• Keine Ergebnisse gefunden

Testing  KOD  exo -­  DNA  Polymerase  for  Incorporation  of  Modified

3.   Results  and  Discussion

3.1.   Initial  Screening  for  Discrimination  between  C  and  5mC

3.2.2   Screening  of  Modified  Nucleotides  for  5mC  Detection

3.2.2.2.     Testing  KOD  exo -­  DNA  Polymerase  for  Incorporation  of  Modified

3.2.2.2.    Testing  KOD  exo  DNA  Polymerase  for  Incorporation  of  Modified   Nucleotides  

Furthermore,  the  in  position  6  modified  dGTP  derivatives  were  tested  towards  their  potentials  to  be   used   for   5mC   detection   by   employing   the   B-­family   DNA   polymerase   KOD  exo   (see  Figure   20).   To   ensure  quantitative  evaluation  of  those  single-­nucleotide  incorporation  primer  extension  experiments,   all   experiments   were   done   at   least   in   triplicates.  Figure   20   summarises   all   observed   incorporation   efficiencies   opposite   C   or   5mC   as   well   as   the   discrimination   ratio,   determined   by   calculating   the   quotient   of   %   incorporation   opposite   C   and   %   incorporation   opposite   5mC.   Colour   coding   highlights   those  nucleotides  with  the  most  efficient  incorporation  by  KOD  exo  (blue)  as  well  as  those  leading  to   the  highest  discrimination  (red).  

In   contrast,   utilising   the   sequence-­family   B   DNA   polymerase   KOD   exo   I   found   that   this   DNA   polymerase   is   capable   to   incorporate   all   modified   nucleotides   with   only   slightly   decreased   incorporation   efficiencies   compared   to   the   unmodified   dGMP.   As   already   observed   before,   the   incorporation   efficiencies   decrease   with   increased   steric   hindrance   of   the   introduced   modification.  

Therefore,   nucleotide  1a   is   incorporated   with   a   higher   efficiency   than   nucleotide  1d.   The   same   tendency  can  be  observed  for  the  amino  modified  nucleotides  9a  -­  9o  as  well  as  for  the  thio  modified   nucleotides  10,  10a  and  10b.  

Interestingly,   I   observed   the   tendency   that   all   modified   nucleotides   are   more   efficiently   processed   opposite   C   than   opposite   5mC   by   KOD   exo   (see  Figure   20).   As   mentioned   before,   already   by   processing   of   the   unmodified   dGTP,   discrimination   can   be   observed   with   favoured   incorporation   opposite  C.  This  discrimination  improves  by  the  usage  of  modified  nucleotides.  The  best  discrimination   ratios  were  measured  during  incorporation  of  nucleotides  1b,  9b,  9g  and  9o.  By  employing  KOD  exo  

with   the   unmodified   dGTP   a   discrimination   ratio   of   1.36   was   found.   This   discrimination   increases   remarkably,   if   the   oxygen   in   position   6   is   alkylated.   Nucleotide   1a   already   shows   improved   discrimination  compared  to  dGTP,  but  the  introduction  of  the  bigger  ethyl-­group  in  nucleotide  1b  leads   to  an  even  higher  discrimination.  Hence,  the  discrimination  ratio  observed  during  processing  of  dGTP   (1.36)  can  be  improved  to  a  factor  of  3.16  for  nucleotide  1b.  The  employment  of  larger  modifications   does  not  further  improve  the  discrimination  ratio.  So,  discrimination  decreases  for  nucleotides  1c  and   1d.   Similar   effects   can   be   observed   for   the   amino   modified   nucleotides   9a   -­   9d.   Again,   the   discrimination   increases   with   introduction   of   a   methylamino-­   (9a)   or   ethylamino-­group   (9b)   in   comparison   to   6-­amino-­dGTP  9.   This   effect   vanishes   after   introduction   of   more   bulky   modifications   (9c  -­  9f).   Interestingly,   the   difference   in   incorporation   efficiencies   opposite   C   and   5mC   increases   further  by  employment  of  tertiary  amines  (9h  -­  9o),  as  the  highest  discrimination  can  be  observed  by   the   most   rigid,   sterically   hindered   modification   pyrrolidine   9o.   In   this   case,   a   threefold   higher   incorporation  can  be  observed  opposite  C,  compared  to  5mC.  Improved  discrimination  for  6-­thio  dGTP   10   was   observed   before.   Additional   modification   by   alkylation   (10a+b)   improves   this   discrimination   further,  but  still  discrimination  detected  by  processing  of  nucleotide  1b  is  best  (see  Figure  20).  

 

Figure   20:   Structures   of   modified   dG*TP   analogues,   including   %   incorporation   opposite   C   or   5mC   employing   DNA  polymerase  KOD  exo  in  single-­nucleotide  incorporation  primer  extension  reactions.  50  µM  dGTP  or  dG*TP   and   5   nM   KOD   exo   were   used;;   reactions   were   stopped   after   10   min.   Experiments   were   done   at   least   in   triplicates.  Arithmetic  mean  is  given;;  errors  are  given  in  the  appendix.  

