• Keine Ergebnisse gefunden

Das Bohrsche Atommodell

N/A
N/A
Protected

Academic year: 2022

Aktie "Das Bohrsche Atommodell"

Copied!
23
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Das Bohrsche Atommodell

Auf ein Elektron, welches im elektrischen Feld eines Atomkerns kreist wirkt ein magnetisches Feld.

Der Abstand zum Atomkern ist das Ergebnis, der elektrostatischen Coulomb-Anziehung und der entgegenwirkenden Zentrifugalkraft.

Die verfügbaren Bahnen sind auf jene begrenzt, bei denen das Bahndrehmoment die folgende Bedingung erfüllt:

1, 2,3,...

2

L n h n

=

π

=

Die Gesamtenergie bleibt konstant / keine Strahlung.

Strahlung dann, wenn ein Elektron die Bahn wechselt:

i j

E E h

E h

ν

ν

= −

∆ =

(2)

Das Bohrsche Atommodell

2 2

2 2

0 0

2 2 2 2 2 2

2 2 2 2

2 0

2 2

2

2 0

0

Coulomb-Anziehung = Zentrifugalkraft

1 1

1, 2,3,...

4 4

Bahndrehimpuls

4 1

4

Potentielle Energie

4 Kine

ze v

m ze n

r r

L mvr ћn L m v r ћ n

ћ n ћ n

ze r

mr ze m

U ze

mv r

mv r

r

πε πε

πε πε

πε

= → = =

= = → = =

= = → =

= −

2 2

0

1 1

tische Energie

2 2 4

K mv ze

πε

r

= =

(3)

( )

( )

2 4

2 2 2 2

2 2

0 0

2 2 2 4

2

2 2 2 2

0 0

1 2

0

0

Gesamtenergie 1

4 2 4

1 1

2 4 4

1

2

4 2

4

1

n

mz e

E U K

ze ze

E r r

ze ze m mz e

E

ћ

ћ n ћ n

E n n

πε πε

πε πε πε

πε

= +

= − +

 

∆ =

− =

 −

=



Berechnung der Energieniveaus der Balmer-Serie und Voraussage der Lyman und Paschen Serien.

Korrekte Ergebnisse für Wasserstoff

(4)

Heisenbergsche Unschärferelation

q 2 p q ћ

∆ ∆ ≥

Impuls des Teilchens entlang der Achse q Unschärfe im Impuls

Ort des Teilchens Unschärfe im Ort

q

q

p

p q

q

(5)

Quantelung der Energie: Teilchen im Kasten

Die Wellennatur der Materie bedingt, dass die Energie eines Teilchens, welches durch ein Potential in seiner Bewegung eingeschränkt ist, nur gewisse Werte annehmen kann. So muss ein Teilchen in einem Kastenpotential eine stehende Welle bilden:

0 a

a = n λ 2

Quantenzahl

(6)

Teilchen im Kasten

2 2 2

2 2

2 2 2

1

1, 2, 3,...

1

2 2 2

Energie ist gequantelt

ki 8

kin

n

nh nh

a n v

mv ma

mv nh

h

m

n m

a

a n

m

ε

λ ε

= = → =

 

= =  

=

=

(

12 22 2

)

2

2 2

2 2

1 2 3

2 2 2 2 3 3

Bei 3-dimensionalem Kasten:

8 8

kin

n n n

h h

m a b c n n n

ε

= + + mV +

 +

 

3 Quantenzahlen Æ Entartung (Zustände mit gleich Energie)

(7)

Die Schrödingergleichung

Die Bewegung eines klassisches Teilchen in einem Potentialfeld nennt man eine Trajektorie.

Die Trajektorie kann bei bekanntem Potential aus den Anfangsbedingungen durch Lösung der Newtonschen Bewegungsgleichungen berechent werden.

An die Stelle der

Trajektorie tritt in der

Quantenmechanik die

Wellenfunktion

(8)

Eigenschaften der Wellenfunktion

Die Wellenfunktion ist (ebenfalls) eine mathematische Funktion Man kann die Wellenfunktion als Lösung der Schrödinger-

Gleichung berechnen.

Die Wellenfunktion enthält alle Information, die über das System experimentell ermittelt werden kann

Je größer der Absolutbetrag der Wellenfunktion an einer Stelle ist, desto eher findet man das Teilchen an dieser Stelle

Die Krümmung der Wellenfunktion ist umso größer, je größer die kinetische Energie des Teilchens an dieser Stelle ist.

