• Keine Ergebnisse gefunden

1. Murray, C.J. and A.D. Lopez, Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study. Lancet, 1997. 349(9063): p.

1436-42.

2. KORA Herzinfarktregister Augsburg (2004): www.gbe-bund.de vom 28.04.2004 3. Ross, R., The pathogenesis of atherosclerosis--an update. N Engl J Med, 1986.

314(8): p. 488-500.

4. Madamanchi, N.R., A. Vendrov, and M.S. Runge, Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol, 2005. 25(1): p. 29-38.

5. Anderson, T.J., et al., Close relation of endothelial function in the human coronary and peripheral circulations. J Am Coll Cardiol, 1995. 26(5): p. 1235-41.

6. Gokce, N., et al., Risk stratification for postoperative cardiovascular events via noninvasive assessment of endothelial function: a prospective study. Circulation, 2002. 105(13): p. 1567-72.

7. Hornig, B., et al., AT1-receptor antagonism improves endothelial function in coronary artery disease by a bradykinin/B2-receptor-dependent mechanism.

Hypertension, 2003. 41(5): p. 1092-5.

8. Drexler, H. and B. Hornig, Endothelial dysfunction in human disease. J Mol Cell Cardiol, 1999. 31(1): p. 51-60.

9. Ross, R., Atherosclerosis--an inflammatory disease. N Engl J Med, 1999.

340(2): p. 115-26.

10. Halcox, J.P., et al., Prognostic value of coronary vascular endothelial dysfunction. Circulation, 2002. 106(6): p. 653-8.

11. Schachinger, V., M.B. Britten, and A.M. Zeiher, Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation, 2000. 101(16): p. 1899-906.

12. Landmesser, U. and H. Drexler, Effect of angiotensin II type 1 receptor antagonism on endothelial function: role of bradykinin and nitric oxide. J Hypertens Suppl, 2006. 24(1): p. S39-43.

13. Landmesser, U., D.G. Harrison, and H. Drexler, Oxidant stress-a major cause of reduced endothelial nitric oxide availability in cardiovascular disease. Eur J Clin Pharmacol, 2006. 62 Suppl 1: p. 13-9.

14. Li, J.M. and A.M. Shah, Endothelial cell superoxide generation: regulation and relevance for cardiovascular pathophysiology. Am J Physiol Regul Integr Comp Physiol, 2004. 287(5): p. R1014-30.

15. Levine, G.N., et al., Ascorbic acid reverses endothelial vasomotor dysfunction in patients with coronary artery disease. Circulation, 1996. 93(6): p. 1107-13.

16. Landmesser, U. and D.G. Harrison, Oxidant stress as a marker for cardiovascular events: Ox marks the spot. Circulation, 2001. 104(22): p. 2638-40.

17. Dikalov, S., et al., Comparison of glyceryl trinitrate-induced with pentaerythrityl tetranitrate-induced in vivo formation of superoxide radicals:

effect of vitamin C. Free Radic Biol Med, 1999. 27(1-2): p. 170-6.

18. Hornig, B., et al., Vitamin C improves endothelial function of conduit arteries in patients with chronic heart failure. Circulation, 1998. 97(4): p. 363-8.

19. Cai, H. and D.G. Harrison, Endothelial dysfunction in cardiovascular diseases:

the role of oxidant stress. Circ Res, 2000. 87(10): p. 840-4.

20. Duerrschmidt, N., et al., NO-mediated regulation of NAD(P)H oxidase by laminar shear stress in human endothelial cells. J Physiol, 2006. 576(Pt 2): p.

557-67.

21. McNally, J.S., et al., Role of xanthine oxidoreductase and NAD(P)H oxidase in endothelial superoxide production in response to oscillatory shear stress. Am J Physiol Heart Circ Physiol, 2003. 285(6): p. H2290-7.

22. Spiekermann, S., et al., Electron spin resonance characterization of vascular xanthine and NAD(P)H oxidase activity in patients with coronary artery disease: relation to endothelium-dependent vasodilation. Circulation, 2003.

107(10): p. 1383-9.

23. Guzik, T.J., et al., Coronary artery superoxide production and nox isoform expression in human coronary artery disease. Arterioscler Thromb Vasc Biol, 2006. 26(2): p. 333-9.

24. Patetsios, P., et al., Identification of uric acid and xanthine oxidase in atherosclerotic plaque. Am J Cardiol, 2001. 88(2): p. 188-91, A6.

25. Doehner, W., et al., Effects of xanthine oxidase inhibition with allopurinol on endothelial function and peripheral blood flow in hyperuricemic patients with chronic heart failure: results from 2 placebo-controlled studies. Circulation, 2002. 105(22): p. 2619-24.

26. Farquharson, C.A., et al., Allopurinol improves endothelial dysfunction in chronic heart failure. Circulation, 2002. 106(2): p. 221-6.

