• Keine Ergebnisse gefunden

When is the Optimal Economic Rotation Longer than the Rotation of Maximum Sustained Yield?

N/A
N/A
Protected

Academic year: 2022

Aktie "When is the Optimal Economic Rotation Longer than the Rotation of Maximum Sustained Yield?"

Copied!
18
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

W O R K I N G P A P E R

WHEN IS THE OPTIMAL ECONOMIC ROTATION LONGER THAN THE ROTATION OF MAXIMUM SUSTAINED YIELD?

C l a r k S . Binkley

F e b r u a r y 1 9 8 5 WP-85-9

A s s o c i a t e P r o f e s s o r of F o r e s t r y

S c h o o l of F o r e s t r y a n d E n v i r o n m e n t a l S t u d i e s Yale U n i v e r s i t y

Eew H a v e n , CT 06511, a n d

l n t e r n a t ~ o n a l l n s t ~ t u t e for Appl~ed Systems Analysrs

(2)

KOT FOR QUOTATION WITHOUT PERMISSION OF THE AUTHOR

WHEN IS THE OPTIMAL ECONOMIC ROTATION LONGER THAN THE ROTATION OF M~~ SUSTAINED YIELD?

Clark S . Binkley

Associate P r o f e s s o r of F o r e s t r y

School of F o r e s t r y a n d Environmental S t u d i e s Yale U n i v e r s i t y

N e w Haven, CT 06511, a n d a n d

R e s e a r c h S c h o l a r F o r e s t S e c t o r P r o j e c t IIASA

A-2361 L a x e n b u r g AUSTRIA

Working Papers are interim r e p o r t s on work of t h e I n t e r n a t i o n a l I n s t i t u t e f o r Applied Systems Analysis a n d h a v e r e c e i v e d only lim- ited review. Views o r opinions e x p r e s s e d h e r e i n d o n o t n e c e s - s a r i l y r e p r e s e n t t h o s e of t h e I n s t i t u t e o r of i t s National Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 2 3 6 1 L a x e n b u r g , Austria

(3)

ABSTRACT

C o n t r a r y t o t h e a s s e r t i o n s of many, t h e r o t a t i o n which maximizes t h e n e t p r e s e n t value of t i m b e r r e c e i p t s may b e Longer t h a n t h e r o t a t i o n which maximizes a v e r a g e annual physical yield. This c i r c u m s t a n c e may a r i s e e v e n in a v e r y simple economic model o n c e r e g e n e r a t i o n c o s t s a r e recognized.

Along with a t h e o r e t i c a l comparison of t h e two r o t a t i o n c r i t e r i a , a n example using Pinus patuLa plantations in Tanzania d e m o n s t r a t e s t h e p o t e n t i a l p r a c t i c a l i m p o r t a n c e of t h i s conclusion.

(4)

FOREWORD

The objective of t h e F o r e s t S e c t o r P r o j e c t at IIASA is t o study long- t e r m development a l t e r n a t i v e s f o r t h e f o r e s t s e c t o r on a global basis. The emphasis in t h e P r o j e c t i s on issues of major r e l e v a n c e t o industrial and governmental policy m a k e r s in d i f f e r e n t regions of t h e world who are responsible f o r f o r e s t policy, f o r e s t industrial s t r a t e g y , and r e l a t e d t r a d e policies.

The key elements of s t r u c t u r a l change in t h e f o r e s t industry are r e l a t e d t o a v a r i e t y of issues concerning demand, supply, and international t r a d e in wood p r o d u c t s . Such issues include t h e growth of t h e global econ- omy and population, development of new wood p r o d u c t s and of s u b s t i t u t e f o r wood p r o d u c t s , f u t u r e supply of roundwood and a l t e r n a t i v e f i b e r s o u r c e s , development of new technologies for f o r e s t r y and industry, pollution regu- lations, c o s t competitiveness, t a r i f f s and non-tariff t r a d e b a r r i e r s , etc.

The aim of t h e P r o j e c t i s t o analyze t h e consequence of f u t u r e expectations and assumptions concerning such substantive issues.

