• Keine Ergebnisse gefunden

Zusammenfassung der Ergebnisse für kleine Silbercluster

5.1. Massenauflösung

5.4.5. Zusammenfassung der Ergebnisse für kleine Silbercluster

Abbildung 5.21.: Alle relevanten Silber-Photoelektronenspektren mit dem Verlauf der Verti-cal Detachment Energy, VDE. Die Tendenz der metallischen Bindung des Wasserstoffatoms an die Silbercluster ist erkennbar. Der Verlauf der VDE ist qualitativ gleich für die Cluster Agn1H(rot) und Agn (schwarz).

Die metallische Bindung des Wasserstoffatoms an Silbercluster konnte für den Größenbe-reich n=1−4 gezeigt werden. Der Überlapp der s-Orbitale von Silberatomen und Was-serstoffatom ergibt eine metallische Bindung. Auffällig ist der qualtitativ gleiche Verlauf der VDE für die Cluster Agn1H und Agn in Abb. 5.21. Eine etwas größere Abweichung ergibt sich für AgH und Ag2; danach ist der Verlauf der VDE wieder homogener.

6.1. Zusammenfassung

Es konnten im Rahmen dieser Arbeit folgende Erkenntnisse gewonnen werden:

Kupfercluster:

Für die kleinen Kupfercluster im Größenbereich n=1−4 konnte eine metallische Bindung eines einzelnen Wasserstoffatoms an den Cluster nachgewiesen werden.

Dies wurde durch den Vergleich der Photoelektronenspektren Cun, CunH und Cun+1 erreicht. Die qualitativ sehr ähnlichen Spektren von CunH, Cun+1 werden dabei als Hinweis für die metallische Bindung gedeutet. Der Verlauf der VDE für die Reihen CunH und Cun+1 ist ein weiteres Indiz für die metallische Bindung.

Silbercluster:

Für die im gleichen Größenbereich n=1−4 untersuchten Silbercluster ergibt sich ein analoges Bild wie für Kupfer. Der Wasserstoff bindet an kleine Silbercluster metallisch, gezeigt wurde das durch den Vergleich der Photoelektronenspektren der Cluster AgnH mit denen der Cluster Agn+1. Ein Vergleich der VDE stützte die Ver-mutung der metallischen Bindung.

Al7Hx und Al7Dx:

Die mehrfach hydrierten und deuterierten Al7H/D-Cluster wurden spektroskopiert.

Es wurde versucht die Unterschiede der isolelektronischen Spektren zu erklären, wobei sich an den an Al13 gewonnenen Erkentnisse orientiert wurde.

Al13, Al13H und Al13D:

Die Photoelektronenspektren wurden verglichen. Die entstandenen Spektren konn-ten durch den Einfluß des Adsorbatgases auf die Clustererzeugung erklärt. Theo-retische Berechnungen der Gruppe von P. Jena tragen zur Strukturbestimmung bei.

Die Spektren entstanden in Zusammenarbeit mit der Gruppe von K. Bowen an der Johns-Hopkins- University.

6.2. Ausblick

Neben einer Erweiterung des Größenbereiches der untersuchten Münzmetallcluster bis zum Beispiel zu n=7, dem ersten Schalenabschlus, bieten sich für weitere Untersuchun-gen andere Materialien an. Ein Vergleich der Hydride der Alkalimetalle mit den reinen Clustern wäre ein interessanter Ausblick. Zum Einen gibt es nur ionische Verbindungen der Alkalihydride, zum Anderen würden die Ergebnisse weiteren Aufschluss über das Ver-halten einfacher Metallhydride geben.

Artikel

• Grubisic, A.; Li, X.; Stokes, S. T.; Vetter, K.; Gantefor, G. F.; Bowen, K. H.; Jena, P.; Kiran, B.; Burgert, R. & Schnockel, H.

Al13H: Hydrogen atom site selectivity and the shell model The Journal of Chemical Physics 131, 121103 (2009)

Poster

• Dietsche, R.; Lim, D.C.; Bubek, M.; Ketterer, T.; Vetter, K.; Kim, Y.D. & Ganteför, G.

Oxidation / Reduction of Aun(n=2−13) Clusters on SiO2/ Si on HOPG Trends in Nanoscience, Kloster Irsee, 24-28 Februar 2007

• Fischer, T.; Götz, M.; Cordes, J.; Vetter, K. & Ganteför G.

New setup for photoelectron spectroscopy of mass selected clusters. high mass range and resolution, high photon energy and high energy resolution S3C-Symposium on Size-Selected Clusters Brand, Österreich, 12-16 März 2007

• Dietsche, R.; Lim, D.C.; Bubek, M.; Ketterer, T.; Vetter, K.; Kim, Y.D. & Ganteför, G.