(9)

Schrödinger-Gleichung

für ein Teilchen der Masse m, welches die Energie E aufweist und sich in x-Richtung bewegt (1-dimensionale Wellenfunktion)

2 2

2

( )

2

ћ d

V x E

m dx

− Ψ + Ψ = Ψ

Potentielle Energie am Ort x

Ψ = Wellenfunktion

Differentialgleichung 2. Ordnung

(10)

Lösungen der Schrödingergleichung

(11)

Die Wellenfunktion ist im allgemeinen Fall eine komplexe Funktion, die nicht beobachtbar ist und keine direkte

physikalische Bedeutung hat.

Bereiche, in denen die Wellenfunktion stark gekrümmt ist, tragen viel zur kinetischen Energie bei.

Bereich mit grossem Beitrag zur kinetischen Energie

Bereich mit geringem Beitrag zur kinetischen Energie

Ψ

Ort x

(12)

Die 3-dimensionale Schrödingergleichung

Grundlage jeder chemischen Anwendung der Quantenmechanik ist die Born-Oppenheimer-Approximation.

Dabei nimmt man an, dass sich die Kerne klassisch verhalten, und nur für die Elektronen eine Wellenfunktion gefunden werden muss.

( )

( )

2

2

2 2 2

2

2 2

2

2

2

2

Nabla-Oper

ˆ mit ˆ Hamilto -Opera

ato

2 tor

r

n

ћ V r E

m d

H E H ћ V r

d d

d dy

m

x dz

− ∇ Ψ + Ψ = Ψ

Ψ = Ψ = − ∇ +

∇ = + +

(13)

Atomorbitale und Energie

Hauptquantenzahl n = 1,2,3,.. Energie des Elektrons (Bahn)drehimpuls Quantenzahl l = 0,1,2,3 .. (n-1)

Bahndrehimpuls des Elektrons

Magnetquantenzahl (Rotations) ml = 0, ±1, …, ±l

Drehimpuls des Elektrons um eine bestimmte Achse

Elektonenspin durch Quantenzahl ms beschrieben – hat immer den Wert ½.

Die Richtung des Elekronen Drehimpulses kann im Uhrzeigesinn oder gegenläufig sein: +ms / -ms

(14)

V. Ribitsch, C. Kratky PC-LAK Kap. 8 14

Unterschalen und Orbitale

Orbitale mit gleichem Wert für n, verschieden Werten für l bilden Unterschalen

l = 0, 1, 2, 3, 4 … s, p, d, f, g ..

n = 1 eine Unterschale mit l = 0

n = 2 zwei Unterschalen, 2s (l=0) und 2 p (l=1)

Unterschale mit n = 2 mit l = 1 ist 2p Unterschale mit 2p Orbitalen

jede Unterschale 2l + 1 Orbitale korresp. mit 2l + 1 Werten für ml für jeden Wert von l

Unterschale s p d f Zahl Orbitale 1 3 5 7

(15)

Schalen, Unterschalen und Orbitale

n Schale Unterschale Orbitale Summe

1 K s 1 1 Orb (l=0, ml = 0) 1

2 L s,p 2 1 Orb.(l=0, ml = 0, 4

3 Orb (l=1, ml = 0,+1,-1)

3 M s,p,d 3 1 Orb (l=0, ml = 0) 9

3 Orb (l=1, ml = 0,+1,-1) 5 Orb (l = 2, d-Orbitale)

4 N s,p,d,f 4

Bei Wasserstoffähnlichen Molekülen alle Orbitale einer Schale die gleiche Energie!!

(16)

zugehörige Wahrscheinlichkeitsdichten ψ2 Die s-Orbitale haben am Kern von null

verschiedene, endliche Werte

Wellenfunktionen des Wasserstoffatomatoms

radiale Wellenfunktionen qs der ersten drei Hauptquantenzahlen des

Wasserstoffatom ψ

(17)

Die ersten drei s-Orbitale wasserstoffähnlicher Atome

(a) Die Elektronendichte wird durch den Grad der Schattierung dargestellt.

(b) Die Bindungsfläche, innerhalb derer sich das Elektron mit 90 % Wahrscheinlichkeit aufhält

(18)

Bindungsflächen der p - Orbitale

Die Knotenebene verläuft jeweils durch den Kern und trennt die beiden Bereiche eines jeden Orbitals.

Die unterschiedlichen

Schattierungen symbolisieren die entgegen gesetzten

Vorzeichen der Wellenfunktion

(19)

D- Orbitale

• Orbitale mit l = 2 sind d–Orbitale

• In jeder Schale für n ≥ 3 existieren fünf d- Orbitale mit ml = 0, ± 1 und ± 2

• D-Orbitale ähnlich p-Orbitalen, je 2

Knotenflächen schneiden sich im Kern und

bilden 4 Lappen

(20)

Wasserstoffähnliche Atome

Diese Atome bestehen aus dem Kern und einem Elektron

Verteilung des Elektrons um den Kern durch Wellenfunktion beschrieben, durch 3 Quantenzahlen: n,l , m

beschreiben Aufenthaltswahrscheinlichkeiten des Elektons.

