!

(91)

Computational lower bound and algorithmic idea! Example!

vs

n

1 0

n1 2

1 1

1 1

n2 1 nn+ 1 currentnnot enough,

at leastn+ 2 in total!

Optimal strategy:n+ 1 agents, visit vertices in order of decreasing edge weights:n,n−1,n−2,. . . ,2,1

Any other order will increase the number!

Example: Visitn−2 before n

Lemma:Computational lower bound Ω(nlogn) by sorting (both variants, but real weights)!

(92)

Datenstruktur: Trapezzerlegung nach Seidel

Lokalisation Black Box Polygon: Dreieckszerlegung

Anfrage: F¨urp ∈P finde DreieckT mit p∈T K¨urzeste Wege in Polygonen/auf Polyeder Aufbau:O(nlogn), Query:O(logn)

Zerlegung in Trapeze, monotone Polygone, danach in Dreiecke Hier Trapezzerlegung!

(93)

s1 t2

t3 t1

t4 t5

t6

s2 t7

s3 t8 t9

s4 t10

(94)

Datenstruktur: Trapezzerlegung nach Seidel

s1

r(s1)

l(s1)

(95)

s1

r(s1)

l(s1)

(96)

Datenstruktur: Trapezzerlegung nach Seidel

s1

l(s1) t2

t1

r(s1)

l(s1)

t2 t1

(97)

s1

l(s1) t2

t1

r(s1)

l(s1)

t2 t1

(98)

Datenstruktur: Trapezzerlegung nach Seidel

s1

l(s1) t2

t3 t1

r(s1)

l(s1)

t1 r(s1) t2 t3

Referenzen

ÄHNLICHE DOKUMENTE

[r]

Beide Karten sind 90mm breit, während Laborkarte B 60mm hoch und Laborkarte C 30mm hoch ist.. The myAVR prototyping boards B and C are an ideal solution for

Übungsblatt zur Vorlesung SS 2017.. Theoretische Physik

Wieviele Container der Fabriken A und B muss ein Transporter laden, damit der Gewinn aus den Transportkosten m¨ oglichst groß

[r]

Damit ist g auch nicht surjektiv.. Also ist h

Dazu wird das gelbe Dreieck der Abbildung 3 mit der Seitenhalbierenden halbiert und die beiden Hälften werden neu zusammengesetzt... 5

Die beiden oberen sind seitlich herunterge- klappt, die beiden unteren auf das Bodenrechteck eingeklappt und daher beim stehenden Milchkarton nicht sichtbar.. Die Faltnasen sind