This a r t i c l e r e p r e s e n t s a background study on timber supply econom- ics. The optimal r o t a t i o n h a s been studied in t h e p r e s e n c e of costs which a r e nonlinear r e l a t i v e to timber removals. In p a r t i c u l a r , t h e effect of fixed r e g e n e r a t i o n c o s t s f o r s h o r t r o t a t i o n f o r e s t r y plantations is analyzed and illustrated with numerical examples.

Markku Kallio Leader

F o r e s t S e c t o r P r o j e c t

(5)

CONTENTS

I N T R O D U C T I O N

1. TWO ROTATION M O D E L S E c o n o m i c R o t a t i o n s M a x i m u m S u s t a i n e d Y i e l d

2. C O M P A R I S O N O F MSY A N D ECONOMIC ROTATIONS

3. A N E X A M P L E : PNUS PAWLA P L A N T A T I O N S IX T A N Z A N I A 4 . C O N C L U S I O N S

R E F E R E N C E S

(6)

WHEN IS THE OPTIMAL ECONOMIC ROTATION LONGER THAN THE ROTATION OF

MAXIMUM

SUSTAINED YKELD?

Clark S . Binkley

INTRODUCTION

Can t h e optimal economic r o t a t i o n e v e r e x c e e d t h e r o t a t i o n which max- imizes t h e a v e r a g e annual yield of t h e f o r e s t ? This question h a s b e e n dis- cussed f o r y e a r s . Many (e.g. Samuelson, 1976; C l a r k , 1976; Bentley a n d Teeguarden, 1964; Hyde, 1980; Chang, 1 9 8 3 a n d Andersson a n d Lesse, 1984) n a v e a r g u e d t h a t t h e optimal economic r o t a t i o n ( t h e r o t a t i o n which maxim- izes t h e n e t p r e s e n t vaiue of t i m b e r r e c e i p t s o v e r a n infinite planning h o r - izon) a p p r o a c h e s t h e culmination of mean annual increment ( o r t h e point of maximum sustained physical yield) only as t h e discount rate a p p r o a c h e s z e r o . This p a p e r shows t h a t t h i s conclusion i s valid only if r e g e n e r a t i o n a n d management c o s t s are ignored. Once even a v e r y simple c o s t formulation i s introduced i n t o t h e problem, economic r o t a t i o n s may equal o r e x c e e d t h e maximum sustained yield r o t a t i o n .

(7)

This r e s u l t i s i m p o r t a n t from s e v e r a l p e r s p e c t i v e s . On p u r e l y t h e o r e t - ical g r o u n d s i t i s i n t e r e s t i n g t o n o t e t h a t no firm conclusions c a n b e drawn a b o u t t h e b e s t r o t a t i o n without c a r e f u l c o n s i d e r a t i o n of p r e c i s e c o s t s and r e t u r n s a r i s i n g in a s p e c i f i c situation. From a somewhat m o r e p r a g m a t i c point of view, t h a t t h e economic r o t a t i o n may b e l o n g e r t h a n t h e maximum sustained yieid (MSY) r o t a t i o n gives r i s e t o t h e "backward bending" long r u n t i m b e r supply c u r v e

-

t h e supply c u r v e h a s n e g a t i v e r a t h e r t h a n posi- t i v e s l o p e .

This p a p e r f i r s t summarizes t h e economic a n d sustained yield optimiza- tion problems. Comparing t h e solutions t o t h e s e problems shows how t h e economic r o t a t i o n may b e l o n g e r t h a n t h e MSY r o t a t i o n . The most i n t e r e s t - ing s i t u a t i o n s a r i s e with fast growing, s h o r t r o t a t i o n s p e c i e s . Consequently w e consicier a n e m p i r i c a l example based on P i n u s p a t u l a plantations in Tanzania. The p a p e r concludes with some comments o n t h e significance of t h e t h e o r e t i c a l and e m p i r i c a l r e s u l t s .

1. TWO ROTATION MODELS

Consider two simple r o t a t i o n problems. The r o t a t i o n problems are p a r - t i c u l a r l y simple b e c a u s e we t a k e t h e p e r s p e c t i v e of s t a n d l e v e l optimiza- tion. Xence no forest-level c o n s t r a i n t s o r s t a n d i n t e r a c t i o n s will o b s c u r e t h e main point of t h e analysis.

