• Keine Ergebnisse gefunden

(1) Leitlinien für Diagnostik und Therapie in der Neurologie; 4. überarbeitete Auflage 2008, ISBN 978-3-13-132414-6; Georg Thieme Verlag Stuttgart.

(2) Heuschmann PU, Busse O, Wagner M, Endres M, Villringer A, Röther J, et al.

Schlaganfallhäufigkeit und Versorgung von Schlaganfallpatienten in Deutschland. Akt Neurol 2010(37):333-340.

(3) Kesteloot H, Sans S, Kromhout D. Dynamics of cardiovascular and all-cause mortality in Western and Eastern Europe between 1970 and 2000. Eur Heart J 2006 Jan;27(1):107-113.

(4) Hermann D, Steiner T, Diener H. Vaskuläre Neurologie: zerebrale Ischämien, Hämorrhagien, Gefäßmissbildungen, Vaskulitiden und vaskuläre Demenz ; 51 Tabellen.

Stuttgart u.a.: Thieme; 2010.

(5) Truelsen T, Piechowski-Jozwiak B, Bonita R, Mathers C, Bogousslavsky J, Boysen G.

Stroke incidence and prevalence in Europe: a review of available data. Eur J Neurol 2006 Jun;13(6):581-598. carotid stenosis: the high-risk period and the high-risk patient. Eur J Vasc Endovasc Surg 2008 Mar;35(3):255-263.

(9) de Weerd M, Greving JP, Hedblad B, Lorenz MW, Mathiesen EB, O'Leary DH, et al.

Prevalence of asymptomatic carotid artery stenosis in the general population: an individual participant data meta-analysis. Stroke 2010 Jun;41(6):1294-1297.

(10) Golledge J, Siew DA. Identifying the carotid 'high risk' plaque: is it still a riddle wrapped up in an enigma? Eur J Vasc Endovasc Surg 2008 Jan;35(1):2-8.

(11) Azarpazhooh MR, Chambers BR. Clinical application of transcranial Doppler monitoring for embolic signals. J Clin Neurosci 2006 Oct;13(8):799-810.

(12) Markus HS, MacKinnon A. Asymptomatic embolization detected by Doppler ultrasound predicts stroke risk in symptomatic carotid artery stenosis. Stroke 2005 May;36(5):971-975.

94 (13) Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. North American Symptomatic Carotid Endarterectomy Trial Collaborators. N Engl J Med 1991 Aug 15;325(7):445-453.

(14) Randomised trial of endarterectomy for recently symptomatic carotid stenosis:

final results of the MRC European Carotid Surgery Trial (ECST). Lancet 1998 May 9;351(9113):1379-1387.

(15) Endarterectomy for asymptomatic carotid artery stenosis. Executive Committee for the Asymptomatic Carotid Atherosclerosis Study. JAMA 1995 May 10;273(18):1421-1428.

(16) Halliday A, Mansfield A, Marro J, Peto C, Peto R, Potter J, et al. Prevention of disabling and fatal strokes by successful carotid endarterectomy in patients without recent neurological symptoms: randomised controlled trial. Lancet 2004 May 8;363(9420):1491-1502.

(17) Woo K, Garg J, Hye RJ, Dilley RB. Contemporary results of carotid endarterectomy for asymptomatic carotid stenosis. Stroke 2010 May;41(5):975-979.

(18) Fokkema M, de Borst GJ, Nolan BW, Indes J, Buck DB, Lo RC, et al. Clinical relevance of cranial nerve injury following carotid endarterectomy. Eur J Vasc Endovasc Surg 2014 Jan;47(1):2-7.

(19) SPACE Collaborative Group, Ringleb PA, Allenberg J, Bruckmann H, Eckstein HH, Fraedrich G, et al. 30 day results from the SPACE trial of stent-protected angioplasty versus carotid endarterectomy in symptomatic patients: a randomised non-inferiority trial. Lancet 2006 Oct 7;368(9543):1239-1247.