Oxidation / Reduction of Aun(n=2−13) Clusters on SiO2/ Si on HOPG S3C-Symposium on Size-Selected Clusters Brand, Österreich, 12-16 März 2007

• Vetter, K.; Cordes, J. & Ganteför G.; Li, X.; Grubisic, A.; Stokes, S.T. & Bowen K.

Unexpected isotopic effect on AlnHm-Clusters

Clustertreffen 2007, Berlin-Spandau, 23-27 September 2007

• Dietsche, R.; Lim, D.C.; Bubek, M.; Ketterer, T.; Vetter, K.; Kim, Y.D. & Ganteför,

G.

Oxidation / Reduction of Aun(n=2−13) Clusters on SiO2/ Si on HOPG Clustertreffen 2007, Berlin-Spandau, 23-27 September 2007

• Vetter, K. & Ganteför G.; Li, X.; Grubisic, A.; Stokes, S.T. & Bowen K.

Unexpected isotopic effect on Al13H-Clusters

S3C-Symposium on Size-Selected Clusters Brand, Österreich, 9-13 März 2007

[1] G.C. Libowitz W. M. Mueller, J.P. Blackledge, editor. Metal Hydrides. Avcademic Press, 1968.

[2] Zoltan Paal and P.G. Menon. Hydrogen Effects in Catalysis. Marcel Dekker, Inc, 1988.

[3] A. Züttel, A. Borgschulte, and L. Schlappbach. Hydrogen as a Future Energy Ca-rier. Wiley, 2008.

[4] E. Wigner and H. B. Huntington. On the possibility of a metallic modification of hydrogen. The Journal of Chemical Physics, 3:764–770, 1935.

[5] C. Narayana, H. Luo, J. Orloff, and Arthur L. A.L. Ruoff. Solid hydrogen at 342 GPa: no evidence for an alkali metal. Nature, 393:46–49, 1998.

[6] S. T. Weir, A. C. Mitchell, and W. J. Nellis. Metallization of Fluid Molecular Hy-drogen at 140 GPa (1.4 Mbar). Phys. Rev. Lett., 76:1860–1863, 1996.

[7] R. Chau, A. C. Mitchell, R. W. Minich, and W. J. Nellis. Metallization of fluid nitrogen and the mott transition in highly compressed low-z fluids. Phys. Rev. Lett., 90(24):245501, Jun 2003.

[8] S. Badiei and L. Holmlid. Experimental observation of an atomic hydrogen material with h-h bond distance of 150 pm suggesting metallic hydrogen. Journal of Physics:

Condensed Matter, 16(39):7017, 2004.

[9] T. Guillot. Interiors of Giant Planets Inside and Outside the Solar System. Science, 286(5437):72–77, 1999.

[10] S. Buckart, G. Gantefor, Y.D. Kim, and P. Jena. Anomalous behavior of atomic hydrogen interacting with gold clusters. Journal of the American Chemical Society, 125:14205–14209, 2003.

[11] X. Li, A. Grubisic, S. T. Stokes, J. Cordes, G. F. Ganteför, K. H. Bowen, B. Kiran, M. Willis, P. Jena, R. Burgert, and H. Schnöckel. Unexpected Stability of Al4H6: A Borane Analog? Science, 315:356–358, 2007.

[12] Wikipedia; Stand März 2010. www.wikipedia.org.

[13] R. S. Calder, W. Cochran, D. Griffiths, and R. D. Lowde. An x-ray and neutron diffraction analysis of lithium hydride. Journal of Physics and Chemistry of Solids, 23(6):621 – 632, 1962.

[14] G. G. Libowitz. The solid-state chemistry of binary metal hydrides. W.A. Benjamin Inc., 1965.

[15] P. T. R. Gibb. Nonstoichiometric hydrides. In Advances in Chemistry, pages 99–

110. AMERICAN CHEMICAL SOCIETY, WASHINGTON, D. C., January 1963.

[16] A. Pundt and R. Kirchheim. Hydrogen in metals: Microstructural aspects. Annual Review of Materials Research, 36(1):555–608, August 2006.

[17] R. J. Behm, V. Penka, M.-G. Cattania, K. Christmann, and G. Ertl. Evidence for

“subsurface” hydrogen on Pd(110): An intermediate between chemisorbed and dis-solved species. The Journal of Chemical Physics, 78(12):7486–7490, 1983.

[18] A. D. Dowden. Heterogenous Catalysis. I. Theoretical Basis. J. Chem. Soc., 1950.

