• Keine Ergebnisse gefunden

At least |S|k-1 · (|S| - 1) frontiers: a graph theory problem

N/A
N/A
Protected

Academic year: 2022

Aktie "At least |S|k-1 · (|S| - 1) frontiers: a graph theory problem"

Copied!
4
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

At least | S | k 1 · (| S | − 1 ) frontiers:

a graph theory problem

Darij Grinberg

October 18, 2015 (modified version of a note from 2009)

1. Problem

LetSbe a finite set. Letkbe a positive integer. Let Abe a subset ofSk satisfying

|A|=|S|k1. Let B=Sk\ A.

For everyv∈ Skand everyi∈ {1, 2, . . . ,k}, we denote byvithei-th component of thek-tuplev(remember thatvis an element ofSk, that is, ak-tuple of elements ofS). Then, everyv ∈Sk satisfies v= (v1,v2, . . . ,vk).

Let F be the set of all pairs (a,b) ∈ A×B for which there exists an i ∈ {1, 2, . . . ,k} satisfying aj =bj for all j 6=i 1

. (Speaking less formally, let F be the set of all pairs(a,b) ∈ A×Bfor which the k-tuples aand b differ in at most one position.)

Prove that |F| ≥ |S|k1·(|S| −1).

2. Remark

In the case |S| = 2, this is an old problem (which appeared, for example, in a Moscow MO 1962 preparation booklet, and which is a particular case of Cheeger’s inequality for the hypercube).

I use to call the elements of F“frontiers” between the sets A and B.

3. Solution

Since A ⊆ Sk and B = Sk\ A, we have A∩ B = and A∪B = Sk. Hence, Sk\B= A.

Define a map φ: A×B →F as follows:

1Of course, “for allj6=i” means “for allj∈ {1, 2, . . . ,k}satisfyingj6=i” here.

1

(2)

At least|S|k1·(|S| −1) frontiers October 18, 2015

Let (u,v) ∈ A×B be a pair. Then,u ∈ A and v ∈ B, so thatu ∈/ Band v ∈/ A (since A∩B =).

We define a subset T of{0, 1, 2, . . . ,k} by

T={i ∈ {0, 1, 2, . . . ,k} | (v1,v2, . . . ,vi,ui+1,ui+2, . . . ,uk) ∈ B}

2. Then, 0 /∈ T (since (u1,u2, . . . ,uk) =u ∈/ B) and k∈ T (since(v1,v2, . . . ,vk) = v ∈ B). In particular, k ∈ T yields T 6= ∅. Thus, the set T has a minimal element (since T is a finite set). Letα be this minimal element. Then, α ∈ T and α−1 /∈ T. We have α 6=0 (since α ∈ T but 0 /∈ T). Thus, α−1 ∈ {0, 1, 2, . . . ,k} (sinceα ∈ T ⊆ {0, 1, 2, . . . ,k}).

Now, α ∈ T yields (v1,v2, . . . ,vα,uα+1,uα+2, . . . ,uk) ∈ B, while α −1 /∈ T yields(v1,v2, . . . ,vα1,uα,uα+1, . . . ,uk) ∈/ B, so that(v1,v2, . . . ,vα1,uα,uα+1, . . . ,uk) ∈ Sk\B= A. Set a= (v1,v2, . . . ,vα1,uα,uα+1, . . . ,uk)and

b = (v1,v2, . . . ,vα,uα+1,uα+2, . . . ,uk). Then,a= (v1,v2, . . . ,vα1,uα,uα+1, . . . ,uk)∈ Aand

b = (v1,v2, . . . ,vα,uα+1,uα+2, . . . ,uk) ∈ B, so that (a,b) ∈ A×B. Besides, there exists an i ∈ {1, 2, . . . ,k} satisfying aj =bj for all j 6=i

(namely, i = α 3).

Hence,(a,b)∈ F(by the definition of F).

Now set φ(u,v) = (a,b). Thus we have defined a map φ: A×B→ F.

Next, we will prove that

φ1({(a,b)}) ≤ |S|k1 for every (a,b) ∈ F. In fact, let(a,b) ∈ F. Since (a,b) ∈ F, we have (a,b) ∈ A×B, so that a ∈ A and b ∈ B, so thata6=b (since A∩B =∅). But since(a,b) ∈ F,

there exists ani ∈ {1, 2, . . . ,k} satisfying aj =bj for all j 6=i

. (1)

Consider thisi.

We must have ai 6=bi 4.

Now, consider some (u,v) ∈ φ1({(a,b)}). Then, φ(u,v) = (a,b). Thus, by the definition ofφ, there exists an α ∈ {0, 1, 2, . . . ,k} such that

a= (v1,v2, . . . ,vα1,uα,uα+1, . . . ,uk) and b = (v1,v2, . . . ,vα,uα+1,uα+2, . . . ,uk). (2)

Consider thisα.

2Fori=0, the notation(v1,v2, . . . ,vi,ui+1,ui+2, . . . ,uk)means(u1,u2, . . . ,uk). Fori=k, the notation(v1,v2, . . . ,vi,ui+1,ui+2, . . . ,uk)means(v1,v2, . . . ,vk).

3In fact, aj = bj for all j 6= α (in fact, for any j, we have aj =

vj, ifj<α;

uj, ifjα and bj =

vj, ifjα;

uj, ifj>α ; thus, if j 6= α, this simplifies to aj =

vj, ifj<α;

uj, ifj>α and bj = vj, ifj<α;

uj, ifj>α , so thataj=bj for allj6=α).