3.3.2.2.1.  Kinetics  for  Incorporation  of  O6-­Alkyl-­dGTP  Derivatives  by  KOD   exo  

To  further  investigate  these  findings,  I  determined  steady-­state  kinetics[114]  for  incorporation  of  the   nucleotides  dGMP  and  1a  -­  1d  opposite  C  and  5mC  (see  Table  1).  Those  nucleotides  were  chosen  for   further  studies,  as  they  proved  most  promising  in  previous  experiments  in  combination  with  KOD  exo.   Comparison   of   the   catalytic   efficiencies   (kcat/KM)   observed   for   processing   of   dGTP   and   the   6-­alkyl   modified  nucleotides  opposite  C  and  5mC  in  the  template  strand  confirms  all  tendencies  observed  in   the   above   described   primer   extension   experiments.   The   incorporation   efficiencies   of   all   modified   nucleotides  decrease  with  increased  steric  hindrance  of  the  modifications,  as  the  catalytic  efficiencies   decrease  sequentially  from  1.5  ±  0.1  s-­1M-­1  observed  during  processing  of  dGTP  to  0.031±0.005  s-­1M-­1   for  1d  (see  Table  1  +  Figure  21).  

However,   the   ratio   of   the   catalytic   efficiencies   observed   during   processing   of   the   respective   nucleotide  opposite  C  in  comparison  to  the  incorporation  opposite  the  epigenetic  marker  5mC  varies.  

Unmodified   dGTP   is   processed   opposite   C   with   1.4   fold   higher   catalytic   efficiency   compared   to   the   incorporation   opposite   5mC.   This   discrimination   ratio   for   nucleotide   incorporation   opposite   C   in   comparison   to   the   incorporation   opposite   5mC   increases   for   nucleotide  1a   to   a   factor   of   2.6   and   for   nucleotide  1b  even  further  to  4.2  (see  Table  1).  

3.  Results  and  Discussion   46    

Table  1:  Steady-­state  kinetic  analysis  of  single-­nucleotide  incorporation  of  dGMP  and  modified  nucleotides  1a  -­  

1d  opposite  C  or  5mC  employing  DNA  polymerase  KOD  exo.  The  ratio  was  calculated  by  the  quotient  of  kcat/KM  

opposite  C  and  kcat/KM  opposite  5mC.  

nucleotide   template   kcat  [s-­1][a]   KM  [µM][a]   kcat/KM  [s-­1µM-­1][a]   ratio   dGTP   C   5.9  ±  0.1   4.0  ±  0.3   1.5  ±  0.1   1.36  

  5mC   3.5  ±  0.1   3.3  ±  0.3   1.1  ±  0.1    

1a   C   3.338  ±  0.001   20.7  ±  2.6   0.16  ±  0.02   2.58  

  5mC   1.12  ±  0.6   18.2  ±  1.6   0.062  ±  0.010    

1b   C   2.27  ±  0.06   15.8  ±  2.0   0.14  ±  0.02   4.24  

  5mC   0.91  ±  0.06   27.4  ±  4.0   0.033  ±  0.007    

1c   C   2.55  ±  0.04   24.1  ±  3.1   0.105  ±  0.015   1.08  

  5mC   1.47  ±  0.02   15.2  ±  1.4   0.097  ±  0.011    

1d   C   2.44  ±  0.14   78.8  ±  8.8   0.031  ±  0.005   1.48  

  5mC   1.19  ±  0.09   56.0  ±  7.7   0.021  ±  0.004    

[a]  

Data  points  derive  from  triplicates.  ±  describes  SD.    

Sequence  primer:  5´-­d(CGAAATGATCCCATCCAGCTGC)-­3´  

   

When   increasing   the   steric   bulk   of   the   nucleotide   modification,   a   decline   of   the   ratio   to   1.1   for   nucleotide  1c   and   1.5   for  1d   can   be   observed.   Having   a   closer   look   at   the   kinetic   data   depicted   in   Table  1,  it  can  be  seen,  that  discrimination  between  C  and  5mC  is  mainly  based  on  differences  in  kcat.   For  incorporation  of  all  nucleotides,  kcat  is  higher  for  processing  opposite  C  than  5mC  indicating  more   efficient   incorporation   opposite   the   template   containing   C,   although   KM   was   as   well   higher   for   the   incorporation  opposite  C.  Solely  for  processing  of  nucleotide  1b  a  lower  KM  can  be  observed  for  the   incorporation  opposite  C.  Hence,  kcat/KM  shows  the  best  discrimination  in  case  of  1b,  proving  1b  to  be   the  most  promising  nucleotide  in  combination  with  KOD  exo.  

 

Figure  21:  Kinetic  studies  of  incorporation  of  dGMP  and  1a-­d  by  KOD  exo.  a)  Partial  primer  /  template  sequence   used;;   b)   left:   chemical   structure   and   PAGE   analysis   of   single-­nucleotide   incorporation   primer   extension   experiments   of   dGMP   and   nucleotides  1a-­d   employing   KOD   exo.   50   µM   dGTP   or   dG*TP   and   5   nM   KOD   exo  

were   used;;   reactions   were   stopped   after   indicated   time   points;;   right:   steady-­state   kinetics   of   single-­nucleotide   incorporation  of  dGMP  or  dG*MP  opposite  C  (black  solid  line)  or  5mC  (red  dashed  line).  Experiments  were  done   at  least  in  triplicates.  

   

3.  Results  and  Discussion   48