• Keine Ergebnisse gefunden

1.   Introduction

1.7.   Modified  Nucleotides

Due   to   their   widespread   applications   in   medicine,   biology,   chemistry,   biochemistry   and   material   science,[90]   the   chemistry   of   modified   nucleosides,   nucleotides   or   oligonucleotides   continues   to   be   a   rapidly   developing   field.   Modified   nucleotides   have   been   established   for   the   investigation   of   many   biochemical   processes   and   therefore   enhanced   our   current   understanding.[90]   Nucleotide   analogues   can   not   only   be   used   to   improve   our   understanding   of   many   cellular   processes,   but   can   even   be   employed   for   medical   applications,   as   the   modified   nucleotides   can   compete   against   their   natural   counterparts.  The  potential  of  different  derivatives  to  be  used  for  the  treatment  of  various  diseases  has   already  been  proven  by  their  application  as  antiviral  and  anticancer  drugs.[91]  Thus,  efficient  methods   for  the  synthesis  of  modified  nucleotides  are  required,  as  they  are  of  general  interest  and  widespread   importance.  

1.7.1.  5´-­Triphosphate  Synthesis  

Due   to   the   great   importance   of   phosphorylated   biological   molecules,   several   different   phosphorylation   methods   were   developed.   The   method   established   by   Eckstein   et   al.[92]   takes   advantage   of   the   multifunctionality   of   salicyl   phosphorochloridite   (see  Figure   9a).   Thereby,   they   developed  a  facile  synthesis  route  for  5´-­O-­triphosphates,  which  could  be  employed  for  the  generation   of   5´-­O-­(1-­thiotriphosphates)   as   well.   They   used   3´-­OH   protected   nucleosides,   which   were   reacted   with  salicylphosphorodichloridite  to  generate  intermediate  I  as  diastereomeric  mixture.  Treatment  of  I   with  pyrophosphate  resulted  in  the  formation  of  a  cyclic  phosphorous  (III)  species  (II),  which  could  be   oxidised   with   iodine/water   leading   to   the   desired   5´-­O-­triphosphate   in   up   to   72  %   yield.[92]   The   nucleoside   cyclic   triphosphate   resulting   from   oxidation   of   compound  II   cannot   be   detected   due   to   immediate   hydrolysis   in   the   aqueous   conditions   used   during   oxidation.   Alternatively,   intermediate  II   can   be   reacted   with   sulphur   to   yield   the   corresponding   5´-­O-­(1-­thiotriphosphate).[92]   Despite   the   advantage   to   have   one   method   which   can   result   in   the   generation   of   5´-­O-­triphosphates   and   5´-­O-­(1-­thiotriphosphates),   this   method   requires   the   protection   of   the   3´-­OH   group   thereby   complicating   its   application.   Since   the   5´-­OH   group   of   nucleosides   is   more   reactive   than   its   3´-­OH   group,   selective   protection   of   the   3´-­OH   group   is   rather   challenging.   To   achieve   selective   3´-­OH   protection,  nucleosides  need  to  undergo  several  selective  protection  and  deprotection  procedures.    

1.  Introduction   28    

Thus,  Huang  et  al.[93]  established  a  protection-­free  variant  of  the  described  method  by  generation  of   a   mild   and   selective   phosphitylating   reagent   that   differentiates   the   different   functionalities   present   in   the   nucleoside   (see  Figure   9b).     Therefore,   they   took   advantage   of   the   multifunctionality   and   high   reactivity  of  salicyl  phosphorochloridite.[92,  94]  By  treatment  of  the  salicyl  derivative  with  pyrophosphate,   they  managed  to  generate  a  weak  phosphitylating  reagent  IV.  The  selective  phosphitylation  reagent  IV   can  be  generated  in  situ  and  can  selectively  react  with  the  5´-­hydroxyl  group  of  nucleosides  without   the  need  for  protection  groups  on  the  sugar  or  nucleobases.[93]    

 

Figure  9:  Methods  for  5´-­O-­triphosphorylation.  a)  Synthesis  according  Eckstein,  b)  according  Huang,  c)  according   Yoshikawa  and  Kovács.  

Another   protection-­free   strategy   for   synthesis   of   5´-­O-­triphosphates   employs   highly   reactive   phosphorous  oxychloride  (POCl3)  as  phosphitylation  reagent  (see  Figure  9  c).  Trimethylphosphate  is   used  as  solvent  to  reduce  the  reactivity  of  POCl3,  therefore  limiting  possible  side  reactions.  During  this   method,  dichlorophosphate  V  is  primarily  generated,  which  can  be  seen  as  equivalent  to  an  activated   monophosphate   species.   Subsequent   treatment   with   pyrophosphate   yields   formation   of   the   desired   5´-­O-­triphosphate   in   a   protection-­free   one   pot   synthesis.[93]   Yoshikawa  et   al.   reported   in   1969   the   reaction   of   unprotected   nucleosides   with   POCl3   in   trialkyl   phosphate   solvents   mainly   leading   to   5´-­phosphorodichloridate   V.[95]   In   situ   hydrolysis   results   in   the   formation   of   nucleoside   5´-­monophosphates.[96]   The   direct   transformation   of   5´-­phosphorodichloridates   to   nucleoside   5´-­triphosphates  is  obtained  through  treatment  with  an  excess  of  tri-­n-­butylammonium  pyrophosphate   in   DMF   under   anhydrous   conditions   followed   by   basic   or   neutral   hydrolysis.[92]   The   occurrence   of   a   highly   reactive   trimetaphosphate   intermediate  VI   formed   by   intramolecular   condensation   could   be   proven  by  31P  NMR  analysis.  