4In fact, otherwise, we would have ai = bi, what, combined withaj = bj for all j 6= i, would yieldaj =bjfor allj∈ {1, 2, . . . ,k}, so thata=b, contradictinga6=b.

2

(3)

At least|S|k1·(|S| −1) frontiers October 18, 2015

We must have uα 6= vα 5. Since aα = uα and bα = vα, this yields aα 6= bα. Hence, α = i (since otherwise, we would have α 6= i, so that aα = bα by (1), contradictingaα 6=bα). Thus, (2) becomes

a= (v1,v2, . . . ,vi1,ui,ui+1, . . . ,uk) and b = (v1,v2, . . . ,vi,ui+1,ui+2, . . . ,uk). Now, a= (v1,v2, . . . ,vi1,ui,ui+1, . . . ,uk)yields aj =uj for all ji. Hence,

u= (u1,u2, . . . ,ui1,ui,ui+1, . . . ,uk) = (u1,u2, . . . ,ui1,ai,ai+1, . . . ,ak)

Si1× {ai} × {ai+1} × · · · × {ak}. (3)

6

Also, b= (v1,v2, . . . ,vi,ui+1,ui+2, . . . ,uk)yieldsbj =vj for all j ≤i. Hence, v = (v1,v2, . . . ,vi,vi+1,vi+2, . . . ,vk) = (b1,b2, . . . ,bi,vi+1,vi+2, . . . ,vk)

∈ {b1} × {b2} × · · · × {bi} ×Ski. (4)

7

By (3) and (4), we have

(u,v) ∈Si1× {ai} × {ai+1} × · · · × {ak}×{b1} × {b2} × · · · × {bi} ×Ski

for every(u,v)∈ φ1({(a,b)}). Thus,

φ1({(a,b)})

Si1× {ai} × {ai+1} × · · · × {ak}×{b1} × {b2} × · · · × {bi} ×Ski

=

Si1× {ai} × {ai+1} × · · · × {ak}·{b1} × {b2} × · · · × {bi} ×Ski

=

 Si1

| {z }

=|S|i−1

· |{ai}|

| {z }

=1

· |{ai+1}|

| {z }

=1

· · · |{ak}|

| {z }

=1

·

|{b1}|

| {z }

=1

· |{b2}|

| {z }

=1

· · · |{bi}|

| {z }

=1

·Ski

| {z }

=|S|k−i

=|S|i1· |S|ki =|S|k1 (5)

5because otherwise, we would haveuα =vαand thus

a=

v1,v2, . . . ,vα−1, uα

|{z}=vα

,uα+1, . . . ,uk

= (v1,v2, . . . ,vα,uα+1,uα+2, . . . ,uk) =b,

contradictinga6=b.

6By abuse of notation, we are writing Si−1 × {ai} × {ai+1} × · · · × {ak} for S×S× · · · ×S

| {z }

i−1 factors

× {ai} × {ai+1} × · · · × {ak}here.

7By abuse of notation, we are writing{b1} × {b2} × · · · × {bi} ×Sk−i for {b1} × {b2} × · · · × {bi} ×S×S× · · · ×S

| {z }

k−ifactors

here.

3

(4)

At least|S|k1·(|S| −1) frontiers October 18, 2015

for every(a,b) ∈ F.

Thus,

|A×B|=

(a,b)∈F

|{(u,v)∈ A×B | φ(u,v) = (a,b)}|

=

(a,b)∈F

φ1({(a,b)})

| {z }

≤|S|k−1 (by (5))

(a,b)∈F

|S|k1

=|F| · |S|k1. But

|A×B| =|A| · |B| =|A| ·Sk\ A

=|A| ·Sk

− |A|

=|S|k1·Sk

− |S|k1=|S|k1·|S|k− |S|k1, so this becomes

|S|k1·|S|k− |S|k1≤ |F| · |S|k1, thus|S|k− |S|k1≤ |F|, so that

|F| ≥ |S|k− |S|k1=|S|k1·(|S| −1), qed.

4

Referenzen

ÄHNLICHE DOKUMENTE

Der sitzende Gott-Vater, über dem die Taube schwebt, hält den toten nackten Christus im Schoße (Pieta- Dreifaltigkeit).. Sehr tüchtige Arbeit, Anfang des

Er trägt halbhohe Stiefel, sein Haupt bedeckt ein Barett mit fünf aufrecht stehenden Hermelinzacken, von dem rechts herab eine Quaste fällt und das vorne ein

This recap sheet aims at refreshing your knowledge about the basic theory of topological vector spaces. the topology is induced by a family

Implementieren Sie das Euler- und das Milstein-Verfahren f¨ur skalare stochastische Diffe- rentialgleichungen. F¨uhren Sie f¨ur ¨aquidistante Diskretisierungen

Die Schließungseigenschaft ergibt sich daraus, dass die sukzessive Spiegelung an einer ungeraden Anzahl kopunktaler Geraden auf eine einzige Geradenspiegelung reduziert

Im Beispiel der Abbildung 3 besteht jede der vier Stützwände zuäußerst aus 5 grauen Würfeln, dann folgen 3 graue Würfel und zuinnerst ist noch ein grauer Würfel..

Weiter geht von jeder der zwölf Kanten aus eine Dreiecksfläche zum Zentrum, die aus nicht zu den Pyramiden gehörenden Würfeln besteht. In der Abbildung 6 ist ein Beispiel

In der Abbildung 3b sind vier solche Stapel in einem Quadrat der Seitenlänge