(20) Blaser T, Hofmann K, Buerger T, Effenberger O, Wallesch CW, Goertler M. Risk of stroke, transient ischemic attack, and vessel occlusion before endarterectomy in patients with symptomatic severe carotid stenosis. Stroke 2002 Apr;33(4):1057-1062.

(21) Chambers BR, You RX, Donnan GA. Carotid endarterectomy for asymptomatic carotid stenosis. Cochrane Database Syst Rev 2000;(2)(2):CD001923.

(22) Halbritter K, Weiss N. Update carotid artery stenosis. Internist (Berl) 2013 Jun;54(6):715-725.

(23) Lobstein J. Traité d’Anatomie Pathologique. 1833;2.

(24) Virchow R. Phlogose und Thrombose im Gefäßsystem. Gesammelte Abhandlungen zur Wissenschaftlichen Medicin. ; 1862.

(25) Marchand F. Über Arteriosklerose (Athero-Sklerose). Verhandl Dtsch Congr Inn Med . 1904.

(26) Ross R, Glomset J, Harker L. Response to injury and atherogenesis. Am J Pathol 1977 Mar;86(3):675-684.

95 (27) Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull W,Jr, et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 1995 Sep 1;92(5):1355-1374.

(28) Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med 1999 Jan 14;340(2):115-126.

(29) Heo SH, Cho CH, Kim HO, Jo YH, Yoon KS, Lee JH, et al. Plaque Rupture is a Determinant of Vascular Events in Carotid Artery Atherosclerotic Disease: Involvement of Matrix Metalloproteinases 2 and 9. J Clin Neurol 2011 Jun;7(2):69-76.

(30) Johnson JL. Matrix metalloproteinases: influence on smooth muscle cells and atherosclerotic plaque stability. Expert Rev Cardiovasc Ther 2007 Mar;5(2):265-282.

(31) Newby AC, George SJ, Ismail Y, Johnson JL, Sala-Newby GB, Thomas AC. Vulnerable atherosclerotic plaque metalloproteinases and foam cell phenotypes. Thromb Haemost 2009 Jun;101(6):1006-1011.

(32) Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation 2003 Oct 7;108(14):1664-1672.

(33) Yazdani SK, Vorpahl M, Ladich E, Virmani R. Pathology and vulnerability of atherosclerotic plaque: identification, treatment options, and individual patient differences for prevention of stroke. Curr Treat Options Cardiovasc Med 2010 Jun;12(3):297-314.

(34) Carr S, Farb A, Pearce WH, Virmani R, Yao JS. Atherosclerotic plaque rupture in symptomatic carotid artery stenosis. J Vasc Surg 1996 May;23(5):755-65; discussion 765-6.

(35) George SJ, Johnson J editors. Atherosclerosis: molecular and cellular mechanisms.

Weinheim: Wiley-VCH-Verl.; Wiley-Blackwell; 2010.

(36) Redgrave JN, Gallagher P, Lovett JK, Rothwell PM. Critical cap thickness and rupture in symptomatic carotid plaques: the oxford plaque study. Stroke 2008 Jun;39(6):1722-1729.

(37) Moreno PR, Purushothaman KR, Zias E, Sanz J, Fuster V. Neovascularization in human atherosclerosis. Curr Mol Med 2006 Aug;6(5):457-477.

(38) Di Stefano R, Felice F, Balbarini A. Angiogenesis as risk factor for plaque vulnerability. Curr Pharm Des 2009;15(10):1095-1106.

(39) Golledge J, Greenhalgh RM, Davies AH. The symptomatic carotid plaque. Stroke 2000 Mar;31(3):774-781.

(40) Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol 2005 Dec;5(12):953-964.

96 (41) Chang ZL. Recent development of the mononuclear phagocyte system: in memory of Metchnikoff and Ehrlich on the 100th Anniversary of the 1908 Nobel Prize in Physiology or Medicine. Biol Cell 2009 Sep 14;101(12):709-721.

