• Keine Ergebnisse gefunden

Optische Eigenschaften, Dotierung Absorptionsschicht und Temperaturverhalten126

Tab. 19: Berechnete Werte aus der optischen, Temperatur- und HF-Messung.

Probe Jahr Epitaxie

Responsivität bei 1300 nm / 1550 nm

[mA/W]

Effektive Dotierung der Absorptionsschicht

[cm-3]

Anstieg Strom pro Kelvin bei -1 V

[%/K]

C2999 2005 156 / 32 - -

A1873 2006 180 / 18 - -

A2044 2006 216 / 57 6·e15 -

A2294 2007 183 / 44 5·e15 5,7

A2621 2008 167 / 72 - -

A2828 2010 286 / 105 2·e16 5,8

A3015 2011 270 / 49 5·e16 -

A3019 2011 4·e16 -

A3148 2011 297 / 54 4·e16 4,8

A3149 2011 305/ 141 7·e16 4,2

A3150 2011 272 / 103 8·e16 4,4

C3317 2010 177 / 88 - -

Anhang C: Detektorprozesse

Nachfolgend sind die verwendeten Prozessschritte für einen Germanium-Detektor mit einer Doppel-Mesa Struktur aufgezeigt.

Prozessschritt Art Parameter Dauer

Germanium-Reinigung Aceton Ultraschall 10 min

Isopropanol Ultraschall 5 min

Plasma-Verascher O2 Plasma, 300W 20 sek

Ausheizen Ofen 120 °C 30min

Lithographie HMDS Progr. 1

Photolack AZ6612

Spinnen Progr.4

Pre-Bake 110 °C 90 sek

Belichten Maske: Große Mesa 4,2 sek

Entwickeln AZ726MIF 40 sek

Post-Bake 110 °C 90 sek

Plasma-Verascher O2 Plasma, 300 W 20 sek

Trockenätzen ICP Progr.: Mesa_Ge4 Cl2-Step + HBr Ätzdauer:120 sek Photolack entfernen NMP oder DMSO Ultraschall, 90 °C 30 min

Plasma-Verascher O2 Plasma, 1000 W T < 100 °C

Germanium-Reinigung Aceton Ultraschall 10 min

Isopropanol Ultraschall 5 min

Plasma-Verascher O2 Plasma, 300 W 20 sek

Ausheizen Ofen 120 °C 30 min

Lithographie HMDS Progr. 1

Photolack AZ6612

Spinnen Progr.4

Pre-Bake 110 °C 90 sek

Belichten Maske: Kleine Mesa 4,2 sek

Entwickeln AZ726MIF 40 sek

Post-Bake 110 °C 90 sek

Plasma-Verascher O2 Plasma, 300 W 20 sek

Trockenätzen ICP Progr.: Mesa_Ge4 Cl2-Step + HBr Ätzdauer: 80 sek Photolack entfernen NMP oder DMSO Ultraschall, 90 °C 30 min

Plasma-Verascher (nach Bedarf)

O2 Plasma, 1000 W T < 100°C

Germanium-Reinigung Aceton Ultraschall 10 min

Isopropanol Ultraschall 5 min Plasma-Verascher O2 Plasma, 300 W 20 sek Oxid abscheiden PECVD (Silan) Dicke für optimale

Einkopplung

Ausheizen Ofen 120 °C 30 min

Lithographie HMDS Progr. 1

Photolack AZ6612

Spinnen Progr.4

Pre-Bake 110 °C 90 sek

Belichten Maske: Oxidfenster 4,3 sek

Entwickeln AZ726MIF 40 sek

Post-Bake 110 °C 90 sek

Plasma-Verascher O2 Plasma, 300 W 20 sek

Trockenätzen RIE Stop mit 50 nm Restoxid

Nassätzen BHF 25 °C Restoxid (50 nm)

entfernen: 15sek Photolack entfernen NMP oder DMSO Ultraschall, 90 °C 30 min

Plasma-Verascher (nach Bedarf)