27. Guthikonda, S., et al., Xanthine oxidase inhibition reverses endothelial dysfunction in heavy smokers. Circulation, 2003. 107(3): p. 416-21.

28. Minhas, K.M., et al., Xanthine oxidoreductase inhibition causes reverse remodeling in rats with dilated cardiomyopathy. Circ Res, 2006. 98(2): p. 271-9.

29. McCord, J.M. and I. Fridovich, Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem, 1969. 244(22): p. 6049-55.

30. Landmesser, U., et al., Vascular oxidative stress and endothelial dysfunction in patients with chronic heart failure: role of xanthine-oxidase and extracellular superoxide dismutase. Circulation, 2002. 106(24): p. 3073-8.

31. Szasz, T., et al., A comparison of arteries and veins in oxidative stress:

producers, destroyers, function, and disease. Exp Biol Med (Maywood), 2007.

232(1): p. 27-37.

32. Griendling, K.K., T.J. Murphy, and R.W. Alexander, Molecular biology of the renin-angiotensin system. Circulation, 1993. 87(6): p. 1816-28.

33. Hornig, B., et al., Comparative effect of ace inhibition and angiotensin II type 1 receptor antagonism on bioavailability of nitric oxide in patients with coronary artery disease: role of superoxide dismutase. Circulation, 2001. 103(6): p. 799-805.

34. Warnholtz, A., et al., Increased NADH-oxidase-mediated superoxide production in the early stages of atherosclerosis: evidence for involvement of the renin-angiotensin system. Circulation, 1999. 99(15): p. 2027-33.

35. Wassmann, S., et al., Inhibition of diet-induced atherosclerosis and endothelial dysfunction in apolipoprotein E/angiotensin II type 1A receptor double-knockout mice. Circulation, 2004. 110(19): p. 3062-7.

36. Dagenais, G.R., et al., Effects of ramipril on coronary events in high-risk persons: results of the Heart Outcomes Prevention Evaluation Study.

Circulation, 2001. 104(5): p. 522-6.

37. Hornig, B., et al., Differential effects of quinaprilat and enalaprilat on

38. Hornig, B., C. Kohler, and H. Drexler, Role of bradykinin in mediating vascular effects of angiotensin-converting enzyme inhibitors in humans. Circulation, 1997. 95(5): p. 1115-8.

39. Hornig, B., V. Maier, and H. Drexler, Physical training improves endothelial function in patients with chronic heart failure. Circulation, 1996. 93(2): p. 210-4.

40. Tardy, Y., et al., Non-invasive estimate of the mechanical properties of peripheral arteries from ultrasonic and photoplethysmographic measurements.

Clin Phys Physiol Meas, 1991. 12(1): p. 39-54.

41. Adachi, T., et al., Binding of human xanthine oxidase to sulphated glycosaminoglycans on the endothelial-cell surface. Biochem J, 1993. 289 ( Pt 2): p. 523-7.

42. Adachi, T., et al., The heparin binding site of human extracellular-superoxide dismutase. Arch Biochem Biophys, 1992. 297(1): p. 155-61.

43. Adachi, T., et al., Heparin-induced release of extracellular-superoxide dismutase form (V) to plasma. J Biochem (Tokyo), 1995. 117(3): p. 586-90.

44. Karlsson, K. and S.L. Marklund, Heparin-induced release of extracellular superoxide dismutase to human blood plasma. Biochem J, 1987. 242(1): p. 55-9.

45. Karlsson, K. and S.L. Marklund, Binding of human extracellular-superoxide dismutase C to cultured cell lines and to blood cells. Lab Invest, 1989. 60(5): p.

659-66.

46. White, C.R., et al., Circulating plasma xanthine oxidase contributes to vascular dysfunction in hypercholesterolemic rabbits. Proc Natl Acad Sci U S A, 1996.

93(16): p. 8745-9.

47. Ardanaz, N. and P.J. Pagano, Hydrogen peroxide as a paracrine vascular mediator: regulation and signaling leading to dysfunction. Exp Biol Med (Maywood), 2006. 231(3): p. 237-51.

48. Zweier, J.L., et al., Determination of the mechanism of free radical generation in human aortic endothelial cells exposed to anoxia and reoxygenation. J Biol Chem, 1994. 269(39): p. 24156-62.

49. Mueller, C.F., et al., ATVB in focus: redox mechanisms in blood vessels.

Arterioscler Thromb Vasc Biol, 2005. 25(2): p. 274-8.

50. Landmesser, U., B. Hornig, and H. Drexler, Endothelial function: a critical determinant in atherosclerosis? Circulation, 2004. 109(21 Suppl 1): p. II27-33.

