• Keine Ergebnisse gefunden

Let N = (S, T, F , B ) be a Petri net with connectivity matrix C . N is structurally bounded if it is bounded from every initial marking.

N/A
N/A
Protected

Academic year: 2021

Aktie "Let N = (S, T, F , B ) be a Petri net with connectivity matrix C . N is structurally bounded if it is bounded from every initial marking."

Copied!
2
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Concurrency Theory (WS 2016) Out: Thu, 10 Nov Due: Wed, 16 Nov

Exercise Sheet 3

D’Osualdo, Lederer, Schneider Technische Universit¨at Kaiserslautern

Problem 1: Structural Boundedness

Let N = (S, T, F , B ) be a Petri net with connectivity matrix C . N is structurally bounded if it is bounded from every initial marking.

a) Let M ∈ N |S| . Prove that there is a marking M 1 ∈ N |S| with M 1 + M ∈ R(M 1 ) if and only if M = C · x has a solution in N |T | .

b) Prove that there is an initial marking M 0 so that (N, M 0 ) is unbounded if and only if C · x 0 has a solution in N |T | .

c) Let I ∈ N |S| be a structural invariant and s ∈ S with I(s) > 0. Show that s is bounded under any initial marking M 0 ∈ N |S| .

Problem 2: Reductions

a) Reduce the coverability problem to the reachability problem.

b) Adapt the algorithm for boundedness to decide termination.

Problem 3: Coverability and Place Boundedness

Consider the following marked Petri net N :

p 1 t 1 p 2

t 2

p 3

t 3 t 4

p 4

a) Construct the coverability graph Cov(N ) using the algorithm seen in the lecture.

Recall that with Cov(N ) we can solve any coverability problem instance.

b) Is Cov(N ) unique?

c) Do you need the edges of Cov(N ) to solve a coverability instance?

d) Do you need all the markings in the graph to solve any coverability instance?

(2)

Problem 4: Termination and Correctness

Consider a Petri net N = (S, T, W, M 0 ) and prove the following claims:

a) The Karp-Miller algorithm of the lecture (which computes the coverability graph) termi- nates.

b) If M 0

−→ σ M with σ ∈ T , then there exists some L ∈ N |S| ω such that M 0 ∗

L in Cov(N ) and L ≥ M .

c) OPTIONAL: Assume M 1 −→ σ M 2 and M 2 M 1 . Let G := {s ∈ S | M 1 (s) < M 2 (s)}

and

M [G/k] :=

( k if s ∈ G M (s) if s 6∈ G

Prove that for every k ∈ N , there is a marking M and a transition sequence σ 0 such that M 1 σ

0

−−→ M with M ≥ M 2 [G/k].

d) OPTIONAL: Consider the optimisation where if, when constructing Cov(N ), we find

a new extended marking L 2 successor of some L 1 ∈ V , such that there is an L with

M 0 L L 1 and L > L 2 , then we discard L 2 and continue the exploration. Argue

why this optimisation is correct.

Referenzen

ÄHNLICHE DOKUMENTE

Da wir aber Stetigkeit in diesem Kontext noch nicht eingef¨uhrt haben, k¨onnen Sie diesen Schritt als gegeben

Fachbereich Mathematik Prof.. Ulrich Kohlenbach

Fachbereich Mathematik Prof.. Ulrich Kohlenbach

Obwohl dies paradox erscheinen mag, gibt es Kurven, welche h¨oher-dimensionale Objekte wie Quadrate oder W¨urfel vollst¨andig ausf¨ullen.. Erste Beispiele solcher Kurven wurden 1890

Fachbereich Mathematik Prof.. Ulrich Kohlenbach

Fachbereich Mathematik Prof.. Ulrich Kohlenbach

Fachbereich Mathematik Prof.. Ulrich Kohlenbach

Dazu m¨ussen wir zun¨achst sicherstellen, dass f in einer Umgebung von a stetig differenzierbar ist.. (Der Quader braucht nat¨urlich a priori kein W¨urfel