E c o n o m i c R o t a t i o n s

The f i r s t model i s similar in s t r u c t u r e t o t h o s e used by Chang (1983), Hyde (1980), a n d J a c k s o n (1980) if management intensity i s t a k e n as f i x e d , and i s identical, in t e r m s of t h e r o t a t i o n a g e decision, t o t h e models of

(8)

Samueison (1976) a n 6 Clark (1976257-263).

The economic optimization probiem r e q u i r e s five important assump- tions.

i. Capital m a r ~ e t s a r e p e r f e c t s o t h e f o r e s t owner c a n lend and bor- row a t a known i n t e r e s t r a t e i which is constant through time.

ii. Demand f o r timber is c e r t a i n and constant s o p r i c e s equal p/unit f o r a l i periods.

iii. Timber yield v ( t ) p e r unit a r e a is a known function of stand a g e t which does not change o v e r time.

iv. The c o s t p e r unit a r e a of r e g e n e r a t i n g t h e stand is c which does not change o v e r time, and

v. The even-aged f o r e s t is r e g e n e r a t e d promptly after c l e a r c u t t i n g if i t is p r o f i t a b l e t o do so.

Other more complex (and p e r h a p s more r e a l i s t i c ) assumptions c a n p r o - duce r e s u l t s similar t o t h o s e d e r i v e d below. For example, Dykstra (1985) showed t h a t when unit logging c o s t s decline with tree size, t h e optimal economic r o t a t i o n c a n e x c e e d t h e MSY rotation. The p r e s e n c e of valuable nontimber f o r e s t p r o d u c t s c a n lengthen (Hartman, 1976) o r s h o r t e n (Bowes et a l . , 1984) t h e optimal economic r o t a t i o n compared t o t h a t when n e t timber r e c e i p t s alone are considered. A v e r y simple model w a s adopted h e r e t o show t h a t , even f o r v e r y simple c a s e s , t h e relationship between t h e economic and MSY r o t a t i o n a g e is ambiguous.

Our assumptions imply t h a t t h e problem is s t a t i o n a r y in t h e s e n s e t h a t t h e solution f o r t h e f i r s t r o t a t i o n will b e identical t o t h e solution f o r t h e second and subsequent periods. The economic r o t a t i o n problem is t h e n

(9)

max .rr(t)

= -

c + p v ( t ) e d t

+

. r r ( t ) e d t 1.1 t

R e a r r a n g i n g t e r m s g i v e s a continuous v e r s i o n of t h e familiar Faustmann o r land e x p e c t a t i o n model.

-

c + p v ( t ) e - i t max r ( t )

=

t 1 - e d t

The f i r s t o r d e r optimality condition f o r t * , t h e optimal economic r o t a t i o n , d x

c a n b e e a s i i y found by solving

- =

0 ( s e e J a c k s o n , 1980; Hyde, 1980, or d t

Cnang, 1 9 8 3 )

w h e r e

Maximum Sustained Yield

Consider a f o r e s t of unit a r e a . If all a g e c l a s s e s a r e equally r e p r e s e n t e d in t h e f o r e s t , e a c h will o c c u p y a n area of l / t w h e r e t i s t h e o l d e s t a g e c l a s s o r t h e r o t a t i o n a g e . The o l d e s t a g e c l a s s c o n t a i n s a volume of v ( t ) / u n i t area, a n d e a c h y e a r t h i s e n t i r e a g e c l a s s i s h a r v e s t e d . Conse- quently t h e a n n u a l yield of t h i s unit f o r e s t i s v ( t ) /

t .