[19] G.K. Wertheim. Microscopic Methods in Metals. Springer, 1986.

[20] E.W. Plummer, C.T. Chen, W.K. Ford, W. Eberhardt, R.P. Messmer, and H.-J.

Freund. A comparison of surface electron spectroscopies. Surface Science, 158:58 – 83, 1985.

[21] Y. Kuk, P. J. Silverman, and H. Q. Nguyen. Adsorbate-induced reconstruction in the Ni(110)-H system. Phys. Rev. Lett., 59:1452–1455, 1987.

[22] K. Christmann. Interaction of hydrogen with solid surfaces. Surface Science Re-ports, 9:1 – 163, 1988.

[23] P. Hollins and J. Pritchard. Infrared studies of chemisorbed layers on single crystals.

Progress in Surface Science, 19(4):275–349, 1985.

[24] H. Froitzheim, H. Lammering, and H. L. Günter. Energy-loss-spectroscopy studies on the adsorption of hydrogen on cleaved Si(111)-(2x1) surfaces. Phys. Rev. B, 27(4):2278–2284, Feb 1983.

[25] J.A. Schaefer, F. Stucki, J.A. Anderson, G.J. Lapeyre, and W. Göpel. Coverage-and temperature-dependent vibrational spectra of hydrogen chemisorbed on Si(100) 2x1. Surface Science, 140(1):207–215, May 1984.

[26] Y.J. Chabal. High-resolution infrared spectroscopy of adsorbates on semiconductor surfaces: Hydrogen on Si(100) and Ge(100). Surface Science, 168(1-3):594–608, March 1986.

[27] H. Froitzheim, H. Ibach, and S. Lehwald. Surface Sites of H on W (100). Phys. Rev.

Lett., 36(26):1549–1551, Jun 1976.

[28] M. R. Barnes and R. F. Willis. Hydrogen-adsorption-induced reconstruction of tungsten (100): Observation of surface vibrational modes. Phys. Rev. Lett., 41(25):1729–1733, Dec 1978.

[29] R. F. Willis, W. Ho, and E. W. Plummer. Vibrational excitation of hydrogenic modes on tungsten by angle dependent electron-energy-loss spectroscopy. Surface Science, 80:593–601, February 1979.

[30] Yasuo Fukuda and Masayasu Nagoshi. Chemisorption of hydrogen on Cr(111) studied by XPS, UPS, and HREELS. Applied Surface Science, 48-49:147–150, 1991.

[31] K. Christmann, R. J. Behm, G. Ertl, M. A. Van Hove, and W. H. Weinberg. Che-misorption geometry of hydrogen on Ni(111): Order and disorder. The Journal of Chemical Physics, 70(9):4168–4184, 1979.

[32] T. Engel and K.H. Rieder. A molecular-beam diffraction study of H2adsorption on Ni(110). Surface Science, 109(1):140–166, August 1981.

[33] T.E. Felter, S.M. Foiles, M.S. Daw, and R.H. Stulen. Order-disorder transitions and subsurface occupation for hydrogen on Pd(111). Surface Science Letters, 171(1):L379–L386, May 1986.

[34] M. Skottke, R. J. Behm, G. Ertl, V. Penka, and W. Moritz. LEED structure analy-sis of the clean and (2 x 1)H covered Pd(110) surface. The Journal of Chemical Physics, 87(10):6191–6198, 1987.

[35] M.A. Barteau, J.Q. Broughton, and D. Menzel. Determination of hydrogen atom binding sites on Ru(001) by HREELS. Surface Science, 133(2-3):443–452, October 1983.

[36] H. Conrad, R. Scala, W. Stenzel, and R. Unwin. Adsorption of hydrogen and deu-terium on Ru(001). The Journal of Chemical Physics, 81(12):6371–6378, 1984.

[37] W. Nichtl, N. Bickel, L. Hammer, K. Heinz, and K. Müller. Surface relaxation change by hydrogen adsorption on Rh(110). Surface Science, 188(3):L729–L734, October 1987.

[38] A.M. Baró, H. Ibach, and H.D. Bruchmann. Vibrational modes of hydrogen ad-sorbed on Pt(111): Adsorption site and excitation mechanism. Surface Science, 88(2-3):384–398, October 1979.

[39] C. Nyberg and C. G. Tengstål. Vibrational excitations of p(2x2) oxygen and c(2x2) hydrogen on Pd(100). Solid State Communications, 44(2):251–254, October 1982.

[40] H. Conrad, G. Ertl, and E.E. Latta. Adsorption of hydrogen on palladium single crystal surfaces. Surface Science, 41(2):435–446, February 1974.