Two   decades   later,   Kovács  et   al.[97]   reported   that   hydrogen   chloride,   formed   during   hydrolysis   of   POCl3,   resulted   in   several   side   reactions   if   modified   nucleosides   containing   unsaturated   side   chains   were  transformed.  As  the  very  reactive  nature  of  unsaturated  side  chains  is  known  in  acidic  conditions,   they  performed  the  5´-­O-­triphosphorylation  reaction  in  presence  of  a  base.  During  their  studies,  proton   sponge  (1,8-­bis(dimethylamino)naphthalene)  proved  to  be  the  best  suited  base  as  it  accelerated  the   reaction  significantly.  Due  to  its  steric  effects,  proton  sponge  is  known  as  very  strong  base  with  weak   nucleophilic   character.[97]   Thus,   they   could   show   that   even   modified   nucleosides   with   highly   reactive   unsaturated  side  chains  could  be  converted  to  the  corresponding  5´-­O-­triphosphates  in  the  presence   of  proton  sponge.[97]  Besides  the  drawback  by  usage  of  the  very  reactive  POCl3  this  method  holds  the   disadvantage  that  different  phosphorylated  derivatives  are  obtained  which  are  challenging  to  separate   during  purification.  Nevertheless,  this  method  holds  a  great  potential  as  various  modified  nucleosides   can   be   converted   and   different   5´-­O-­phosphorylated   (mono-­,   di-­   and   triphosphate)   species   can   be   obtained.    

     

   

2.  Aim  of  This  Work   30    

2.  Aim  of  This  Work  

As   several   modifications   in   nucleic   acids   can   be   related   to   human   diseases,   new   methods   are   strongly  needed  for  their  detection.  Nowadays,  several  detection  methods  are  known  and  rely  mainly   on   selective   chemical   modifications[5a,   31]   or   the   ability   of   different   enzymes   to   distinguish   between   modified   nucleotides   and   their   unmodified   counterparts.[28,   30]   However,   those   technologies   hold   several  disadvantages.  In  particular  detection  systems,  which  require  chemical  modifications  prior  to   sequencing  proved  to  be  time-­consuming,  tedious  and  error-­prone.[34-­36]  Especially  for  the  application   in  personalised  medicine  convenient  methods  are  required  that  allow  multiplexing.    

The  aim  of  this  thesis  was  to  establish  new  approaches  for  the  detection  of  the  epigenetic  markers   5mC   and   5hmC   without   the   need   to   perform   modification   reactions   prior   to   sequencing.   No   DNA   polymerase  was  known  to  be  able  to  directly  discriminate  C  against  5mC  or  5hmC  without  the  use  of   mismatched   primers   as   direct   sequencing   of   those   epigenetic   markers   is   rather   challenging   due   to   their   unaltered   Watson-­Crick   face.[116]   DNA   polymerases   are   known   to   discriminate   against   incorporation  of  non-­canonical  nucleotides  very  efficiently.[76]  Nevertheless,  different  DNA  polymerases   are   known   to   accept   modified   nucleotides   with   reduced   efficiencies   compared   to   their   natural   counterparts.[70]  The  aim  of  this  thesis  was  to  take  advantage  of  the  discrimination  machinery  of  DNA   polymerases  as  well  as  the  ability  of  those  DNA  polymerases  to  incorporate  modified  nucleotides.  By   the   introduction   of   various   modifications   at   different   sites   of   the   nucleobase   moiety   of   dGTP,     dNTP   derivatives  which  enable  the  DNA  polymerase  to  discriminate  between  C  and  the  epigenetic  markers   5mC   and   5hmC   should   be   found.   By   enhancing   the   size   and   the   steric   hindrance   of   the   introduced   modification,  a  dNTP  analogue  should  be  found  that  is  still  accepted  by  the  DNA  polymerase  but  leads   to  a  steric  rearrangement  of  the  primer/template  complex  in  the  active  site  of  the  enzyme  in  a  way  that   the  DNA  polymerase  will  sense  the  presence  or  absence  of  the  small  methyl-­group  in  5mC.  Following,   a  novel  assay  should  be  established  that  allows  sensing  of  nucleic  acid  modifications  without  the  need   to   perform   modification   reactions   prior   to   sequencing.   For   this   purpose,   a   tool   box   of   variously   modified  nucleotides  should  be  synthesised.  Subsequently,  the  latter  should  be  tested  in  combination   with   different   DNA   polymerases   to   find   a   combination   of   enzyme   and   nucleotide   analogue,   which   leads  to  diverging  incorporation  efficiencies  opposite  C  and  the  epigenetic  markers  5mC  and  5hmC  in   DNA  polymerase  catalysed  reactions.  

As  modified  nucleotides  are  not  only  known  to  be  present  in  DNA,  but  can  be  found  in  RNA  as  well,[2]  

the   generated   tool   box   should   be   applied   in   combination   with   the   KlenTaq   variant   RT-­KTq2.   This   variant   is   known   to   exhibit   reverse   transcriptase   activity,[125]   which   could   be   used   to   sense   RNA   modifications  by  incorporation  of  modified  nucleotides.    

Once  identified,  the  most  promising  combinations  of  DNA  polymerase  and  modified  nucleotide  should   be  further  studied  by  the  measurement  of  steady-­state  kinetics  and  exploited  for  the  establishment  of   new  detection  approaches.      

A  second  approach  aimed  at  finding  and  characterising  DNA  polymerase  variants  with  increased   discrimination  in  incorporating  dGMP  opposite  5mC  compared  to  C.  If  variants  possessing  this  ability