(42) Huber AR, Stamm B. Disease entities caused by or involving the mononuclear phagocyte system. Ther Umsch 2006 Jan;63(1):99-107.

(43) Passlick B, Flieger D, Ziegler-Heitbrock HW. Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood 1989 Nov 15;74(7):2527-2534.

(47) Wong KL, Yeap WH, Tai JJ, Ong SM, Dang TM, Wong SC. The three human monocyte subsets: implications for health and disease. Immunol Res 2012 Mar 20.

(48) Libby P, Nahrendorf M, Swirski FK. Monocyte heterogeneity in cardiovascular disease. Semin Immunopathol 2013 Jul 10.

(49) Ingersoll MA, Spanbroek R, Lottaz C, Gautier EL, Frankenberger M, Hoffmann R, et al. Comparison of gene expression profiles between human and mouse monocyte subsets. Blood 2010 Jan 21;115(3):e10-9.

(50) Poehlmann H, Schefold JC, Zuckermann-Becker H, Volk HD, Meisel C. Phenotype changes and impaired function of dendritic cell subsets in patients with sepsis: a prospective observational analysis. Crit Care 2009;13(4):R119.

(51) Zhang JY, Zou ZS, Huang A, Zhang Z, Fu JL, Xu XS, et al. Hyper-activated pro-inflammatory CD16 monocytes correlate with the severity of liver injury and fibrosis in patients with chronic hepatitis B. PLoS One 2011 Mar 1;6(3):e17484.

(52) Rodriguez-Munoz Y, Martin-Vilchez S, Lopez-Rodriguez R, Hernandez-Bartolome A, Trapero-Marugan M, Borque MJ, et al. Peripheral blood monocyte subsets predict antiviral response in chronic hepatitis C. Aliment Pharmacol Ther 2011 Oct;34(8):960-971.

(53) Moniuszko M, Bodzenta-Lukaszyk A, Kowal K, Lenczewska D, Dabrowska M.

Enhanced frequencies of CD14++CD16+, but not CD14+CD16+, peripheral blood monocytes in severe asthmatic patients. Clin Immunol 2009 Mar;130(3):338-346.

97 (54) Grip O, Bredberg A, Lindgren S, Henriksson G. Increased subpopulations of CD16(+) and CD56(+) blood monocytes in patients with active Crohn's disease. Inflamm Bowel Dis 2007 May;13(5):566-572.

(55) Rossol M, Kraus S, Pierer M, Baerwald C, Wagner U. The CD14(bright) CD16+

monocyte subset is expanded in rheumatoid arthritis and promotes expansion of the Th17 cell population. Arthritis Rheum 2012 Mar;64(3):671-677.

(56) Belge KU, Dayyani F, Horelt A, Siedlar M, Frankenberger M, Frankenberger B, et al.

The proinflammatory CD14+CD16+DR++ monocytes are a major source of TNF. J Immunol 2002 Apr 1;168(7):3536-3542.

(57) Settles M, Etzrodt M, Kosanke K, Schiemann M, Zimmermann A, Meier R, et al.

Different capacity of monocyte subsets to phagocytose iron-oxide nanoparticles. PLoS One 2011;6(10):e25197.

(58) Cros J, Cagnard N, Woollard K, Patey N, Zhang SY, Senechal B, et al. Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors.

Immunity 2010 Sep 24;33(3):375-386.

(59) Shi C, Pamer EG. Monocyte recruitment during infection and inflammation. Nat Rev Immunol 2011 Oct 10;11(11):762-774.

(60) Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 2003 Jul;19(1):71-82.

(61) Auffray C, Fogg D, Garfa M, Elain G, Join-Lambert O, Kayal S, et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 2007 Aug 3;317(5838):666-670.

(62) Sunderkotter C, Nikolic T, Dillon MJ, Van Rooijen N, Stehling M, Drevets DA, et al.

Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J Immunol 2004 Apr 1;172(7):4410-4417.

(63) Gautier EL, Jakubzick C, Randolph GJ. Regulation of the migration and survival of monocyte subsets by chemokine receptors and its relevance to atherosclerosis.

Arterioscler Thromb Vasc Biol 2009 Oct;29(10):1412-1418.

(64) Napoli C, D'Armiento FP, Mancini FP, Postiglione A, Witztum JL, Palumbo G, et al.

Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia. Intimal accumulation of low density lipoprotein and its oxidation precede monocyte recruitment into early atherosclerotic lesions. J Clin Invest 1997 Dec 1;100(11):2680-2690.

(65) Swirski FK, Libby P, Aikawa E, Alcaide P, Luscinskas FW, Weissleder R, et al. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J Clin Invest 2007 Jan;117(1):195-205.

98 (66) Tacke F, Alvarez D, Kaplan TJ, Jakubzick C, Spanbroek R, Llodra J, et al. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J Clin Invest 2007 Jan;117(1):185-194.

(67) Astrup J, Siesjo BK, Symon L. Thresholds in cerebral ischemia - the ischemic penumbra. Stroke 1981 Nov-Dec;12(6):723-725.

(68) Fisher M. Characterizing the target of acute stroke therapy. Stroke 1997 Apr;28(4):866-872.

(69) Macrez R, Ali C, Toutirais O, Le Mauff B, Defer G, Dirnagl U, et al. Stroke and the immune system: from pathophysiology to new therapeutic strategies. Lancet Neurol 2011 May;10(5):471-480.

(70) Xing C, Arai K, Lo EH, Hommel M. Pathophysiologic cascades in ischemic stroke. Int J Stroke 2012 Jul;7(5):378-385.

(71) Amantea D, Nappi G, Bernardi G, Bagetta G, Corasaniti MT. Post-ischemic brain damage: pathophysiology and role of inflammatory mediators. FEBS J 2009 Jan;276(1):13-26.

(72) Gelderblom M, Leypoldt F, Steinbach K, Behrens D, Choe CU, Siler DA, et al.

Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke 2009 May;40(5):1849-1857.

(73) Worthmann H, Tryc AB, Goldbecker A, Ma YT, Tountopoulou A, Hahn A, et al. The temporal profile of inflammatory markers and mediators in blood after acute ischemic stroke differs depending on stroke outcome. Cerebrovasc Dis 2010;30(1):85-92.

(74) Luster AD. Chemokines--chemotactic cytokines that mediate inflammation. N Engl J Med 1998 Feb 12;338(7):436-445.

(75) Nelken NA, Coughlin SR, Gordon D, Wilcox JN. Monocyte chemoattractant protein-1 in human atheromatous plaques. J Clin Invest 1991 Oct;88(4):1121-1127.

(76) Dawson TC, Kuziel WA, Osahar TA, Maeda N. Absence of CC chemokine receptor-2 reduces atherosclerosis in apolipoprotein E-deficient mice. Atherosclerosis 1999 Mar;143(1):205-211.

(77) Boring L, Gosling J, Cleary M, Charo IF. Decreased lesion formation in CCR2-/- mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 1998 Aug 27;394(6696):894-897.

(78) Blanco-Colio LM, Martin-Ventura JL, de Teresa E, Farsang C, Gaw A, Gensini G, et al.

Elevated ICAM-1 and MCP-1 plasma levels in subjects at high cardiovascular risk are diminished by atorvastatin treatment. Atorvastatin on Inflammatory Markers study: a substudy of Achieve Cholesterol Targets Fast with Atorvastatin Stratified Titration. Am Heart J 2007 May;153(5):881-888.

99 (79) Bazan JF, Bacon KB, Hardiman G, Wang W, Soo K, Rossi D, et al. A new class of membrane-bound chemokine with a CX3C motif. Nature 1997 Feb 13;385(6617):640-644.

(80) Hundhausen C, Misztela D, Berkhout TA, Broadway N, Saftig P, Reiss K, et al. The disintegrin-like metalloproteinase ADAM10 is involved in constitutive cleavage of CX3CL1 (fractalkine) and regulates CX3CL1-mediated cell-cell adhesion. Blood 2003 Aug 15;102(4):1186-1195.

(81) Stolla M, Pelisek J, von Bruhl ML, Schafer A, Barocke V, Heider P, et al. Fractalkine is expressed in early and advanced atherosclerotic lesions and supports monocyte recruitment via CX3CR1. PLoS One 2012;7(8):e43572.

(82) Harrison JK, Jiang Y, Chen S, Xia Y, Maciejewski D, McNamara RK, et al. Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc Natl Acad Sci U S A 1998 Sep 1;95(18):10896-10901.

(83) Nishiyori A, Minami M, Ohtani Y, Takami S, Yamamoto J, Kawaguchi N, et al.

Localization of fractalkine and CX3CR1 mRNAs in rat brain: does fractalkine play a role in signaling from neuron to microglia? FEBS Lett 1998 Jun 12;429(2):167-172.

(84) Maciejewski-Lenoir D, Chen S, Feng L, Maki R, Bacon KB. Characterization of fractalkine in rat brain cells: migratory and activation signals for CX3CR-1-expressing microglia. J Immunol 1999 Aug 1;163(3):1628-1635.

(85) Lee S, Varvel NH, Konerth ME, Xu G, Cardona AE, Ransohoff RM, et al. CX3CR1 deficiency alters microglial activation and reduces beta-amyloid deposition in two Alzheimer's disease mouse models. Am J Pathol 2010 Nov;177(5):2549-2562.

(86) Pabon MM, Bachstetter AD, Hudson CE, Gemma C, Bickford PC. CX3CL1 reduces neurotoxicity and microglial activation in a rat model of Parkinson's disease. J Neuroinflammation 2011 Jan 25;8:9-2094-8-9.

(87) Mizuno T, Kawanokuchi J, Numata K, Suzumura A. Production and neuroprotective functions of fractalkine in the central nervous system. Brain Res 2003 Jul 25;979(1-2):65-70.

(88) Zujovic V, Benavides J, Vige X, Carter C, Taupin V. Fractalkine modulates TNF-alpha secretion and neurotoxicity induced by microglial activation. Glia 2000 Feb 15;29(4):305-315.

(89) Cipriani R, Villa P, Chece G, Lauro C, Paladini A, Micotti E, et al. CX3CL1 is neuroprotective in permanent focal cerebral ischemia in rodents. J Neurosci 2011 Nov 9;31(45):16327-16335.

(90) Denes A, Ferenczi S, Halasz J, Kornyei Z, Kovacs KJ. Role of CX3CR1 (fractalkine receptor) in brain damage and inflammation induced by focal cerebral ischemia in mouse. J Cereb Blood Flow Metab 2008 Oct;28(10):1707-1721.

100 (91) Soriano SG, Amaravadi LS, Wang YF, Zhou H, Yu GX, Tonra JR, et al. Mice deficient in fractalkine are less susceptible to cerebral ischemia-reperfusion injury. J Neuroimmunol 2002 Apr;125(1-2):59-65.

(92) Radzun HJ, Hansmann ML, Heidebrecht HJ, Bodewadt-Radzun S, Wacker HH, Kreipe H, et al. Detection of a monocyte/macrophage differentiation antigen in routinely processed paraffin-embedded tissues by monoclonal antibody Ki-M1P. Lab Invest 1991 Sep;65(3):306-315.

(93) Weimar C, Goertler M, Rother J, Ringelstein EB, Darius H, Nabavi DG, et al. Systemic risk score evaluation in ischemic stroke patients (SCALA): a prospective cross sectional study in 85 German stroke units. J Neurol 2007 Nov;254(11):1562-1568.

(94) Brott T, Adams HP,Jr, Olinger CP, Marler JR, Barsan WG, Biller J, et al. Measurements of acute cerebral infarction: a clinical examination scale. Stroke 1989 Jul;20(7):864-870.

(95) van Swieten JC, Koudstaal PJ, Visser MC, Schouten HJ, van Gijn J. Interobserver neurological symptoms despite middle cerebral artery occlusion. Stroke 2004 Feb;35(2):469-471.

(98) Hacke W, Kaste M, Bluhmki E, Brozman M, Davalos A, Guidetti D, et al.

Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med 2008 Sep 25;359(13):1317-1329.

(99) Dengler R, Diener HC, Schwartz A, Grond M, Schumacher H, Machnig T, et al. Early treatment with aspirin plus extended-release dipyridamole for transient ischaemic attack or ischaemic stroke within 24 h of symptom onset (EARLY trial): a randomised, open-label, blinded-endpoint trial. Lancet Neurol 2010 Feb;9(2):159-166.

(100) Grosse GM, Tryc AB, Dirks M, Schuppner R, Pflugrad H, Lichtinghagen R, et al. The temporal dynamics of plasma fractalkine levels in ischemic stroke: association with clinical severity and outcome. J Neuroinflammation 2014 Apr 10;11(1):74.

(101) Johnsen SH, Fosse E, Joakimsen O, Mathiesen EB, Stensland-Bugge E, Njolstad I, et al. Monocyte count is a predictor of novel plaque formation: a 7-year follow-up study of 2610 persons without carotid plaque at baseline the Tromso Study. Stroke 2005 Apr;36(4):715-719.

(102) Schlitt A, Heine GH, Blankenberg S, Espinola-Klein C, Dopheide JF, Bickel C, et al.

CD14+CD16+ monocytes in coronary artery disease and their relationship to serum TNF-alpha levels. Thromb Haemost 2004 Aug;92(2):419-424.

101 (103) Kashiwagi M, Imanishi T, Tsujioka H, Ikejima H, Kuroi A, Ozaki Y, et al. Association of monocyte subsets with vulnerability characteristics of coronary plaques as assessed by 64-slice multidetector computed tomography in patients with stable angina pectoris.

Atherosclerosis 2010 Sep;212(1):171-176.

(104) Ozaki Y, Imanishi T, Taruya A, Aoki H, Masuno T, Shiono Y, et al. Circulating CD14+CD16+ monocyte subsets as biomarkers of the severity of coronary artery disease in patients with stable angina pectoris. Circ J 2012;76(10):2412-2418.

(105) Imanishi T, Ikejima H, Tsujioka H, Kuroi A, Ishibashi K, Komukai K, et al.

Association of monocyte subset counts with coronary fibrous cap thickness in patients with unstable angina pectoris. Atherosclerosis 2010 Oct;212(2):628-635.

(106) Jaipersad AS, Shantsila E, Blann A, Lip GY. The effect of statin therapy withdrawal on monocyte subsets. Eur J Clin Invest 2013 Dec;43(12):1307-1313.

(107) Merino A, Buendia P, Martin-Malo A, Aljama P, Ramirez R, Carracedo J. Senescent CD14+CD16+ monocytes exhibit proinflammatory and proatherosclerotic activity. J Immunol 2011 Feb 1;186(3):1809-1815.

(108) Rogacev KS, Seiler S, Zawada AM, Reichart B, Herath E, Roth D, et al.

CD14++CD16+ monocytes and cardiovascular outcome in patients with chronic kidney disease. Eur Heart J 2011 Jan;32(1):84-92.

(109) Zawada AM, Rogacev KS, Rotter B, Winter P, Marell RR, Fliser D, et al. SuperSAGE evidence for CD14++CD16+ monocytes as a third monocyte subset. Blood 2011 Sep 22;118(12):e50-61.

(110) Mosig S, Rennert K, Krause S, Kzhyshkowska J, Neunubel K, Heller R, et al.

Different functions of monocyte subsets in familial hypercholesterolemia: potential function of CD14+ CD16+ monocytes in detoxification of oxidized LDL. FASEB J 2009 Mar;23(3):866-874.

(111) Jaipersad AS, Shantsila A, Lip GY, Shantsila E. Expression of monocyte subsets and angiogenic markers in relation to carotid plaque neovascularization in patients with pre-existing coronary artery disease and carotid stenosis. Ann Med 2014 Jul 11:1-9.

(112) Rogacev KS, Zawada AM, Hundsdorfer J, Achenbach M, Held G, Fliser D, et al.

Immunosuppression and monocyte subsets. Nephrol Dial Transplant 2014 Oct 13.

(113) Khurana D, Mathur D, Prabhakar S, Thakur K, Anand A. Vascular endothelial growth factor and monocyte chemoattractant protein-1 levels unaltered in symptomatic atherosclerotic carotid plaque patients from north India. Front Neurol 2013 Apr 2;4:27.

(114) Niu J, Kolattukudy PE. Role of MCP-1 in cardiovascular disease: molecular mechanisms and clinical implications. Clin Sci (Lond) 2009 Jul 2;117(3):95-109.

(115) Zhong L, Chen WQ, Ji XP, Zhang M, Zhao YX, Yao GH, et al. Dominant-negative mutation of monocyte chemoattractant protein-1 prevents vulnerable plaques from

102 rupture in rabbits independent of serum lipid levels. J Cell Mol Med 2008 Dec;12(6A):2362-2371.

(116) Liu XL, Zhang PF, Ding SF, Wang Y, Zhang M, Zhao YX, et al. Local gene silencing of monocyte chemoattractant protein-1 prevents vulnerable plaque disruption in apolipoprotein E-knockout mice. PLoS One 2012;7(3):e33497.

(117) Morganti JM, Nash KR, Grimmig BA, Ranjit S, Small B, Bickford PC, et al. The soluble isoform of CX3CL1 is necessary for neuroprotection in a mouse model of Parkinson's disease. J Neurosci 2012 Oct 17;32(42):14592-14601.

(118) Shan S, Hong-Min T, Yi F, Jun-Peng G, Yue F, Yan-Hong T, et al. New evidences for fractalkine/CX3CL1 involved in substantia nigral microglial activation and behavioral changes in a rat model of Parkinson's disease. Neurobiol Aging 2011 Mar;32(3):443-458.

(119) Rogacev KS, Cremers B, Zawada AM, Seiler S, Binder N, Ege P, et al. CD14++CD16+

monocytes independently predict cardiovascular events: a cohort study of 951 patients referred for elective coronary angiography. J Am Coll Cardiol 2012 Oct 16;60(16):1512-1520.

(120) Berg KE, Ljungcrantz I, Andersson L, Bryngelsson C, Hedblad B, Fredrikson GN, et al. Elevated CD14++CD16- Monocytes Predict Cardiovascular Events. Circ Cardiovasc Genet 2012 Jan 11.

(121) Mehta NN, Reilly MP. Monocyte mayhem: do subtypes modulate distinct atherosclerosis phenotypes? Circ Cardiovasc Genet 2012 Feb 1;5(1):7-9.

(122) Rogacev KS, Ulrich C, Blomer L, Hornof F, Oster K, Ziegelin M, et al. Monocyte heterogeneity in obesity and subclinical atherosclerosis. Eur Heart J 2010 Feb;31(3):369-376.

(123) Urra X, Villamor N, Amaro S, Gomez-Choco M, Obach V, Oleaga L, et al. Monocyte subtypes predict clinical course and prognosis in human stroke. J Cereb Blood Flow Metab 2009 May;29(5):994-1002.