O2 Plasma, 1000 W T < 100°C

Germanium-Reinigung Aceton Ultraschall 10 min

Isopropanol Ultraschall 5 min

Plasma-Verascher O2 Plasma, 300W 20 sek

HF-Dip HF 2.5% Direkt vor Einschleusen 10 sek

Sputtern Aluminium Progr. : AL_POS1,

400 W

Ausheizen Ofen 120 °C 30 min

Lithographie Photolack AZ6612

Spinnen Progr. 4

Pre-Bake 110 °C 90 sek

Belichten Maske: Metallisierung 3,3 sek

Entwickeln AZ726MIF 40 sek

Post-Bake 110 °C 90 sek

Plasma-Verascher O2 Plasma, 300 W 20 sek Trockenätzen ICP Progr. AL_HBr

Cl2-Step + HBr

Stopp kurz bevor Al komplett entfernt

Ätzdauer: 150 sek

Nassätzen H3PO4 40 °C Restaluminium

Entfernen: 30sek Photolack entfernen NMP oder DMSO Ultraschall, 90 °C 30min

Literaturverzeichnis

Einleitung

[1] C. Claeys, J. Mitard, G. Eneman, M. Meuris and E. Simoen, “Si versus Ge for future microelectronics”, Thin Solid Films, 518, p. 2301-2306, 2010.

[2] D.A. Muller, “A sound barrier for silicon?", Nature Mater. 4, 645, 2005.

[3] J. Chan and K. Bergman, “Photonic Interconnection Network Architectures Using Wavelength-Selective Spatial Routing for Chip-Scale Communications“, Journal of Optical Communications and Networking, Vol. 4, Nr. 3, p. 189-201, 2012.

[4] A. Soref and J. Lorenzo, “All-Silicon active and passive guided-wave components for 1.3 and 1.6 µm”, IEEE Journal of Quantum Electronics, Vol. 22, Nr. 6, p. 873-879, 1986.

[5] S. Luryi, A. Kastalsky, J.C. Bean, “New Infrared Detector on a Silicon Chip”, IEEE Trans. Electron Devices,31, p. 1135-1139, 1984.

[6] B. Jalali and S. Fathpour, “Silicon photonics”, J. Lightw. Technol., Vol. 24, Nr. 12, p. 4600-4615, 2006.

[7] R.A. Soref, J. Schmidtchen, K. Petermann, “Large Single-Mode Rib Waveguides in GeSi-Si and Si-on-SO2”, IEEE J. Quantum Electron. 27, p. 1971-1974, 1991.

[8] G.E. Stillman, L.W. Cook, N. Tabatabaie, G. E. Bulman, and V. M Robbins, “InGaAsP Photodiodes”, IEEE Transactions Electron Devices ED-30, p. 364–381, 1966.

[9] M. Schmid, M. Oehme, M. Kaschel, J. Werner, E. Kasper and J. Schulze, “Franz-Keldysh effect in Germanium p-i-n photodetectors on Silicon”,7th International Conference on Group IV Photonics , LEOS, p. 329-331, 2010.

[10] Y.-H. Kuo, Y. Lee, Y. Gen, S. Ren, J.E. Roth, T. I. Kamins, D.A.B. Miller and J.S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon”, Nature, Vol. 437, Nr.

27, p. 1334-1336, 2005.

[11] E. Kasper, J. Werner, M. Oehme, S. Escoubas, N. Burle and J. Schulze, “Growth of Silicon Based Germanium Tin Alloys”, Thin Solid Films, 2011.

[12] M. Oehme, J. Werner, M. Gollhofer, M. Schmid, M. Kaschel, E. Kasper and J. Schulze, “Room-Temperature Electroluminescence From GeSn Light-Emitting Pin Diodes on Si”, IEEE Photonics Technology Letters, Vol. 23, Nr. 23, p. 1751-1753,2011.

[13] M.E. Kurdi, G. Fishman, S. Sauvage and P. Boucaud, “Band structure and optical gain of tensile-strained germanium based on a 30 band k-p formalism”. J Appl. Phys., 107, 2010.

[14] X. Sun, J. Liu, L.C. Kimerling and J. Michel, “Room temperature direct band gap electroluminescence from Ge-on-Si light emitting diode”, Optics Letters, Vol. 34, Nr. 8, p. 1198–1200, 2009.

2. Kapitel

[15] W.R. Thurber, R.L. Mattis, Y.M. Liu and J.J. Filben, “The Relationship between Resisitivity and Dopant Density for Phosphorous- and Boron-doped Silicon”, Semiconductor Measurement Technology, National Bureau of Standards Special Publications 400-64, 1981.