The maximum sus- t a i n e d yield r o t a t i o n c a n t h e n b e found by solving t h e p r o b l e m

v ( t )

max - 1.4

t t

The f i r s t o r d e r condition f o r tm i s

(10)

2. COXPARISON OF

MSY

AND ECONOMIC ROTATIONS

To see t h e r e l a t i o n s h i p between t h e economic and MSY r o t a t i o n s , com- p a r e t h e f i r s t o r d e r conditions f o r t h e two cases, e q u a t i o n s 1.3 a n d 1 . 5 , r e s p e c t i v e l y . F i g u r e 1 shows t h e s e g r a p h i c a l l y . To see t h a t t h e v a r i o u s c u r v e s a r e d r a w n in p r o p e r r e l a t i o n s h i p , f i r s t o b s e r v e t h a t

i 1

2 - f o r a l l t

1 - e + t t

This c a n b e s e e n by c o n s i d e r i n g t h e s e r i e s e x p a n s i o n of e

(it )' +

e 4 f = 1 - i t +- 2!

-

3!

. . .

Substituting i n t o t h e l e f t h a n d s i d e of 2 . 1 gives

t~~~ t * t (years)

FIGURE 1. Optimal economic and MSY rotations.

(11)

i

- -

1 5 - 1

1 - 1 + i t -o(it) o(it) t t

--

i

From 2 . 3 , w e c a n a l s o s e e t h a t lim i

= -

1 i + o 1 - e - t t t

S e c o n d , if b o t h c a n d p are positive

From t h e s e a r g u m e n t s , we see t h a t F i g u r e 1 d e p i c t s a plausible set of r e l a t i o n s h i p s among t h e f i r s t o r d e r conditions 1.3 a n d 1 . 5 . A s d r a w n , c / p i s l a r g e enough so t h e optimal economic r o t a t i o n i s g r e a t e r t h a n t h e MSY r o t a t i o n .

Finally, n o t e t h a t

-

v

iim

- -

, a n d

P + - y

- -

C V

P

This latter c a s e , 2.6b, combined with t h e limiting b e h a v i o r n o t e d in 2.4, gives r i s e to t h e c o n t e n t i o n t h a t t h e optimal economic r o t a t i o n a p p r o a c h e s t h e MSY r o t a t i o n as t h e discount rate a p p r o a c h e s z e r o . However, t h i s a s s e r t i o n i s t r u e only if p r o d u c t i o n costs are z e r o , are in t h e limit as stum- p a g e p r i c e s grow v e r y l a r g e .

Having e s t a b l i s h e d g r a p h i c a l l y t h a t t h e MSY r o t a t i o n may b e s h o r t e r t h a n t h e economic r o t a t i o n , i t i s i n t e r e s t i n g to examine t h e p o i n t at which t h e y coincide. To d o so, i t i s useful to r e w r i t e 1.3 as

(12)

Equating t h e r i g h t hznd s i d e s of 1.5 a n d 2 . 7 gives t h e r e l a t i o n s h i p among c , p , i and v which must hold in o r d e r f o r t h e economic a n d MSY r o t a t i o n to b e i d e n t i c a l

In t h e case of a competitive economy, w e c a n a d d t h e p r o v i s o t h a t 7r 2 0 ( o t h e r w i s e t h e optimal p l a n i s to c u t w h a t e v e r trees are standing a n d a b a n - don t h e l a n d ) , which f r o m 1.1 implies t h a t

-

C

<

v e I t 2.9

P

The t e r m c / p c a n b e eliminated from t h e p r o b l e m by equating t h e r i g h t h a n d s i d e s of 2.8 a n d 2.9

.

This g i v e s t h e limiting v a l u e s of i a n d t w h e r e t h e economic r o t a t i o n e x c e e d s t h e MSY r o t a t i o n b u t .rr

>

0 . R e a r - r a n g i n g t h e r e s u l t i n g e q u a t i o n g i v e s

( I

-

e I t ) ( i t

-

I )

=

0

Which implies e i t h e r

In t h e f i r s t case, e i t h e r t

=

0 or i

=

0 . In t h e s e c o n d , m o r e i n t e r e s t i n g c a s e , i

=

l / t . Thus f o r economic r o t a t i o n s to b e g r e a t e r t h a n t h e MSY r o t a t i o n , t h e i n t e r e s t rate must b e less t h a n t h e i n v e r s e of t h e MSY rota- tion. F o r c o m p a r a t i v e l y s l o w growing s p e c i e s s u c h as Douglas-fir, t h e white