(124) Kaito M, Araya S, Gondo Y, Fujita M, Minato N, Nakanishi M, et al. Relevance of distinct monocyte subsets to clinical course of ischemic stroke patients. PLoS One 2013 Aug 2;8(8):e69409.

(125) Jander S, Sitzer M, Schumann R, Schroeter M, Siebler M, Steinmetz H, et al.

Inflammation in high-grade carotid stenosis: a possible role for macrophages and T cells in plaque destabilization. Stroke 1998 Aug;29(8):1625-1630.

(126) Bassiouny HS, Sakaguchi Y, Mikucki SA, McKinsey JF, Piano G, Gewertz BL, et al.

Juxtalumenal location of plaque necrosis and neoformation in symptomatic carotid stenosis. J Vasc Surg 1997 Oct;26(4):585-594.

103 (127) Abela GS, Aziz K, Vedre A, Pathak DR, Talbott JD, Dejong J. Effect of cholesterol crystals on plaques and intima in arteries of patients with acute coronary and cerebrovascular syndromes. Am J Cardiol 2009 Apr 1;103(7):959-968.

(128) Vedre A, Pathak DR, Crimp M, Lum C, Koochesfahani M, Abela GS. Physical factors that trigger cholesterol crystallization leading to plaque rupture. Atherosclerosis 2009 Mar;203(1):89-96.

(129) Barger AC, Beeuwkes R,3rd, Lainey LL, Silverman KJ. Hypothesis: vasa vasorum and neovascularization of human coronary arteries. A possible role in the pathophysiology of atherosclerosis. N Engl J Med 1984 Jan 19;310(3):175-177.

(130) Boehme SA, Lio FM, Maciejewski-Lenoir D, Bacon KB, Conlon PJ. The chemokine fractalkine inhibits Fas-mediated cell death of brain microglia. J Immunol 2000 Jul 1;165(1):397-403.

(131) Meucci O, Fatatis A, Simen AA, Miller RJ. Expression of CX3CR1 chemokine receptors on neurons and their role in neuronal survival. Proc Natl Acad Sci U S A 2000 Jul 5;97(14):8075-8080.

(132) Donohue MM, Cain K, Zierath D, Shibata D, Tanzi PM, Becker KJ. Higher plasma fractalkine is associated with better 6-month outcome from ischemic stroke. Stroke 2012 Sep;43(9):2300-2306.

(133) Gronberg NV, Johansen FF, Kristiansen U, Hasseldam H. Leukocyte infiltration in experimental stroke. J Neuroinflammation 2013 Sep 18;10:115-2094-10-115.

(134) Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL, et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 2007 Nov 26;204(12):3037-3047.

(135) Nahrendorf M, Pittet MJ, Swirski FK. Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation 2010 Jun 8;121(22):2437-2445.

(136) Michaud JP, Pimentel-Coelho PM, Tremblay Y, Rivest S. The impact of Ly6Clow monocytes after cerebral hypoxia-ischemia in adult mice. J Cereb Blood Flow Metab 2014 Apr 30.

(137) Wong BW, Wong D, McManus BM. Characterization of fractalkine (CX3CL1) and CX3CR1 in human coronary arteries with native atherosclerosis, diabetes mellitus, and transplant vascular disease. Cardiovasc Pathol 2002 Nov-Dec;11(6):332-338.

(138) Combadiere C, Potteaux S, Gao JL, Esposito B, Casanova S, Lee EJ, et al. Decreased atherosclerotic lesion formation in CX3CR1/apolipoprotein E double knockout mice.

Circulation 2003 Feb 25;107(7):1009-1016.

(139) Lesnik P, Haskell CA, Charo IF. Decreased atherosclerosis in CX3CR1-/- mice

(139) Lesnik P, Haskell CA, Charo IF. Decreased atherosclerosis in CX3CR1-/- mice