Der Spin des Elektrones durch vierte Quantenzahl ms festgelegt, + ½ oder – ½

Zustand niedrigster Energie: 1s – Orbital.

Das Elektron ist nahe am Kern, radialsymetrisch, Bahndrehimpuls um den Kern = 0

In Schalen mit höheren Hauptquantenzahlen kann das Elektron Orbitale höherer Energie besetzen. In diesen sind unterschiedlich grosse Bahndrehimpulse

möglich, (Wert l für das jeweilige Orbital).

Der Spin-Drehimpuls ist stets konstant und unabhängig vom Bahndrehimpuls.

(21)

Aufbau von Mehrelektron-Atomen

Orbitalnäherung: jedes Elektron besetzt ein eigenes Orbital, ähnlich den H ähnlichen Atomen; Kernladungszahl ist durch die Anwesenheit aller Elektronen moduliert

Pauliverbot: nicht mehr als 2 El in einem Orbital, unterscheiden sich durch Spin, der gepaart sein muss +/-

Beispiel Helium: erste El in 1s-Orbital, kompakter als H wegen

Kernladungszahl = 2. Das zweite El ebenfalls in 1s, die Konfiguration im Grundzustand 1s2 – 1 s 2

Das dritte EL nicht mehr in der K-Schale sondern in L-Schale (n=2) mit 2s und 2 p-Orbitalen

(22)

Ein Elektron in einem s-Orbital (hier 3s) wird mit größerer

Wahrscheinlichkeit in der Nähe des Kerns gefunden als ein Elektron in einem p-Orbital derselben Schale. Aus diesem Grunde erfährt das s-

Elektron eine geringere Abschirmung und wird enger gebunden.

Aufenthaltswahrscheinlichkeit

(23)

Aufbauprinzip

Besetzungsreihe der Unterschalen

1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s

Besetzung von 4s bevor 3d besetzt wird da geringer an Energie

Die El besetzen verschieden Orbitale einer Unterschale bevor sie ein Orbeital doppelt besetzen

Hundsche Regel: Atom im Grundzustand hat die grösstmögliche Anzahl ungepaarter El.

Elektronen in unterschiedlichen Schalen mit gleichem Spin weniger Energie als in gleicher Schale mit ungleichem Spin - Spinkorrelation

Beispiele:

C-Atom: zwei einzelne 2p-EL mit gleichem Spin N-Atom: drei einzelne 2p-El mit gleichem Spin

O-Atom: 2 El im px Orbital mit gepaarte Spin; zwei einzelne 2p-EL mit gleichem Spin Ne-Atom: (He)2s22p6 – abgeschlosse Aussenschale Z=10

Li-Atom: (He)2s1 – ein einzelnes s-El ausserhalb abgeschlossener Schale Na-Atom: (Ne)3s1 - ein einzelnes s-El ausserhalb abgeschlossener Schale

Referenzen

ÄHNLICHE DOKUMENTE

Nach klassischem Verständnis dürften selbst die Temperaturen im Inneren der Sonne dafür nicht genügen, aber aufgrund des quantenmechanischen Tunneleffekts kommen sich

Das negativ geladene Elektron des Wasserstoffatoms wird durch die anziehende Coulomb-Kraft des positiv geladenen Atomkerns zu einer Kreisbewegung veranlasst. Die Coulomb-Kraft ist

Ein Plattenkondensator zeichnet sich durch sein homogenes Feld aus; die Homogenität ist allerdings nur erfüllt, wenn der Plattenradius groß gegen den Plattenabstand ist („r

Das Bohrsche Atommodell lässt sich auch auf einfach ionisiertes Helium (He + ) anwenden.. Berechnen Sie die Energie, die dem Heliumion mindestens zuzuführen ist, um es aus dem

Sie produzieren jedoch nur Strukturen auf großen Skalen, nicht auf kleinen, da sie durch ihre hohe Geschwindigkeit nicht gebunden sind. Hot

Heisenberg-Gesellschaft: „Quantenphysik an der Schule“, Lautrach 2019.. Der

Wenn das Potential eines Feldes nur vom Ort abhängt, so ist die auf einem geschlossenen Weg verrichtete Arbeit Null.. In diesem Fall kann das Kraftfeld auch eindeutig aus

Schickt mir (ahlmeyerk@rs-prohn.de )bitte einen Scan oder ein Foto nur vom bearbeiteten Arbeitsblatt bis zum 30.03.2020.. Physik Kernphysik K.A. 9akl-physik-ahl-Das Atom,