51. Oak, J.H. and H. Cai, Attenuation of Angiotensin II Signaling Recouples eNOS and Inhibits Nonendothelial NOX Activity in Diabetic Mice. Diabetes, 2007.

56(1): p. 118-126.

52. Ohara, Y., T.E. Peterson, and D.G. Harrison, Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest, 1993. 91(6): p. 2546-51.

53. Fang, J. and M.H. Alderman, Serum uric acid and cardiovascular mortality the NHANES I epidemiologic follow-up study, 1971-1992. National Health and Nutrition Examination Survey. Jama, 2000. 283(18): p. 2404-10.

54. Niskanen, L.K., et al., Uric acid level as a risk factor for cardiovascular and all-cause mortality in middle-aged men: a prospective cohort study. Arch Intern Med, 2004. 164(14): p. 1546-51.

55. Zoccali, C., et al., Uric acid and endothelial dysfunction in essential hypertension. J Am Soc Nephrol, 2006. 17(5): p. 1466-71.

56. Grote, K., et al., Critical role for p47phox in renin-angiotensin system activation and blood pressure regulation. Cardiovasc Res, 2006. 71(3): p. 596-605.

57. Bedard, K. and K.H. Krause, The NOX Family of ROS-Generating NAD(P)H Oxidases: Physiology and Pathophysiology. Physiol Rev, 2007. 87(1): p. 245-313.

58. Landmesser, U., et al., Role of p47(phox) in vascular oxidative stress and hypertension caused by angiotensin II. Hypertension, 2002. 40(4): p. 511-5.

59. McNally, J.S., et al., Regulation of xanthine oxidoreductase protein expression by hydrogen peroxide and calcium. Arterioscler Thromb Vasc Biol, 2005. 25(8):

p. 1623-8.

60. Sakuma, S., et al., Peroxynitrite induces the conversion of xanthine dehydrogenase to oxidase in rabbit liver. Biochem Biophys Res Commun, 1997.

230(2): p. 476-9.

61. Landmesser, U., et al., Vascular extracellular superoxide dismutase activity in patients with coronary artery disease: relation to endothelium-dependent vasodilation. Circulation, 2000. 101(19): p. 2264-70.

62. Cardillo, C., et al., Xanthine oxidase inhibition with oxypurinol improves endothelial vasodilator function in hypercholesterolemic but not in hypertensive patients. Hypertension, 1997. 30(1 Pt 1): p. 57-63.

63. Wassmann, S., et al., Angiotensin II type 1 receptor antagonism improves hypercholesterolemia-associated endothelial dysfunction. Arterioscler Thromb Vasc Biol, 2002. 22(7): p. 1208-12.

64. Nickenig, G., et al., Hypercholesterolemia is associated with enhanced angiotensin AT1-receptor expression. Am J Physiol, 1997. 272(6 Pt 2): p.

H2701-7.

65. Barry-Lane, P.A., et al., p47phox is required for atherosclerotic lesion progression in ApoE(-/-) mice. J Clin Invest, 2001. 108(10): p. 1513-22.

66. Cai, H., NAD(P)H oxidase-dependent self-propagation of hydrogen peroxide and vascular disease. Circ Res, 2005. 96(8): p. 818-22.

67. Chalupsky, K. and H. Cai, Endothelial dihydrofolate reductase: critical for nitric oxide bioavailability and role in angiotensin II uncoupling of endothelial nitric oxide synthase. Proc Natl Acad Sci U S A, 2005. 102(25): p. 9056-61.

68. Pacher, P., J.S. Beckman, and L. Liaudet, Nitric oxide and peroxynitrite in health and disease. Physiol Rev, 2007. 87(1): p. 315-424.

69. Stroes, E., et al., Tetrahydrobiopterin restores endothelial function in hypercholesterolemia. J Clin Invest, 1997. 99(1): p. 41-6.

70. Li, H., et al., Reversal of endothelial nitric oxide synthase uncoupling and up-regulation of endothelial nitric oxide synthase expression lowers blood pressure in hypertensive rats. J Am Coll Cardiol, 2006. 47(12): p. 2536-44.

71. Forstermann, U. and T. Munzel, Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation, 2006. 113(13): p. 1708-14.

72. Rabelink, T.J. and T.F. Luscher, Endothelial nitric oxide synthase: host defense enzyme of the endothelium? Arterioscler Thromb Vasc Biol, 2006. 26(2): p. 267-71.

73. Xu, J., et al., Uncoupling of endothelial nitric oxidase synthase by hypochlorous acid: role of NAD(P)H oxidase-derived superoxide and peroxynitrite.

Arterioscler Thromb Vasc Biol, 2006. 26(12): p. 2688-95.

74. Hoieggen, A., et al., The impact of serum uric acid on cardiovascular outcomes in the LIFE study. Kidney Int, 2004. 65(3): p. 1041-9.

75. Heitzer, T., et al., Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation,