• Keine Ergebnisse gefunden

3.   Results  and  Discussion

3.3.   Capillary  Gel  Electrophoresis

3.3.  Capillary  Gel  Electrophoresis  

As  working  with  radioactivity  has  obvious  disadvantages,   I  switched  to  fluorescently  labelled  primers   for   single-­nucleotide   incorporation   primer   extension   experiments.  Despite   its   utility,   analysis   of   those   experiments   by   denaturing   PAGE   has   several   disadvantages   (see  1.5.   Capillary   Electrophoresis).  

Those   drawbacks   can   be   overcome   if   the   DNA   polymerase   catalysed   extension   of   fluorescently   labelled  primers  is  analysed  using  CE.  Thereby,  the  throughput  can  be  dramatically  increased,  as  CE   offers   the   possibility   for   multiplexing.   Since   this   method   is   by   default   used   for   Sanger   DNA   sequencing,  microsatellite  analysis  or  single  nucleotide  polymorphism  analysis,[62,  115]  it  was  necessary   to  adopt  this  method  to  meet  my  requirements.[137]  

First,   separation   of   short,   fluorescently   labelled   DNA   oligonucleotides   was   optimised.   Therefore,   two  FAM  labelled  oligomers  (21mer  and  22mer)  were  purchased.  Conditions  applied  during  separation   were  modified  and  adapted  until  single  base  resolution  of  the  oligomer  mixtures  was  ensured  (Figure   22).  Run  parameters  established  for  this  separation  are  listed  in  6.2.9.  Capillary  Electrophoresis  

Capillary   Electrophoresis   separates   fluorescently   labelled   oligonucleotides   by   size   and   charge   as   they   migrate   through   a   polymer   filled   capillary.   Single   nucleotide   incorporation   primer   extension   experiments  are  conducted  as  described  (6.2.6.  Primer  Extension  Assay[136]).  Instead  of  radioactively   labelled   primers,   FAM   labelled   ones   are   employed   and   reactions   are   stopped   by   addition   of   stop   solution   without   bromophenol   blue   and   xylene   cyanol   (80   %   (v/v)   formamide,   20   mM   EDTA).   CE   samples   are   prepared   by   mixing   10   µl   LIZ   size   standard   diluted   1:80   in   HiDi   formamide   (Applied   Biosystems)   and   10   µl   fluorescently   labelled   reaction   mixture   (after   addition   of   stop   solution   diluted   1:10  with  HiDi  formamide,  to  dilute  EDTA).  If  multiple  reactions  are  to  be  analysed  in  parallel,  those   are   pooled   in   one   well   prior   to   injection.   The   reaction   sample   and   size   standard   are   injected   electrokinetically  into  a  50  cm  capillary  array  filled  with  Performance  Optimised  Polymer  (POP6).  High   voltage  electrophoresis  (15  kV)  over  180  s  ensures  single  base  resolution.  Typical  run  parameters  are   depicted  in  Table  4.    

 

Figure  22:  Separation  of  fluorescent  primers  using  CE.  a)  Migration  behaviour  of  a  FAM  labelled  21mer  (DNA)   analysed   by   capillary   electrophoresis;;  b)  migration   behaviour   of   a   FAM   labelled   22mer   (DNA)   analysed   by   capillary   electrophoresis;;  c)  migration   comparison   of   different   mixtures   (2/1;;   1/1;;   1/2)   of   a   21mer   and   22mer   (DNA)   to   prove   sufficient   resolution   for   analysis   of   single   -­   nucleotide   incorporation   primer   extension   reactions.  

orange:  size  standard  (LIZ  120),  blue:  FAM  labeled  primers.    

The   established   assay   was   applied   for   single-­nucleotide   incorporation   primer   extension   experiments.  Therefore,  processing  of  dGTP  by  the  DNA  polymerase  9°North  exo  was  examined  by   the   usage   of   fluorescently   labelled   primers   and   analysis   by   CE   (see  Figure   23  a   -­  c).   Radioactively   labelled   primer   extension   experiments   and   separation   by   PAGE   (see  Figure   23d)   was   performed   additionally  to  allow  comparison  between  both  methods.    

Comparison   of   the   quantitative   evaluation   of   both   analysis   methods   showed   that   the   results   are   very   similar.   Therefore,   evaluation   of   incorporation   of   the   modified   nucleotides   by   DNA   polymerase   9°North   exo   will   be   examined   by   CE.   To   take   full   advantage   of   the   possibilities   for   automating   supplied  by  employing  CE,  the  described  assay  was  adapted  to  allow  the  analysis  of  several  reactions   in   one   capillary   and   one   run.   In   this   approach   single-­nucleotide   incorporation   primer   extension   experiments  are  analysed.  Thus,  several  reactions  can  be  separated  during  one  run  in  one  capillary,  if   those   extension   reactions   are   performed   using   fluorescently   labelled   oligomers   of   different   sizes.   As   depicted  in  Figure  23e  sufficient  separation  could  be  ensured,  if  those  primers  were  designed  with  a   size  difference  of  8  nucleotides  varying  in  size  from  21  to  55  nucleotides.  