[41] K. H. Rieder, M. Baumberger, and W. Stocker. Selective Transition of Chemisorbed Hydrogen to Subsurface Sites on Pd(110). Phys. Rev. Lett., 51(19):1799–1802, Nov 1983.

[42] T. Mitsui, M. K. Rose, E. Fomin, D. F. Ogletree, and M. Salmeron. Dissociative hydrogen adsorption on palladium requires aggregates of three or more vacancies.

Nature, 422(6933):705–707, April 2003.

[43] M. Tatarkhanov, F. Rose, E. Fomin, D. F. Ogletree, and M. Salmeron. Hydrogen adsorption on Ru(001) studied by scanning tunneling microscopy. Surface Science, 602(2):487–492, January 2008.

[44] J. Harris and S. Andersson. H2 Dissociation at Metal Surfaces. Phys. Rev. Lett., 55(15):1583–1586, Oct 1985.

[45] J. K. Nørskov, A. Houmøller, P. K. Johansson, and B. I. Lundqvist. Adsorption and dissociation of h2 on mg surfaces. Phys. Rev. Lett., 46(4):257–260, Jan 1981.

[46] J. Harris. On vibrationally-assisted dissociation of H2 at metal surfaces. Surface Science, 221(1-2):335–345, October 1989.

[47] W. Eberhardt, F. Greuter, and E. W. Plummer. Bonding of H to Ni, Pd, and Pt Surfaces. Phys. Rev. Lett., 46(16):1085–1088, Apr 1981.

[48] P. Hofmann and D. Menzel. Synchrotron radiation studies of hydrogen adsorption

on Ru(001). Surface Science, 152-153(Part 1):382–391, April 1985.

[49] M. W. Holmes and D. A. King. Hydrogen chemisorption on W (110): Angle-resolved photoemission. Surface Science, 110(1):120–128, September 1981.

[50] W. Eberhardt, S. G. Louie, and E. W. Plummer. Interaction of hydrogen with a Pd(111) surface. Phys. Rev. B, 28(2):465–477, Jul 1983.

[51] V. Murgai, S.-L. Weng, M. Strongin, and M. W. Ruckman. Hydrogen on Ta(110):

Photoemission study using synchrotron radiation. Phys. Rev. B, 28(10):6116–6118, Nov 1983.

[52] G. Lee and E. W. Plummer. Covalent interaction of H with the d electrons at the (111) surface of Ag. Phys. Rev. B, 62(3):1651–1654, Jul 2000.

[53] I. Chorkendorff and P.B. Rasmussen. Reconstruction of Cu(100) by adsorption of atomic hydrogen. Surface Science, 248:35 – 44, 1991.

[54] C.F. Walters, D.B. Poker, D.M. Zehner, and E.W. Plummer. The deuterium-induced reconstruction of Cu(100): Correlation of surface structures with absolute coverage.

Surface Science, 312:L759 – L766, 1994.

[55] D. Kolovos-Vellianitis, Th. Kammler, and J. Küppers. Interaction of gaseous H atoms with Cu(100) surfaces: adsorption, absorption, and abstraction. Surface Science, 454-456:316 – 319, 2000.

[56] S. Andersson, L. Wilzén, and J. Harris. Sticking of Molecular Hydrogen on a Cold Cu(100) Surface. Phys. Rev. Lett., 55:2591–2594, 1985.

[57] J. Goerge, P. Zeppenfeld, R. David, M. Büchel, and G. Comsa. Structure of the hydrogen covered Cu(110) surface studied with thermal energy helium scattering.

Surface Science, 289:201 – 213, 1993.

[58] A.P. Baddorf, I.W. Lyo, E.W. Plummer, and H.L. Davis. Removal of Surface rela-xation of Cu(110) by hydrogen adsorption. Journal of Vacuum sCience and Tech-nology, 5:782, 1987.

[59] G. Lee, D. B. Poker, D. M. Zehner, and E. W. Plummer. Coverage and structure of deuterium on Cu(111). Surface Science, 357-358:717 – 720, 1996.

[60] E. M. McCash, S. F. Parker, J. Pritchard, and M. A. Chesters. The adsorption of ato-mic hydrogen on Cu(111) investigated by reflection-absorption infrared

spectrosco-py, electron energy loss spectroscopy and low energy electron diffraction. Surface Science, 215(3):363–377, May 1989.

[61] D.J. Auerbach, C.T. Rettner, and H.A. Michelsen. Interaction dynamics of hydrogen at a Cu(111) surface. Surface Science, 283:1 – 8, 1993.

