• Keine Ergebnisse gefunden

Screening  of  modified  nucleotides  to  discriminate  5mC

3.   Results  and  Discussion

3.1.   Initial  Screening  for  Discrimination  between  C  and  5mC

3.1.2.   Screening  of  modified  nucleotides  to  discriminate  5mC

All  modified  nucleotides  depicted  in  Figure  10  were  tested  towards  their  potential  to  be  used  in  5mC   detection   due   to   diverging   incorporation   efficiencies   opposite   C   or   the   epigenetic   marker   5mC   by   different  DNA  polymerases.  Two  DNA  polymerases  belonging  to  two  different  sequence  families  were   chosen   for   previous   screening   experiments:   the   DNA   polymerases   KlenTaq,   belonging   to   sequence   family  A  and  KOD  exo,  member  of  sequence  family  B.[104]  Archeal  DNA  polymerases  (as  KOD  exo)   are  known  to  have  the  ability  to  detect  U  in  DNA  by  a  “read  ahead”  mechanism.[105]  Detection  occurs   at   a   site   distant   from   the   nucleotide   incorporation   site.   As   U   differs   from   T   only   by   an   additional   methylation  in  position  5,  T  can  be  seen  as  5mU.  Thus,  attempts  to  identify  combinations  of  modified   nucleotides  and  DNA  polymerase  with  increased  discrimination  between  C  and  5mC  seem  promising.    

The  unmodified  dGTP  was  tested  in  comparison  to  the  modified  nucleotides  1  -­  10  in  radioactive   single-­nucleotide   incorporation   primer   extension   experiments   employing   both   mentioned   DNA   polymerases.   Analysis   was   afterwards   performed   by   denaturing   PAGE   analysis   and   visualisation   by   autoradiography.  A  non-­elongated  primer  band  can  be  seen  as  reference  on  the  left  side  of  every  gel   picture  and  incorporation  of  the  respective  nucleotide  by  a  DNA  polymerase  can  be  monitored  by  the   occurrence  of  a  second  band,  which  can  be  detected  above  the  band  resulting  from  remaining  primer   due   to   reduced   migration   mobility.   Incorporation   efficiencies   were   determined   by   terms   of   the   integrated  gel  band  intensities,  as  %  incorporation  =  100*(Iextension)/(Iprimer+Iextension).  Discrimination  ratios   were   subsequently   determined   by   calculating   the   quotient   of   %  incorporation   opposite   C   and  

%  incorporation  opposite  5mC.    

 

Figure   14:   Screening   of   dGTP   and   modified   nucleotides   using   KlenTaq.  a)  Partial   primer/template   sequence   used;;   b)   PAGE   analysis   of   single-­nucleotide   incorporation   primer   extension   experiments   of   dGMP   and   nucleotides  1a  -­  10  opposite  a  template  containing  C  in  comparison  to  a  template  containing  5mC  employing  the   DNA   polymerase   KlenTaq.   50   µM   dGTP/dG*TP   and   5   nM   KlenTaq   were   used;;   reactions   were   stopped   after   indicated  time  points.    

3.  Results  and  Discussion   36    

The   incorporation   of   dGMP   or   the   modified   nucleotides  1   -­  10  by   the   DNA   polymerase   KlenTaq   does   not   show   promising   results   (see  Figure   14).   All   modified   nucleotides   are   accepted   by   this   A-­family  DNA  polymerase,  but  incorporation  efficiencies  were  notably  decreased  in  comparison  to  the   unmodified   dGMP   (see  Figure   14).   Those   nucleotides,   modified   in   position   8   (2  -­   4),   are   processed   with   very   low   efficiencies,   compared   to   the   unmodified   dGTP.   Especially   application   of   nucleotide  4   shows  barely  any  incorporation  under  the  chosen  conditions.  In  addition,  no  promising  differences  in   incorporation  efficiencies  between  processing  of  those  nucleotides  opposite  C  in  comparison  to  5mC   can   be   observed.   Anyhow,   nucleotide  6   shows   favoured   incorporation   opposite   C;;   but   the   overall   turnover  of  this  nucleotide  by  the  KlenTaq  DNA  polymerase  is  very  low.  Another  nucleotide  showing   some   discriminating   effects,   nucleotide  8,   was   not   further   considered   as   well,   since   incorporation   of   this  δ-­phosphate   modified   tetraphosphate   leads   to   several   different   incorporation   bands,   making   interpretation  difficult  (see  Figure  14).  We  suggest  the  reason  for  those  multiple  incorporation  bands   to   be   an   additional   hydrolysis   mechanism   of   nucleotide  8.   If   cleavage   occurs   between   ß-­   and   γ-­phosphate,   instead   of   cleavage   between   α-­   and   ß-­phosphate,   alkylated   pyrophosphate   would   be   released  during  incorporation  and  the  driving  force  of  the  incorporation  would  therefore  be  maintained.  

Hence,  I  suggest  that  a  second  incorporation  band  derives  from  incorporation  of  dGDP  in  addition  to   incorporation  of  dGMP.  

In   contrast,   testing   those   nucleotides   in   combination   with   the   B-­family   DNA   polymerase   KOD   exo  

shows   already   some   discrimination   for   incorporation   of   dGMP   opposite   C   and   5mC,   as   dGTP   is   processed   with   slightly   higher   efficiency   opposite   C,   than   opposite   5mC   (see  Figure   15).   This   difference  in  incorporation  efficiencies  can  even  be  further  increased  by  the  application  of  the  modified   nucleotides  1   -­  10.   Again,   processing   of   the   modified   nucleotides   shows   decreased   efficiencies   in   comparison   to   dGTP,   but   still   most   modified   nucleotides   are   accepted   with   good   incorporation   efficiencies.  Again,  those  nucleotides  modified  in  position  8  (2  -­  4)  are  poorly  accepted.  For  nucleotide   4,  as  well  as  for  the  γ-­thiophosphate  modified  dGTP  derivative  6,  no  notable  incorporation  opposite  C   or  5mC  can  be  observed  after  60  min  under  the  chosen  conditions.  Since  those  nucleotides  are  very   poorly  incorporated  by  both  DNA  polymerases,  they  were  not  considered  for  further  experiments.  As   already   observed   in   the   experiments   employing   KlenTaq,   processing   of   nucleotide  8   led   to   an   incorporation  pattern  on  the  PAGE  gels,  which  is  difficult  to  interpret  due  to  three  different  extension   bands.   Despite   the   decreased   incorporation   efficiencies   for   the   8   modified   nucleotides  2   and  3,   increased   discrimination   between   C   and   5mC   can   be   observed   for   both   nucleotides,   while   incorporation   opposite   C   is   favoured   over   incorporation   opposite   5mC.   Nucleotide  5   shows   decent   incorporation  efficiencies  with  slightly  favoured  incorporation  opposite  C  in  comparison  to  5mC.    

The   most   promising   results   can   be   achieved   by   processing   nucleotides  1a,  7,  9   and  10.   All   four   nucleotides  are  processed  opposite  C  with  remarkably  higher  efficiencies  than  opposite  5mC  and  the   incorporation   efficiencies   opposite   C   are   just   slightly   decreased   compared   to   the   unmodified   dGMP.  

Therefore,   position   6   of   dGTP   was   chosen   for   further   derivatisation.   This   position   seems   most   promising  for  the  desired  application,  since  nucleotides  modified  in  this  position  are  well  accepted  by   both   DNA   polymerases   and   processing   of   those   nucleotides   employing   the   DNA   polymerase   KOD  exo  leads  to  the  most  pronounced  differences  in  incorporation  efficiencies  (see  Figure  15).  

 

 

Figure  15:  Screening  of  dGTP  and  modified  nucleotides  using  KOD  exo.  a)  Partial  primer  /  template  sequence   used;;   b)   PAGE   analysis   and   quantitative   evaluation   of   single-­nucleotide   incorporation   primer   extension   experiments   of   dGMP   and   nucleotides  1a   -­  10   opposite   a   template   containing   C   (black)   in   comparison   to   a   template   containing   5mC   (grey)   employing   the   DNA   polymerase   KOD   exo.   50   µM   dGTP   or   dG*TP   and   5   nM   KOD   exo   were   used;;   reactions   were   stopped   after   indicated   time   points.   Experiments   were   done   at   least   in   triplicates.    

3.2.  6  -­  Modified  dGTP  Derivatives  for  the  Detection  of  5mC  

After  testing  different  purine-­based  2´-­deoxy-­nucleotides  (see  Figure  10)  for  their  ability  to  sense   5mC  in  DNA  polymerase-­catalysed  reactions,  I  found  that  modification  of  dGTP  in  position  6  was  most  

3.  Results  and  Discussion   38    

promising.   dGTP   analogues,   modified   at   this   position   are   processed   with   remarkably   different   efficiencies  opposite  C  than  opposite  5mC  by  the  DNA  polymerase  KOD  exo  (see  Figure  15).  In  order   to  investigate,  if  this  discrimination  is  more  general  and  extendable  to  other  modifications,  I  decided  to   synthesise   different   dGTP   derivatives   that   are   modified   at   position   6   and   explore   their   potential   to   enhance  the  observed  discrimination.  In  addition,  modification  at  position  6  can  clarify,  if  interruption  of   the  Watson-­Crick  face  of  dGMP  interferes  with  DNA  polymerase-­catalysed  incorporation  opposite  C  or   5mC.