[16] D.B. Cuttriss, “Relation between Surface Concentration and Average Conductivity in Diffused Layers in Germanium”, The Bell System Technical Journal, 1961.

[17] W.C. Dash and R. Newman, “Intrinsic Optical Absorption in Single-Crystal Germanium and Silicon at 77K and 300K”, Physical Review, Vol. 99, Nr. 4, 1955.

[18] R.F. Potter, “Optical Constants of Germanium in Spectral Region from 0.5 eV to 3.0 eV”, Physical Review, Vol. 150, Nr. 2, 1966.

[19] E. Kasper, “Bauelemente der Mikroelektronik”, Scriptum Halbleitertechnik, 2001.

[20] Y. Ishikawa, K. Wada, D.D. Cannon, J. Liu, H.-C. Luan and L.C. Kimerling, “Strain-induced band gap shrinkage in Ge grown on Si substrates”, Applied Physics Letter, Vol. 82, Nr. 13, 2003.

[21] J. Liu, X. Sun, R. Camacho-Aguilera, L.C. Kimerling and J. Michel, “Ge-on-Si laser operating at room temperature”, Optics Letters, Vol. 35, Nr. 5, p. 679–681, 2010.

[22] C. Claeys and E. Simeon, “Germanium-Based Technologies”, Elsevier, 1st Edition, 2007.

3. Kapitel

[23] R. Paul, “Halbleiterdioden”, Dr. Alfred Hüthig Verlag Heidelberg, 1976.

[24] M. Reisch, “Halbleiter-Bauelemente“, Springer Berlin Heidelberg, 2007.

[25] S.M. Sze and K.K. Ng, “Physics of Seminconductor Devices”, Wiley-Interscience, 2007.

[26] S.M. Sze and G. Gibbons, “Avalanche breakdown voltages of abrupt and linearly graded p-n junctions in Ge, Si, GaAs and GaP”, Applied Physics Letters, Vol. 8,Nr. 5, p. 111-113, 1966.

[27] S.L. Miller, “Avalanche Breakdown in Germanium”, Physical Review, Vol. 99, Nr. 4, p. 1234-1241, 1955.

[28] B. Van Zeghbroeck, “Principles of Semiconductor Devices”, Boulder, 2006.

[29] R. Paul, “Elektronische Halbleiterbauelemente”, Teubner Verlag Stuttgart, 3rd Edition, 1992.

[30] D.A. Kleinmann, “The forward characteristics of the PIN diode”, The Bell System Technical Journal, p.

685-706, 1956.

[31] H. Murrmann and D.Widmann, “Messung des Übergangswiderstandes zwischen Metall und Diffusionsschicht in Si”, Solid-State Electronics, Vol. 12, p. 879-886, 1969.

[32] H.H. Berger, “Models for Contacts to Planar Devices”, Solid-State Electronics, Vol. 15, p. 145-158, 1972.

[33] C.Y. Chang and Y.K. Fang, “Specific Contact Resistance of Metal-Semiconductor Barriers”, Solid-State Electronics, Vol. 14, p. 541-550, 1971.

[34] D.B. Scott, R.A. Chapman, C.C. Wei, S.S. Mahant-Shetti, R.H. Haken and T.C. Holloway, “Titanium Disilicide Contact Resisitivity and its Impact on 1µm CMOS Circuit Performance”, IEEE Transaction on Electron Devices, Vol. ED34, Nr. 3, p. 562-574, 1987.

[35] M. Ahmad and B.M. Arora, “Investigation of AuGeNi Contacts using Rectangular and Circular Transmission Line Model”, Solid-State Electronics, Vol. 35, Nr. 10, p. 1441-1445, 1992.

[36] X. Shao, S.L. Rommel, B.A. Orner, P.R. Berger, J. Kolodzai and K.M. Unruh, “Low Resistance Ohmic Contacts to p-GeC on Si”, IEEE Electron Device Letters, Vol. 18, Nr. 1, p. 7-9, 1997.

[37] D. Sawdai and D. Pavlidis, “Enhanced Transmission Line Model Structures for Accurate Resistance Evaluation of Small-Size Contacts and for More Reliable Fabrication”, IEEE Transaction on Electron Devices, Vol. 46, Nr. 7, p. 1302-1311, 1999.

[38] N. Stavitski, M.J.H. van Dal, A. Lauwers, C. Vrancken, A.Y. Kovalgin and R.A.M. Wolters,

“Systematic TLM Measurements of NiSi and PtSi Specific Contact Resistance to n- and p-Type Si in a Broad Doping Range”, IEEE Electron Device Letters, Vol. 29, Nr. 4, p. 378-381, 2008.

[39] D. Schroder, “Semiconductor Material and Device Characterization”, John Wiley & Sons, 2008.

[40] S.J. Koester, L. Schares, C.L. Schow, G. Dehlinger and R.A. John, “Temperature-Dependent Analysis of Ge-on-SOI”, Group IV Photonics, 3rd IEEE International Conference on, p. 179-181, 2006.

[41] M. Hoffmann, “Hochfrequenztechnik: ein systemtheoretischer Zugang”, Springer Verlag, 1997.

[42] K. Gupta, “Microstrip lines and slotlines”, Artech House, 1996.

[43] F. di Paolo, “Networks and devices using planar transmission lines”, CRC Press, 2000.

[44] K. Beilenhoff, “Simulation und Modellierung von Leistungs-Diskontinuitäten und –Verzweigungen für monolithisch integrierte Millimeterwellenschaltungen”, VDI Verlag GmbH, 1996.

[45] R.N. Simons and G.E. Ponchak, “Modeling of some Coplanar Waveguide Discontinuities”, IEEE Trans.

Microwave Theory Tech., Vol. 36, p. 1796-1803, 1988.

[46] M. Koolen, J. Geelen and M. Versleijen, “An improved deembedding technique for on-wafer high-frequency characterization”, IEEE Bipolar Circuits and Technology Meeting, 1991.

[47] L.F. Tiemeijer, R.M.T. Pijper, E. van der Heijden, “Two Multiport De-Embedding Methods for Accurate On-Wafer Characterization of 60-GHz Differential Amplifiers”, Microwave Theory and Techniques, IEEE Transactions on, Vol. 59, p. 763-771, 2011.

[48] E. Vandamme, D. Schreurs, C. van Dinters, “Improved three-step de-embedding method to accurately account for the influence of pad parasitics in silicon on-wafer RF test structures”, IEEE Transactions on Electron Devices, Vol. 48, Nr. 4, 2001.

[49] H. Xu and E. Kasper, “A De-embedding procedure for One-Port active mm-wave devices”, Sirf 2010.

[50] W.C. Johnson and P.T. Panousis, “The influence of Debye Length on the C-V Measurement of Doping Profiles”, IEEE Transactions on Electron Devices, Vol. 18, 1971.

[51] H. Kroemer and W.-Y. Chien, “On the Theory of Debye averaging in the C-V profiling of Semiconductors”, Solid-State Electronics, Vol. 24, pp. 655-660, 1981.

[52] M. Born and E. Wolf, “Principles of Optics”, Pergamon: Oxford, 6thEdition, 1980.

[53] M. Francon, “Moderne Anwendungen der physikalischen Optik”, Akademie-Verlag, 1971.

[54] L.A. Coldren, S.W. Corzine, M.L. Masanovic, “Diode Lasers and Photonic Integrated Circuits” , John Wiley & Sons, 2012.

[55] S. Methfessel, “Dünne Schichten”, VEB Wilhelm Knapp Verlag, 1953.

[56] B. Harbecke, “Coherent and Incoherent Reflection and Transmission of Multilayer Structures”, Applied Physics B 39, p. 165-170, 1986.

[57] S. Krauter and P. Grunow, “Optical Modelling and Simulation of PV Module Encapsulation to improve Structure and Material Properties for Maximum Energy Yield”, Proceedings of the 4th World

Conference on Photovoltaic Energy Conversion, p. 2133–2137, 2006.

[58] A. Thelen, “Design of Optical Interference Coatings”, McGraw-Hill, 1989.

[59] G. Reed, “Silicon Photonics”, Wiley, 2008.

[60] C. Klingshirn, “Semiconductor Optics”, Springer, 2005.

[61] B. Saleh, M. Teich, “Grundlagen der Photonik”, Wiley-VCH, 2008.

[62] W. Harth, H. Grothe, “Sende- und Empfangsdioden für die optische Nachrichtentechnik”, B.G. Teubner Stuttgart, 1998.

[63] G. George and J.P. Krusius, “Dynamic response of high-speed PIN and Schottky-Barrier Photodiode layers to non-uniform optical illumination”, Journal Lightwave Technology, Vol. 12, p. 1387-1393, 1994.

[64] M. Berroth, “Optoelectronic Devices and Circuits II”, Scriptum 2011.

4. Kapitel

[65] M. Oehme, J. Werner, E. Kasper, M. Jutzi and M. Berroth, “High bandwidth Ge p-i-n photodetector integrated on Si”, Applied Physics Letters 89, 071117, 2006.

[66] M. Rouviere, L. Vivien, X. Le Roux, J. Mangeney, P. Crozat, C. Hoarau, E. Cassan, D. Pascal and S.

Laval, “Ultrahigh Speed Germanium-on-Silicon-on-Insulator Photodetectors for 1.31 and 1.55 um Operation”, Applied Physics Letter, Vol. 87, 2005.

[67] D. Suh, S. Kim, J. Joo, G. Kim and I.G. Kim, “35 GHz Ge p-i-n Photodetectors Implemented Using RPCVD”, LEOS Group IV Photonics, 2008.

[68] J.E. Bowers, C.A. Burrus, F. Mitschke, “Millimeter-waveguide mounted InGaAs photodetectors”, Electron. Lett. 22, p. 633-635, 1986.

[69] M. Jutzi, “Ge-on-Si Vertical Incidence Photodiodes with 39 GHz bandwidth”, IEEE Photonics Technology Letter, Vol. 17, No. 7, p. 1510-1512, 2005.

[70] Y. Kang, S. Litski, G. Sarid, M. Morse, M. J. Paniccia1, A. Pauchard, K. G. Gan and J. E. Bowers,

“Ge/Si avalanche photodiodes for 1.3 µm optical fiber links”, in Proc. Int. Conf. Group IV Photonics, p.

294–296, 2007.

[71] S. Assefa, F. Xia and Y.A. Vlasov, “Reinventing Ge avalanche photodetector for nanophotonic on-chip optical interconnects”, Nature, Vol. 464, p. 80-85, 2010.

[72] T. Yin, M. Pappu and A. B. Apsel, “Low-cost, high-efficiency, and highspeed SiGe phototransistors in commercial BiCMOS”, IEEE Photonics Technology Letter, Vol. 18, Nr. 1, p. 55–57, 2006.

[73] K.-W. Ang, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Low-Voltage and High-Responsivity Germanium Bipolar Phototransistor for Optical Detections in the Near-Infrared Regime”, IEEE Electron Device Letter, Vol. 29, Nr. 10, p. 1124-1127, 2008.

[74] M. Oehme, J. Werner, E. Kasper, M. Jutzi and M. Berroth, “High bandwidth Ge p-i-n photodetector integrated on Si”, Applied Physics Letter 89, 071117, 2006.

[75] M. Kaschel, M. Oehme, O. Kirfel, E. Kasper, “Spectral responsivity of fast Ge photodetectors on SOI”, Solid State Electronics 53, p. 909-911, 2009.

[76] O.I. Dosunmu, D.D. Cannon. M.K. Emsley, L.C. Kimmerling and M.S. Unlü, “High-Speed Resonant Cavity Enhanced Ge Photodetectors on Reflection Si Substrates for 1550nm Operation”, IEEE Photonics Technology Letter, Vol. 17, Nr. 7, p. 175-177, 2005.

[77] M. Oehme and E. Kasper, “MBE Growth Techniques”, in: Silicon Heterostructure Handbook:

Materials, Fabrication, Devices, Circuits, and Applications of SiGe and Si Strained-Layer Epitaxy; CRC PRESS, USA, p. 85-94, 2006.

[78] E. Kasper, M. Bauer, M. Oehme, “Quantitative secondary ion mass spectrometry analysis of SiO2 desorption during in situ heat cleaning”, Thin Solid Films 321, p. 148-152, 1998.

[79] M. Oehme, J. Werner, M. Jutzi, G. Woehl, E. Kasper and M. Berroth, “High-speed germanium photodiodes monolithically integrated on silicon with MBE”, Thin Solid Films 508, p. 393-395, 2006.

[80] E. Kasper, K. Lyutovich, “Strain adjustment with thin virtual substrates”, Solid-State Electronics, 48, p.

1257-1263, 2004.

[81] M. Kaschel, “Elektrische und optische Charakterisierung von p-i-n Photodioden aus Germanium”, Diplomarbeit, Institut für Hableitertechnik, 2007.

5. Kapitel

[82] M. Jutzi, “Photodetektoren auf Silizium Substraten für integrierte, optische Empfänger”, Dissertation, 2005.

[83] K. Lyutovich, E. Kasper, M. Oehme, “Ultra-thin strain relaxed SiGe buffer layers with 40% Ge”, Mat.

Res. Soc. Symp. Proc., 809, p. 33-38, 2004.

[84] M. Jutzi, M. Berroth, G. Wöhl, M. Oehme and E. Kasper, “Ge-on-Si Vertical Incidence Photodiodes with 39-GHz Bandwidth”, IEEE Photonic Techn. Lett., Vol. 17, Nr. 7, p. 1510-1512, 2005.

[85] S. Klinger, M. Berroth, M. Kaschel, M. Oehme, E. Kasper, “Ge on Si p-i-n Photodiodes with a 3-dB bandwidth of 49 GHz”, IEEE Photonic Techn. Lett. Vol. 21 Nr. 13, p. 920-922, 2009.

[86] M. Oehme, J. Werner, E. Kasper, “Molecular beam epitaxy of highly antimony doped germanium on silicon”, J. Crystal Growth 310, p. 4531–4534, 2008.

[87] J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, J. Schulze, “Germanium-tin p-i-n photodetectors ip-i-ntegrated op-i-n silicop-i-n growp-i-n by molecular beam epitaxy”, Applied Physics Letters 98, 2011.

[88] M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn”, Applied Physics Letters, 101, 141110, 2012.

6. Kapitel

[89] A. Barkai, Y. Chetrit, O. Cohen, R. Cohen, N. Elek, E. Ginsburg, S. Litski, A. Michaeli, O. Raday, D.

Rubin, G. Sarid, N. Izhaky, M. Morse, O. Dosunmu, A. Liu, L. Liao, H.Rong,Y.-H. Kuo, S. Xu, D.

Alduino, J. Tseng, H.-F. Liu and M. Paniccia, “Integrated silicon photonics for optical networks”, Journal of Optical Networking, Vol. 6, Nr. 1, p. 25-47, 2007.

[90] D. Ahn, C.-Y. Hong, J. Liu, W. Giziewicz, M. Beals, L.C.Kimerling, J. Michel, J. Chen and F.X.

Kärtner, “High performance, waveguide integrated Ge photodetectors”, Optics Express, Vol. 15, Nr. 7, p. 3916-3921, 2007.

[91] G. Dehlinger, S. J. Koester, J. D. Schaub, J. O. Chu, Q. C. Ouyang and A. Grill, “High-Speed

Germanium-on-SOI Lateral PIN Photodiodes”, IEEE Photonics Technology Letters, Vol. 16, Nr. 11, p.

2547-2549, 2004.

[92] T. Yin, R. Cohen, M.M. Morse, G. Sarid, Y. Chetrit, D. Rubin and M.J. Paniccia, “31 GHz Ge n-i-p waveguide photodetectors on Silicon-on-Insulator substrate”, Optics Express, Vol. 15, Nr. 21, p. 13965-13971, 2007.

[93] L. Vivien, D. Marris-Morini, J. Mangeney, P. Crozat, E. Cassan, S. Laval, J.-M. Fedeli, J.F.

Damlencourt, Y. Lecunff, “42 GHz waveguide germanium-on-silicon vertical PIN photodetector”, Group IV Photonics, 5th IEEE International Conference on , p.185-187, 2008.

[94] J. Wang, W.Y. Loh, K.T. Chua, H. Zang, Y.Z. Xiong, T.H. Loh, M.B. Yu, S.J. Lee, G.-Q. Lo and D.-L.

Kwong, “Evanescent-Coupled Ge p-i-n Photodetectors on Si-Waveguide with SEG-Ge and

Comparative Study of Lateral and Vertical p-i-n Configurations”, IEEE Electron Device Letters, Vol.

29, Nr. 5, p. 445-448, 2008.

7. Kapitel

[95] E. Kasper, M. Oehme, T. Arguirov, J. Werner, M. Kittler, and J. Schulze, “Room Temperature Direct Band Gap Emission from Ge p-i-n Heterojunction Photodiodes”, Advances in OptoElectronics, Vol.

2012, 2012.

[96] E.F. Schubert, “Light-Emitting diodes”, Cambridge University Press, 2nd Edition, 2006.

Eigene Veröffentlichungen

M. Oehme, K. Kostecki, K. Ye, S. Bechler, K. Ulbricht, M. Schmid, M. Kaschel, M. Gollhofer, R. Körner, W.

Zhang, E. Kasper, and J. Schulze, “GeSn-on-Si normal incidence photodetectors with bandwidths more than 40 GHz”, Optics Express Vol. 22, No. 1, pp. 839-846, 2014.

M. Oehme, K. Kostecki, T. Arguirov, G. Mussler, K. Ye, M. Gollhofer, M. Schmid, M. Kaschel, R. Körner, M.

Kittler, D. Buca, E. Kasper, J. Schulze, “GeSn heterojunction LEDs on Si substrates“, IEEE Phot. Techn. Lett., Vol. 26, No. 2, pp. 187-189, 2014.

M. Kaschel, M. Schmid, M. Gollhofer, M. Oehme, E. Kasper, J. Schulze, "Resistance-capacitance limitation of fast double heterojunction Ge p-i-n photodetectors", Proc. SPIE 8767, Integrated Photonics: Materials, Devices, and Applications II, 87670D, 2013.

M. Schmid, M. Kaschel, M. Gollhofer, M. Oehme, J. Werner, K. Ulbricht, E. Kasper, J. Schulze, "Franz-Keldysh effect of Ge-on-Si pin diodes at common chip temperatures", Proc. SPIE 8767, Integrated Photonics:

Materials, Devices, and Applications II, 87670C, 2013.

M. Kaschel, M. Schmid, M. Gollhofer, J. Werner, M. Oehme, J. Schulze, "Room-temperature

electroluminescence from tensile strained double-heterojunction Germanium pin LEDs on Silicon substrates", Solid-State Electronics, Vol. 83, pp. 87-91, 2013.

M. Oehme, M. Gollhofer, D. Widmann, M. Schmid, M. Kaschel, E. Kasper, and J. Schulze,"Direct bandgap narrowing in Ge LED's on Si substrates", Optics Express, Vol. 21, No. 2, pp. 2206-2211, 2013.

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze,"GeSn p-i-n detectors integrated on Si with up to 4% Sn", Appl. Phys. Lett., 101, 141110, 2012.

M. Schmid, M. Kaschel, M. Gollhofer, M. Oehme, J. Werner, E. Kasper, J. Schulze,"Franz-Keldysh effect of germanium-on-silicon p-i-n diodes within a wide temperature range", Thin Solid Films, Vol. 525, No. 15, pp.

110 – 114, 2012.

M. Schmid, M. Oehme, M. Gollhofer, M. Kaschel, E. Kasper, J. Schulze,"Electroluminescence of unstrained and tensile strained Ge-on-Si LEDs", IEEE 9th International Conference on Group IV Photonics (GFP), pp. 135 – 137, 2012.

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, J. Schulze, "Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy", Appl. Phys. Lett. 98, 061108, 2011.

M. Kaschel, M. Schmid, M. Oehme, J. Werner, J. Schulze, "Germanium photodetectors on Silicon-on-insulator grown with differential molecular beam epitaxy in silicon wells", Solid State Electronics, 60, pp. 105-111, 2011.

M. Oehme, J. Werner, M. Gollhofer, M. Schmid, M. Kaschel, E. Kasper, J. Schulze, "Room-Temperature Electroluminescence From GeSn Light-Emitting Pin Diodes on Si", IEEE Phot. Techn. Lett., vol. 23, No. 23, pp.

1751-1753, 2011.

M. Oehme, M. Kaschel, J. Werner, O. Kirfel, M. Schmid, B. Bahouchi, E. Kasper J. Schulze, "Germanium on Silicon Photodetectors with broad spectral range", J. Electrochem. Soc., 157, pp. H144-H148, 2010.

M. Oehme, O. Kirfel, J. Werner, M. Kaschel, E. Kasper, J. Schulze, "Antimony doped Si Esaki diodes without post growth annealing", Thin Solid Films, 518, pp. 65-67, 2010.