(13)

pines o r many t e m p e r a t e hardwoods, t h e KSY r o t a t i o n will b e on t h e o r d e r of 1 0 0 y e a r s . In t h i s case, Z . l l b implies a maximum discount rate of 1/100 o r i

=

3 . C 2 , and t h e situation d e s c r i b e d h e r e i s of l i t t l e p r a c t i c a l impor- t a n c e . On t h e o t h e r hand, f a s t growing s p e c i e s s u c h as t h e s o u t h e r n pines ( p a r t i c u l a r l y on hign s i t e s managed f o r c u b i c r a t h e r t h a n b o a r d foot p r o - duction) o r t r o p i c a l f o r e s t plantations of s p e c i e s such as Pinus patula, Pinus caribaea o r Gmelina arborea- may r e a c h t h e culmination of mean annual increment in l e s s t h a n 20 y e a r s . In s u c h s i t u a t i o n s t h e optimal economic r o t a t i o n might b e g r e a t e r t h a n MSY u n d e r a wide r a n g e of c o s t a n d p r i c e p a r a m e t e r s .

3.

AN EXAMPLE:

PINLrS PATLEA PLANTATIONS

IN

TANZANIA

To give a b e t t e r s e n s e of t h e p r a c t i c a l importance of t h i s situation, equations 2.8 a n d 2.9 w e r e computed f o r high s i t e (33 m at a g e 20) Pinus patula p i a n t a t i o n s at S a o Hill in s o u t h e r n Tanzania. This f a s t growing pine, n a t i v e t o Mexico, h a s b e e n widely planted t h r o u g h o u t E a s t Africa. Pianta- tion yields at S a o Hill a r e similar though n o t identical t o t h e yields of P . p a t u l a plantations e l s e w h e r e in Africa, including Kenya, Malawi a n d Uganda (Adegbehin, 1982). F o r a n a l y t i c a l convenience, Adegbehin's (1982) yield e s t i m a t e s w e r e f i t t e d to a two-parameter yield function:

ln[v ( t ) ]

=

7.42

-

15.5/ t R~

=

0.989

(73.4) (-32.7) n

=

1 7 3.1

w h e r e v ( t ) re f e r s t o t h e t o t a l s t a n d volume, outside b a r k , in m3/ha. The numbers in p a r e n t h e s e s are t - s t a t i s t i c s f o r t h e null hypothesis t h a t t h e coefficient e q u a l s z e r o .

(14)

The Durbin-Watson s t a t i s t i c for t h e initial o r d i n a r y l e a s t s q u a r e s e s t i - mate of t h i s mociel s u g g e s t e d t h e p r e s e n c e of p o s i t i v e s e r i a l c o r r e l a t i o n among t h e r e s i d u a l s , a condition which r e n d e r s t h e e s t i m a t e s inefficient b u t unbiased. Consequently, t h e e s t i m a t e s in 3.1 w e r e o b t a i n e d by a n i t e r a t i v e g e n e r a l i z e d l e a s t s q u a r e s p r o c e d u r e w h e r e in e a c h s t e p t h e e s t i m a t e d lag- o n e s e r i a l c o r r e l a t i o n c o e f f i c i e n t i s u s e d to correct t h e v a r i a n c e / c o v a r i a n c e m a t r i x of t h e G L S e s t i m a t e s until s a t i s f a c t o r y c o n v e r - g e n c e of t h e e s t i m a t e d c o e f f i c i e n t s i s o b t a i n e d .

F i g u r e 2 g r a p h s 2.8 a n d 2 . 9 i s a function of t h e discount r a t e i f o r t h i s yield c u r v e . T h e t w o e q u a t i o n s divide t h e g r a p h i n t o f o u r areas. In r e g i o n s I a n d 11, t h e c / p r a t i o i s high enough so

t* > tm

In r e g i o n I1 c / p i s so high t h a t t i m b e r p r o d u c t i o n i s u n p r o f i t a b l e . Unless subsidized, we would e x p e c t n o p r o d u c t i o n at a l l f o r t h e s e combinations of c / p a n d i . In r e g i o n s I11 a n d IV, t h e c / p r a t i o i s l o w enough so t h a t

t* < tm

The t w o c u r v e s cross at i

=

1/

t

, o r at i

=

0.065. T h a t i s , at i n t e r e s t rates g r e a t e r t h a n i

=

0.065 t h e optimai economic r o t a t i o n wiIl always b e l e s s t h a n t h e MSY r o t a t i o n .

At a discount r a t e of i

=

0.04, c / p r a t i o s between 1 5 7 a n d 332 l e a d to

t* > tm

As a point of r e f e r e n c e , in 1 9 8 0 c

=

3 1 7 1 s h s / h a (Kowero, 1 9 8 4 ) , which g i v e s a p o s s i b l e r a n g e in p r i c e s of 9.6-20.2 shs/m3. In 1 9 8 0 , t h e r o y - a l t y f o r P. p a t u l a stumpage in t h i s s i z e r a n g e was 20 shs/m3 ( D y k s t r a , 1 9 8 5 ) . Consequently, t h i s simple economic model s u g g e s t s t h a t , at a d i s c o u n t rate of i

=

0.04, t h e optimal economic r o t a t i o n f o r t h e s e p l a n t a t i o n s would b e g r e a t e r t h a n t h e a g e of maximum s u s t a i n e d yield.

(15)

FIGURE 2. t*

>

tx,, Pznus patula.

4. CONCLUSIONS

In g e n e r a l , economic r o t a t i o n s may b e g r e a t e r t h a n , equal t o , o r l e s s t h a n t h e r o t a t i o n which maximizes t h e s u s t a i n e d physical o u t p u t of t h e f o r e s t . The r e l a t i o n s h i p between t h e MSY a n d economic r o t a t i o n s d e p e n d s on t h e yield function f o r t h e s p e c i e s in question, t h e management c o s t s , t h e stumpage p r i c e and t h e i n t e r e s t r a t e . In p r a c t i c e , economic r o t a t i o n s exceeding K S Y r o t a t i o n s are more likely t o a r i s e with fast t h a n with slow growing s p e c i e s .

(16)

Tne r e l a t i o n s h i p between t h e economic a n d MSY r o t a t i o n i s i m p o r t a n t for u n d e r s t a n d i n g lone r u n t i m b e r supply. I t i s well-known t h a t a n i n c r e a s e in stumpage p r i c e will l e a d to a d e c r e a s e in t h e optimal r o t a t i o n (differen- t i a t e 1.3 with r e s p e c t to t t o see t h i s , o r see Chang, 1983:271). If p r i c e s are high enough s o t h e economic r o t a t i o n i s s h o r t e r t h a t MSY, t h e n t n e r e d u c t i o n in r o t a t i o n a t t e n d i n g a p r i c e i n c r e a s e will l e a d to a Lower l e v e l of a v e r a g e o u t p u t . The long r u n t i m b e r supply c u r v e will t h u s bend backward.

If high p r o d u c t i o n costs, high i n t e r e s t rates a n d low growth c o n s p i r e t o make p r o f i t s n e g a t i v e at a n y r o t a t i o n l o n g e r t h a n MSY, n o p a r t of t h e long r u n s u p p l y c u r v e will h a v e a positive s l o p e . Binkley (1985) g i v e s a m o r e complete a c c o u n t of t h e long r u n t i m b e r s u p p l y model.

A m o r e r e a l i s t i c model of f o r e s t management would r e l a x t h e assump-

t i o n s of t h e p r e s e n t a n a l y s i s . F o r example, p r i c e s would r e s p o n d t o chang- ing supply/demana b a l a n c e s . Management c o s t s would c h a n g e in r e s p o n s e to c h a n g e s in l a b o r a n d o t h e r f a c t o r m a r k e t s . Yields might c h a n g e o v e r time as biological knowledge a c c u m u l a t e s o r as environmental d e g r a d a t i o n t a k e s i t s toll. The nontimber p r o d u c t s of t h e forest would b e r e c o g n i z e d in t h e economic optimization. T h e s e complications will s u r e l y u p s e t t h e simple comparisons between economic a n d MSY r o t a t i o n s p r e s e n t e d h e r e b u t are n o t likely to a l t e r t h e ambiguous r e l a t i o n s h i p between t h e t w o a p p r o a c h e s .

(17)

REFERENCES

Adegbehin, J.O. 1982. Growth a n d Yields of P i n u s p a t u l a in Some P a r t s of E. Africa with P a r t i c u l a r R e f e r e n c e t o Sao-Hill, S o u t h e r n Tanzania.

Comm.For.Rev. 61:27-32.

Andersson,

A.E.

a n d P . Lesse. 1984. Renewable R e s o u r c e Economics

-

Optimal Rules of Thumb. WP-84-84. L a x e n b u r g , Austria: I n t e r n a t i o n a l I n s t i t u t e f o r Applied Systems Analysis.

Bentley, W.R. a n d D.E. T e e g u a r d e n . 1964. Financial Maturity: A T h e o r e t i - c a l Review. Forest Science 11:76-87.

Binkley, C.S. 1985. Tine Role of Capital in Long Run Timber Supply. d r a f t ms.

Bowes, M.D., J.V. K r u t i l l a , a n d P.B. Sherman. 1984. F o r e s t Management f o r I n c r e a s e d Timber a n d Water Yield. Water R e s o u r c e s R e s e a r c h 20:655- 663.

Chang, S.J. 1983. R o t a t i o n Age, Management Intensity a n d t h e Economic F a c t o r s of Timber P r o d u c t i o n : Do Changes in Stumpage P r i c e , I n t e r e s t R a t e , R e g e n e r a t i o n Cost a n d F o r e s t Taxation Matter. Forest Science 29:267-277.

C l a r k , C. W. 1976. Mathematical Bioeconomics. New York: John Wiley &

Sons.

(18)

Dykstra, D.P. 1985. The Influence of Logging Costs on Optimal Rotation Age f o r S i t e I P i n u s p a t u l a in Tanzania. In R . Kallio et a l . e d s . , S y s t e m s A n a l y s i s in F o r e s t r y a n d Forest I n d u s t r i e s , Vol. 21, TIMS Studies in Management Science. (forthcoming). Amsterdam: North-Holland.

Hantman, R. 1976. Harvesting Decision When a Standing F o r e s t Has Value.

Economic I n q u i r y 14:52-58.

Hyde, W.F. 1980. Timber S u p p l y , L a n d Allocation a n d Economic E;Pfi- c i e n c y . Baltimore: Johns Hopkins P r e s s .

Jackson, D.W. 1980. Microeconomics of t h e Timber I n d u s t r y . Boulder:

Westview P r e s s .

Kowero, G.S. 1983. Optimizing R e t u r n s from F o r e s t E s t a t e s and from Wood Processing Industries in Tanzania Using Linear Programming. Ph. D.

t h e s i s , University of D a r es Salaam, Morogoro, Tanzania.

Samuelson, P.A. 1976. Economics of F o r e s t r y in a n Evolving Society.

Economic I n q u i r y 14:466-492.

Referenzen

ÄHNLICHE DOKUMENTE

Keywords: Computer vision, 3-D model construction, image sequence (motion) analysis, optic flow, Kalman filter, surface interpolation, computer aided design, computer

Es  wird  das  Geschwindigkeitsfeld  einer  stationären  Strömung betrachtet,

(Rotation heißt auf Englisch curl !) Ähnlich wie der diverge- Befehl wird neben dem Vektorfeld auch der Vektor der Variablen

Beim Fliehkraftregler nutzt man aus, dass durch die schnellere Drehung die Gegengewichte auf einen größeren.. Radius

Semilogarithmic plot of the inversion rate k of the dimethylamino group for three N f A^dimethylamides as a function

Die Kraft ist zwar kein Kraftfeld, da sie auch von der Geschwindigkeit abh¨ angt ist aber dennoch konservativ, auch wenn sie nicht mittels Potenzial darstellbar

Betrachten Sie nun zwei gleichnamige Punktladungen q und berechnen Sie die wir- kenden Kräfte, indem Sie den Spannungstensor über jene Ebene integrieren, die im gleichen

When one considers that the potential field data indicate that the Amerasia Basin opened by counterclockwise rotation of the Arctic Alaska plate away from the Canadian Arctic