With  this  experimental  setup,  it  is  possible  to  analyse  5  reactions  in  one  run  and  one  capillary  in   parallel  enhancing  the  through  put.  The  principles  of  this  assay  can  be  applied  to  further  scale  up  the   through   put.   Processed   primers   can   be   labelled   using   different   dye-­labels   having   well   separated   excitation  and  emission  spectra  (e.g.  FAM,  NED,  VIC  and  PET).  Additionally,  longer  primers  can  be   used  for  analysis.  Simultaneous  analysis  of  multiple  substrates  or  reaction  conditions  can  therefore  be   enabled  by  multiplexing  oligonucleotide  design  by  size  and  fluorescent  dye.    

3.  Results  and  Discussion   50    

 

Figure   23:   Capillary   electrophoretic   and   PAGE   analysis   of   single-­nucleotide   incorporation   primer   extension   experiments  of  dGMP  employing  DNA  polymerase  9°North  exo.  a)  Opposite  a  template  containing  C;;  b)  opposite   a  template  containing  C;;  c)  quantitative  analysis  of  single-­nucleotide  primer  experiments  depicted  in  a  (black)  and   b  (grey);;  d)  PAGE   analysis   and   quantitative   evaluation   of   single-­nucleotide   incorporation   primer   extension   experiments  of  dGMP  employing  DNA  polymerase  9°North  exo;;  e)  capillary  electrophoretic  analysis  of  5  different   single-­nucleotide  incorporation  experiments  employing  different  lengths  of  FAM  labelled  primers  in  parallel.  50  µM   dGTP  and  10  nM  9°North  exo  were  used;;  reactions  were  stopped  after  indicated  time  points.  Experiments  were   done  at  least  in  triplicates.  

3.3.1.  Discrimination  of  5mC  by  Emplyoing  Modified  Nucleotides  and   9°North  DNA  Polymerase  

Testing  all  in  position  6  modified  dGTP  derivatives  for  incorporation  opposite  C  and  5mC  employing   the  second  B  family  DNA  polymerase  9°North,  it  can  be  observed  that  all  nucleotides  are  successfully  

processed   (see  Figure   24).   As   already   observed   before,   incorporation   efficiencies   of   the   dGMP   analogues   decrease   by   increasing   size   of   the   introduced   modification.   Additionally,   incorporation   opposite  C  is  favoured  for  all  nucleotides  over  incorporation  opposite  5mC.  Again,  discrimination  can   already  be  observed  for  processing  of  the  unmodified  dGTP.  This  discrimination  ratio  enhances  by  the   usage  of  some  of  the  modified  nucleotides.  In  contrast  to  the  results  obtained  by  employing  the  DNA   polymerase  KOD  exo,  the  alkylation  of  dGTP  in  position  6  (1a  -­  1d)  does  not  improve  discrimination   behaviour.   Instead,   the   amino-­modified   nucleotides   (9a  -­   9o)   show   remarkable   improvement   in   differences   in   incorporation   efficiencies   using   9°   North   exo.   The   highest   discrimination   rates   can   be   observed  by  employing  nucleotides  9b,  9c  or  9n  (see  Figure  24  and  Figure  25).  

 

Figure  24:  Structures  of  modified  dG*TP  analogues  including  %  incorporation  opposite  C  or  5mC  employing  DNA   polymerase   9°North   exo   in   single-­nucleotide   primer   extension   experiments.   50µM   dGTP   or   dG*TP   and   10   nM   9°North   exo   were   used,   reactions   were   stopped   after   10   min.   Experiments   were   done   at   least   in   triplicates.  

Arithmetic  mean  is  given;;  errors  are  given  in  the  appendix.  

But   still,   more   pronounced   discrimination   behaviour   can   be   observed   by   employing   the   DNA   polymerase  KOD  exo  in  combination  with  nucleotide  1b.  Even  if  the  discrimination  ratio  is  not  further   improved  by  usage  of  the  second  B  family  DNA  polymerase  9°North  exo,  we  proved  the  tendencies   observed   in   previous   studies:   this   DNA   polymerase   was   capable   to   incorporate   all   in   position   6   modified   nucleotides.   Additionally,   discrimination   can   already   be   observed   by   incorporation   of   unmodified   dGMP   and   this   discrimination   can   be   further   improved   by   processing   of   modified   nucleotides.    

 

3.  Results  and  Discussion   52    

 

Figure   25:   Incorporation   experiments   of   modified   nucleotides   leading   to   most   pronounced   differences   in   incorporation  efficiencies  employing  DNA  polymerase  9°  North  exo.  a)  Partial  primer  /  template  sequence  used.  

b)  PAGE  analysis  and  quantitative  evaluation  of  single-­nucleotide  incorporation  primer  extension  experiments  of   dGMP  and  nucleotides  1b,  9b,  9c  and  9n  opposite  a  template  containing  C  (black)  in  comparison  to  a  template   containing  5mC  (grey)  employing  the  DNA  polymerase  9°North  exo.  50  µM  dGTP  or  dG*TP  and  10  nM  9°North   exo  were  used;;  reactions  were  stopped  after  indicated  time  points.  Experiments  were  done  at  least  in  triplicates.  

   

3.4.  Selectivity  Studies  for  Incorporation  of  Modified