M. Oehme, M. Sarlija, D. Hähnel, M. Kaschel, J. Werner, E. Kasper and J. Schulze, "Very high room

temperature peak to valley current ratio in Si Esaki Tunneling Diodes", IEEE Trans. Electron Devices, vol. 57, no. 11, pp. 2857-2863, 2010.

M. Schmid, M. Oehme, M. Kaschel, J. Werner, E. Kasper, and J. Schulze, "Franz-Keldysh effect in Germanium on Silicon p-i-n photodetectors", 7th International Conference on Group IV Photonics , LEOS, Beijing, China, pp. 329-331, 2010.

M. Kaschel, M. Oehme, O. Kirfel, E. Kasper, "Spectral responsivity of fast Ge photodetectors on SOI", Solid State Electronics 53, pp. 909-911, 2009.

S. Klinger, M. Berroth, M. Kaschel, M. Oehme, E. Kasper, "Ge on Si p-i-n Photodiodes with a 3-dB bandwidth of 49 GHz", IEEE Phot. Techn. Lett. vol. 21 No. 13, pp. 920-922, 2009.

M. Oehme, D. Hähnel, J. Werner, M. Kaschel, O. Kirfel, E. Kasper, J. Schulze, "Si Esaki diodes with high peak to valley current ratios", Appl. Phys. Lett. 95, 242109, 2009.

S. Klinger, M. Grözing, W. Sfar Zaoui, M. Berroth, M. Kaschel, M. Oehme, E. Kasper, J. Schulze, "Ge on Si p-i-n Photodiodes for a Bit Rate of up to 25 gbit/s", ECOC 2009.

M. Oehme, J. Werner, M. Kaschel, O. Kirfel and E. Kasper, “Germanium Waveguide Photodetectors Integrated on Silicon with MBE”, Thin Solid Films 517, pp. 137–139, 2008.

S. Klinger, W. Vogel, M. Berroth, M. Kaschel, M. Oehme, E. Kasper, “Ge on Si p-i-n Photodetectors with 40 GHz bandwidth”, Group IV Photonics, pp. 188-190, 2008.

Danksagung

Ich danke allen Kolleginnen und Kollegen am Institut für Halbleitertechnik für die Unterstützung dieser Arbeit am Institut, insbesondere Dr. M. Oehme für die vielen gewachsenen Schichten, fachlichen Impulse und Diskussionen, Dr. J. Werner und M. Schmid für die gegenseitige Unterstützung. Außerdem bedanke ich mich bei Prof. E. Kasper für die vielen hilfreichen Gespräche, sowie Prof. J. Schulze für die Betreuung und Unterstützung bei dieser Arbeit.

Für die Unterstützung der optoelektrischen Charakterisierung der Photodetektoren und der erfolgreichen Zusammenarbeit danke ich den Mitarbeitern vom Institut der Elektrischen und Optischen Nachrichtentechnik. Zusätzlich bedanke ich mich bei meinem Mitberichter Prof.

Manfred Berroth.

Den Mitarbeitern am Institut für Photovoltaik danke ich für die Bereitstellung des Reflektionsmessplatzes und die Hilfe bei den optischen Simulationen.

Mein Dank für das Korrekturlesen geht an Dr. G. Ivenz-Kaschel und Frau K. Bertsch.

Ich danke meiner Familie und Freunden, die mich während dieser Arbeit immer unterstützt und motiviert haben.

Lebenslauf

Name: Mathias Kaschel Geburtstag: 10.04.1980 Geburtsort: Reutlingen Staatsangehörigkeit: deutsch

Schule und Ausbildung:

1990 - 1994 Isolde-Kurz-Gymnasium, Reutlingen 1994 - 1999 Johannes-Kepler-Gymnasium, Reutlingen

2000 - 2007 Studium Elektrotechnik mit Schwerpunkt Mikro- und Optoelektronik, Universität Stuttgart

Studienarbeit, Prof. Frühauf, Institut für großflächige Mikroelektronik, Universität Stuttgart

Diplomarbeit, Prof. Kasper, Institut für Halbleitertechnik, Universität Stuttgart

2004 Studium Electrical Engineering, National University of Singapore 2007 - 2013 Wissenschaftlicher Mitarbeiter am Institut für Halbleitertechnik der

Universität Stuttgart