[62] R. Dus. Hydrogen adsorption on group 1b metals. Progress in Surface Science, 42(1-4):231–243, January 1993.

[63] J. Pritchard, T. Catterick, and R.K. Gupta. Infrared spectroscopy of chemisorbed carbon monoxide on copper. Surface Science, 53(1):1–20, December 1975.

[64] F. Greuter and E. W. Plummer. Chemisorption of atomic hydrogen on Cu(111).

Solid State Communications, 48(1):37–41, October 1983.

[65] W. Eberhardt, R. Cantor, F. Greuter, and E. W. Plummer. Photoemission from con-densed layers of H2 on Cu and Au. Solid State Communications, 42(11):799–802, June 1982.

[66] P. T. Sprunger and E. W. Plummer. Interaction of hydrogen with the Ag(110) sur-face. Phys. Rev. B, 48:14436–14446, 1993.

[67] X.-L. Zhou, J.M. White, and B.E. Koel. Chemisorption of atomic hydrogen on clean and Cl-covered Ag(111). Surface Science, 218(1):201–210, August 1989.

[68] G. Lee and E.W. Plummer. Interaction of hydrogen with the Ag(111) surface. Phys.

Rev. B, 51:7250–7261, 1995.

[69] H. Li, J. Quinn, Y.S. Li, D. Tian, F. Jona, and P.M. Marcus. Multilayer relaxation of clean Ag(001). Phys. Rev. B, 43:7305–7307, 1991.

[70] S.C. Jung and M.H. Kang. Effect of hydrogen on the surface relaxation of Pd(100), Rh(100), and Ag(100). Phys. Rev. B, 72:205419, 2005.

[71] A. Eichler, J. Hafner, A. Groß, and M. Scheffler. Trends in the chemical reactivi-ty of surfaces studied by ab initio quantum-dynamics calculations. Phys. Rev. B, 59:13297–13300, 1999.

[72] Christiane Kartusch and Jeroen A. van Bokhoven. Hydrogenation over gold cata-lysts: The interaction of gold with hydrogen. Gold Bulletin, 42:343, 2009.

[73] Allen G. Sault, Robert J. Madix, and Charles T. Campbell. Adsorption of oxygen and hydrogen on Au(110)-(1 x 2). Surface Science, 169(2-3):347–356, April 1986.

[74] Michio Okada, Mamiko Nakamura, Kousuke Moritani, and Toshio Kasai. Disso-ciative adsorption of hydrogen on thin Au films grown on Ir(111). Surface Science, 523(3):218–230, January 2003.

[75] L. Stobinski and R. Dus. Molecular hydrogen chemisorption on thin unsintered gold films deposited at low temperature. Surface Science, 298(1):101–106, December 1993.

[76] L. Stobinski. Molecular and atomic deuterium chemisorption on thin gold films at 78 k: an isotope effect. Applied Surface Science, 103(4):503–508, December 1996.

[77] L. Stobinski, L. Zommer, and R. Dus. Molecular hydrogen interactions with discon-tinuous and condiscon-tinuous thin gold films. Applied Surface Science, 141(3-4):319–325, March 1999.

[78] B. Hammer and J. K. Norskov. Why gold is the noblest of all the metals. Nature, 376(6537):238–240, July 1995.

[79] E. Recknagel. Clusterphysik. Fachbereich Physik, Universität Konstanz, 2005.

[80] W. A. de Heer. The physics of simple metal clusters: experimental aspects and simple models. Rev. Mod. Phys., 65:611–676, 1993.

[81] K. J. Taylor, C. L. Pettiette-Hall, O. Cheshnovsky, and R. E. Smalley. Ultraviolet photoelectron spectra of coinage metal clusters. The Journal of Chemical Physics, 96:3319–3329, 1992.

[82] A. Lechtken, C. Neiss, J. Stairs, and D. Schooss. Comparative study of the structures of copper, silver, and gold icosamers: Influence of metal type and charge state. The Journal of Chemical Physics, 129:154304, 2008.

[83] V.G. Grigoryan, D. Alamanova, and M. Springborg. Structure and energetics of CuN clusters with(2<N <150): An embedded-atom-method study. Phys. Rev.

B, 73:115415, 2006.

[84] G.H. Guvelioglu, P. Ma, X. He, R. C. Forrey, and H: Cheng. Evolution of Small Copper Clusters and Dissociative Chemisorption of Hydrogen. Physical Review Letters, 94:026103, 2005.

[85] E.M. Fernandez, J.M. Soler, I.L. Garzón, and L.C. Balbás. Trends in the structure and bonding of noble metal clusters. Phys. Rev. B, 70:165403, 2004.

[86] C. Massobrio, A. Pasquarello, and A. Dal Corso. Structural and electronic proper-ties of small Cunclusters using generalized-gradient approximations within density functional theory. The Journal of Chemical Physics, 109:6626–6630, 1998.

[87] S. Li, M.M.G. Alemany, and J.R. Chelikowsky. Real space pseudopotential calcu-lations for copper clusters. The Journal of Chemical Physics, 125:034311, 2006.

[88] D. Danovich and M. Filatov. No-pair bonding in coinage metal dimers. The Journal of Physical Chemistry A, 112:12995–13001, 2008.

[89] H. Häkkinen, M. Moseler, and U. Landman. Bonding in Cu, Ag, and Au Clusters:

Relativistic Effects, Trends, and Surprises. Phys. Rev. Lett., 89:033401, 2002.

[90] B. Assadollahzadeh, P. R. Bunker, and P. Schwerdtfeger. The low lying isomers of the copper nonamer cluster, Cu9. Chemical Physics Letters, 451:262 – 269, 2008.

[91] D.G. Leopold, J. Ho, and W. C. Lineberger. Photoelectron spectroscopy of mass-selected metal cluster anions. I. Cun, n=1−10. The Journal of Chemical Physics, 86:1715–1726, 1987.

[92] O. Cheshnovsky, K. J. Taylor, J. Conceicao, and R. E. Smalley. Ultraviolet photo-electron spectra of mass-selected copper clusters: Evolution of the 3d band. Phys.

Rev. Lett., 64:1785–1788, 1990.

[93] G. Ganteför and W. Eberhardt. Localization of 3d and 4d Electrons in Small Clus-ters: The “Roots” of Magnetism. Phys. Rev. Lett., 76:4975–4978, 1996.

[94] J. Ho, K. M. Ervin, and W. C. Lineberger. Photoelectron spectroscopy of metal cluster anions: Cun,Agn and Aun. The Journal of Chemical Physics, 93:6987–

7002, 1990.

[95] C. L. Pettiette, S. H. Yang, M. J. Craycraft, J. Conceicao, R. T. Laaksonen, O. Ches-hnovsky, and R. E. Smalley. Ultraviolet photoelectron spectroscopy of copper clus-ters. The Journal of Chemical Physics, 88:5377–5382, 1988.

[96] H. Handschuh, C.-Y. Cha, H. Moller, P.S. Bechthold, G. Gantefor, and W. Eberhardt.

Delocalized electronic states in small clusters. Comparison of Nan, Cun, Agn and Aunclusters. Chemical Physics Letters, 227:496–502, 1994.

[97] C. Y. Cha, G. Ganteför, and W. Eberhardt. Photoelectron spectroscopy of Cun clusters: Comparison with jellium model predictions. The Journal of Chemical

Physics, 99:6308–6312, 1993.

[98] A.I. Boldyrev, X.Li, and L.-S. Wang. Vibrationally resolved photoelectron spectra of CuCN and AgCNand ab initio studies of the structure and bonding in CuCN.

The Journal of Chemical Physics, 112:3627–3632, 2000.

[99] M. A. Sobhy and A. W. Castleman Jr. Photoelectron imaging of copper and silver mono- and diamine anions. The Journal of Chemical Physics, 126:154314, 2007.

[100] M.F. Jarrold and K.M. Creegan. Optical spectroscopy of metal clusters: Cu+4. Che-mical Physics Letters, 166:116 – 122, 1990.

[101] R.M.D. Calvi, D.H. Andrews, and W.C. Lineberger. Negative ion photoelectron spectroscopy of copper hydrides. Chemical Physics Letters, 442:12 – 16, 2007.

[102] K. Jug, B. Zimmermann, P. Calaminici, and A.M. Koster. Structure and stability of small copper clusters. The Journal of Chemical Physics, 116:4497–4507, 2002.

[103] M. Itoh, V. Kumar, T. Adschiri, and Y. Kawazoe. Comprehensive study of sodium, copper, and silver clusters over a wide range of sizes 2<=N<=75. The Journal of Chemical Physics, 131:174510, 2009.

[104] M. N. Blom, D. Schooss, J. Stairs, and M.M. Kappes. Experimental structure de-termination of silver cluster ions(Ag+n,19<=n<=79). The Journal of Chemical Physics, 124:244308, 2006.

[105] D. Schooss, M.N. Blom, J.H. Parks, B. v. Issendorff, H. Haberland, and M.M. Kap-pes. The Structures of Ag+55and Ag55: Trapped Ion Electron Diffraction and Density Functional Theory. Nano Letters, 5:1972–1977, 2005.

[106] X. Xing, R.M. Danell, I.L. Garzón, K. Michaelian, M.N. Blom, M.M. Burns, and J.H. Parks. Size-dependent fivefold and icosahedral symmetry in silver clusters.

Phys. Rev. B, 72:081405, 2005.

[107] A. Fielicke, I. Rabin, and G. Meijer. Far-infrared spectroscopy of small neutral silver clusters. The Journal of Physical Chemistry A, 110:8060–8063, 2006.

[108] P. Weis, T. Bierweiler, S. Gilb, and M. M. Kappes. Structures of small silver cluster cations (Ag+n,n<12): ion mobility measurements versus density functional and MP2 calculations. Chemical Physics Letters, 355:355 – 364, 2002.

[109] H. Handschuh, G. Gantefor, P. S. Bechthold, and W. Eberhardt. A comparison of

photoelectron spectroscopy and two-photon ionization spectroscopy: Excited states of Au2,Au3,andAu4. The Journal of Chemical Physics, 100:7093–7100, 1994.

[110] G. Ganteför, M. Gausa, K.-H. Meiwes-Broer, and H.O. Lutz. Ultraviolet photo-detachment spectroscopy on jet-cooled metal-cluster anions. Faraday Discussions of the Chemical Society, 86:197, 1988.

[111] D. Schooss, S. Gilb, J. Kaller, M. M. Kappes, F. Furche, A. Kohn, K. May, and R. Ahlrichs. Photodissociation spectroscopy of Ag+4(N2)mm = 0-4. The Journal of Chemical Physics, 113:5361–5371, 2000.

[112] K. Tono, A. Terasaki, T. Ohta, and T. Kondow. Photoelectron spectroscopy and density-functional calculations of silver cluster anions doped with a cobalt atom:

Size dependent sp-d interaction. Chemical Physics Letters, 449:276 – 281, 2007.

[113] Y. Wang, J. Szczepanski, and M. Vala. Silver-Carbon Cluster AgC3: Structure and Infrared Frequencies. The Journal of Physical Chemistry A, 112(44):11088–11092, November 2008.

[114] M. Schmidt, A. Masson, and C. Bréchignac. Oxygen and silver clusters: Transition from chemisorption to oxidation. Phys. Rev. Lett., 91:243401, 2003.

[115] L. D. Socaciu, J. Hagen, U. Heiz, T. M. Bernhardt, T. Leisner, and L. Wöste. Reac-tion mechanism for the oxidaReac-tion of free silver dimers. Chemical Physics Letters, 340:282 – 288, 2001.

[116] Y.D. Kim, G. Ganteför, Q. Sun, and P. Jena. Chemisorption of atomic and molecular oxygen on au and ag cluster anions: discrimination of different isomers. Chemical Physics Letters, 396:69 – 74, 2004.

[117] K. Koyasu, M. Niemietz, W. Westhäuser, and G. Ganteför. O2photodesorption from a Ag8O2-cluster. The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, 53:59–62, 2009.

[118] W. Westhäuser. Relaxationsdynamik und Femtochemie in massenselektierten Metall-Clustern. PhD thesis, Universität Konstanz, 2009.

[119] Z.-M. Tian, Y. Tian, W.-M. Wei, T.-J. He, D.-M. Chen, and F.-C. Liu. Ab initio study on the kinetics and mechanisms of the formation of Agn(n = 2−6)clusters.

Chemical Physics Letters, 420:550 – 555, 2006.

[120] M. N. Huda and A. K. Ray. Electronic structures and magic numbers of small silver clusters: A many-body perturbation-theoretic study. Phys. Rev. A, 67:013201, 2003.

[121] M.N. Huda and A.K. Ray. A correlation study of small silver clusters. The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, 22:217–227, 2003.

[122] H. M. Lee, M. Ge, B.R. Sahu, P. Tarakeshwar, and K.S. Kim. Geometrical and electronic structures of gold, silver, and gold-silver binary clusters: Origins of duc-tility of gold and gold-silver alloy formation. The Journal of Physical Chemistry B, 107:9994–10005, 2003.

[123] M. Yang, K. A. Jackson, and J. Jellinek. First-principles study of intermediate size silver clusters: Shape evolution and its impact on cluster properties. The Journal of Chemical Physics, 125:144308, 2006.

[124] X. Yang, W. Cai, and X. Shao. Structural Variation of Silver Clusters from Ag13to Ag160. The Journal of Physical Chemistry A, 111:5048–5056, 2007.

[125] S. Xueguang, X. Yang, and W. Cai. Geometry optimization and structural distri-bution of silver clusters from Ag170 to Ag310. Chemical Physics Letters, 460:315 – 318, 2008.

[126] V. Bonacic-Koutecky, V. Veyret, and R. Mitric. Ab initio study of the absorption spectra of Agn(n=5−8)clusters. The Journal of Chemical Physics, 115:10450–

10460, 2001.

[127] J. Zhou, Z.-H. Li, W.-N. Wang, and K.-N. Fan. Density functional study of the inter-action of molecular oxygen with small neutral and charged silver clusters. Chemical Physics Letters, 421:448 – 452, 2006.

[128] J. O. M.A. Lins and M. A. C. Nascimento. A density functional study of some silver cluster hydrides. Chemical Physics Letters, 391:9 – 15, 2004.

[129] S. Zhao, Z.-P. Liu, Z.-H. Li, W.-N. Wang, and K.-N. Fan. Density functional stu-dy of small neutral and charged silver cluster hydrides. The Journal of Physical Chemistry A, 110:11537–11542, 2006.

[130] H. Hakkinen, B. Yoon, U. Landman, X. Li, H.-J. Zhai, and L.-S. Wang. On the Electronic and Atomic Structures of Small Aun (n = 4-14) Clusters: A Photoelectron Spectroscopy and Density-Functional Study. The Journal of Physical Chemistry A,

107:6168–6175, 2003.

[131] F. Furche, R. Ahlrichs, P. Weis, C. Jacob, S. Gilb, T. Bierweiler, and M. M. Kap-pes. The structures of small gold cluster anions as determined by a combination of ion mobility measurements and density functional calculations. The Journal of Chemical Physics, 117:6982–6990, 2002.

[132] M.P. Johansson, A. Lechtken, D. Schooss, M.M. Kappes, and F. Furche. 2d-3d transition of gold cluster anions resolved. Phys. Rev. A, 77:053202, 2008.

[133] L.-M. Wang, J. Bai, A. Lechtken, W. Huang, D. Schooss, M.M. Kappes, X. C. Zeng, and L.-S. Wang. Magnetic doping of the golden cage cluster M@Au16 (M=Fe ,Co,Ni). Phys. Rev. B, 79:033413, 2009.

[134] L.-M. Wang, R. Pal, W. Huang, X. C. Zeng, and L.-S. Wang. Tuning the electronic properties of the golden buckyball by endohedral doping: M@Au16(M = Ag,Zn,In).

The Journal of Chemical Physics, 130:051101, 2009.

[135] J. Li, X. Li, H.-J. Zha, and L. S. Wang. Au20: A Tetrahedral Cluster. Science, 299:864, 2003.

[136] M. Haruta. Size- and support-dependency in the catalysis of gold. Catalysis Today, 36:153–166, 1997.

[137] D. Fischer, W. Andreoni, A. Curioni, H. Grönbeck, S. Burkart, and G. Ganteför.

Chemisorption on small clusters: can vertical detachment energy measurements provide chemical information? h on au as a case study. Chemical Physics Letters, 361:389 – 396, 2002.

[138] G. Ganteför and W. Eberhardt. Shell structure and s–p hybridization in small alu-minum clusters. Chemical Physics Letters, 217:600 – 604, 1994.

[139] M. F. Jarrold, J. E. Bower, and J. S. Kraus. Collision induced dissociation of me-tal cluster ions: Bare aluminum clusters, Aln+ (n=3-26). The Journal of Chemical Physics, 86:3876–3885, 1987.

[140] G. Ganteför, M. Gausa, K. H. Meiwes-Broer, and H. O. Lutz. Photoelectron spec-troscopy of jet-cooled aluminium cluster anions. Zeitschrift für Physik D Atoms, Molecules and Clusters, 9:253–261, 1988.

[141] X.Li, H. Wu, X.-B. Wang, and L.-S. Wang. s- p Hybridization and Electron Shell

Structures in Aluminum Clusters: A Photoelectron Spectroscopy Study. Phys. Rev.

Lett., 81:1909–1912, 1998.

[142] D. E. Bergeron, P. J. Roach, A. W. Castleman Jr., N. O. Jones, and S. N. Khanna. Al cluster superatoms as halogens in polyhalides and as alkaline earths in iodide salts.

Science, 307:231–235, 2005.

[143] R. E. Leuchtner, A. C. Harms, and A. W. Castleman Jr. Aluminum cluster reactions.

The Journal of Chemical Physics, 94:1093–1101, 1991.

[144] S. N. Khanna and P. Jena. Reactivity of hydrogen with open and closed shell

[144] S. N. Khanna and P. Jena. Reactivity of hydrogen with open and closed shell