• Keine Ergebnisse gefunden

[1] Industrieverband Heimtierbedarf (IVH): Marktdatenblätter. Düsseldorf; 2001-2007 [2] Hasenfuss G.: Animal models of human cardiovascular disease, heart failure and hypertrophy. Cardiovasc Res 1998; 39: 60-76.

[3] Teupe C, Yao J, Takeuchi M, et al. : Myokardiale Kontrastechokardiographie mit harmonischem Power Doppler Verfahren und dem lungengängigem Ultraschallkontrastmittel SHU563 zur Darstellung von myokardialen Perfusionsstörungen – Tierexperimentelle Untersuchungen bei akuter Ischämie und nach Reperfusion. Z Kardiol 2000; 89: 914-920.

[4] Pennok GD, Yun DD, Agarwall PP, et al.: Echocardiographic changes after moycardial infarction in a model of left ventricular diastolic dysfunction. Am J Physiol 1997; 273: H2018-H2029.

[5] Magid NM, Opio G, Wallerson DC, et al.: Heart Failure due to chronic experimental aortic regurgitation. Am J Physiol 1994; 267: H556-H562.

[6] Masaki H, Imaizumi T, Ando S, et al.: Production of chronic congestive heart failure by rapid ventricular pacing in the rabbit. Cardiovasc Res 1993; 27: 828-831.

[7] J. Müller-Nordhorn, H.-R. Arntz, H. Löwel, et al.: The epidemiology of sudden cardiac death. Herzschr Elektrophys 2001; 12: 3-8.

[8] Ho KKL, Anderson KM, Kannel WB, et al.: Survival after the onset of congestive heart failure in Framingham Heart Study subjects. Circulation 1993; 88: 107-115.

[9] Muders F, Elsner D.: Animal models of chronic heart failure. Pharmacol Res 2000;

41: 605-611.

[10] Marian AJ, MD.: On Mice, Rabbits, and Human Heart Failure. Circulation 2005;

111: 2276-2279.

[11] Kuhlmann MT, Kirchhof P, Klocke R, et al.: G-CSF/SCF reduces inducible arrhythmias in the infarcted heart potentially via increased connexin43 expression and arteriogenesis. JEM 2006; 203: 87-97.

[12] Hoffmann G: Kurzer Abriss der Anatomie und Physiologie der Laboratoriumstiere. VEB Gustav Fischer Verlag-Jena 1956; 26-34.

[13] McLaughlin CA, Chiasson RB: The circulatory system. In: Laboratory Anatomy of the Rabbit. McGraw-Hill Higher Education 1990; 65-79.

[14] Jaffé R, Gavallér B: Kreislauforgane. In: Cohrs P, Jaffé R, Meessen H.

Pathologie der Laboratoriumstiere (Bd.1); Springer Verlag- Berlin-Göttingen-Heidelberg 1958; 1-2.

[15] Huston SM.: Cardiovaskular diseases. In: Queensberry KE, Carpenter JW.

Ferrents, Rabbitts and Rodents- Clinical Medicine and Surgery. Saunders Elsevier 2004; 211-215.

[16] Donally TM.: Basic Anatomy, Physiology and Husbandry. In: Laboratory Anatomy of the Rabbit. McGraw-Hill Higher Education 1990; 140.

[17] Harmeyer J.: Bau und Funktion des Herzens. In: Engelhardt W, Breves G.

Physiologie der Haustiere. Enke im Hippokrates Verlag 2000; 137.

[18] Roden DM, Balser JR, George Jr AL, et al.: Cardiac Ion Channels. Annu Rev Physiol 2002; 64: 431-475.

[19] Silbernagel S, Despopoulos A.: Taschenatlas der Physiologie. Georg Thieme Verlag 1991; 4.Aufl: 164

[20] Keating MT, Sanguinetti MC.: Molecular and Cellular Mechanisms of Cardiac Arrhythmias. Cell 2001; 104: 569-580.

[21] Boyett MR, Harrison SM, Janvier NC et al.: A list of vertebrate cardiac ionic currents - Nomenclature, properties, function and cloned equivalents. Cardiovasc Res 1996; 32: 455-481.

[22] Hagiwara N, Irisawa H, Kameyama M.: Contribution of two types of calcium currents to the pacemaker potentials of rabbit sino-atrial node cells. J of Physiol 1988; 355: 233-253.

[23] Monsuez J-J.: Cardiac potassium currents and channels – Part I: Basic science aspects. Int J Cardiol1997; 67: 209-219.

[24] Antzelevitch C.: Transmural dispersion of repolarisation and the T wave.

Cardiovasc Res 2001; 50: 426-431.

[25] Harmeyer J.: Das Aktionspotential des Arbeitsmyokards In: vEngelhardt W, Breves G. Physiologie der Haustiere. Enke im Hippokrates Verlag 2000; 147.

[26] Synders DJ.: Structure und function of cardiac potassium channels. Cardiovasc Res 1999; 42: 377-390.

[27] Sanguinetti MC, Jurkiewicz NK.: Two components of cardiac delayed rectifier K+ current – differential sensivity to block by class III antiarrhythmic agents. J Gen Physiol 1990; 96: 195-215.

[28] Viswanathan PC, Shaw RM, Rudy Y.: Effects of IKs and IKr heterogeneity on action potential duration and its rate dependence: A simulation study. Circulation 1999; 99: 2466-2474.

[29] Kurokawa J, Abriel H, Kaas RS.: Molecular basis of the delayed rectifier current IKs in heart. J Mol Cell Cardiol 2001; 33: 873-882.

[30] Li GR, Feng J, Yue L, et al.: Evidence for two components of delayed rectifier K+

current in human ventricular myocytes. Circ Res 1996; 78: 689-696.

[31] Hondeghem LM, Carlsson L, Duker G.: Instability and triangulation of the action potential predict serious proarrhythmia, but action potential duration prolongation is arrhythmic. Circulation 2001; 103: 2004-2013.

[32] Sanguinetti MC, Jiang C, Curran ME, et al.: A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the Ikr potassium channel. Cell 1995; 81: 299-307.

[33] Tseng GN: IKr : The hERG channel. J Mol Cell Cardiol 2001; 33: 835-849.

[34] Haverkamp W, Breithardt G, Camm AJ, et al.: The Potential for QT prolongation and proarrhythmia by non-anti-arrhythmic drugs. Clinical and regulatory implications:

Report on a policy conference of the European Society of Cardiology. Cardiovas Res 2000; 47: 219-233.

[35] Gintant GA: Regional differences in IK density in canine left ventricle: role of IKs in electrical heterogeneity. Am J Physiol 1995; 268: H604-H613.

[36] Yap YG, Camm J: Risk of Torsades de Pointes with non cardiac drugs. Doctors need to be aware that many drugs can cause QT prolongation. BMJ 2000; 320:1158-1159.

[37] Lopatin AN, Nichols CG: Inward rectifiers in the heart: An update on IK1. J Mol Cell Cardiol 2001; 33: 625-638.

[38] Wolk R, Cobbe SM, Hicks MN, et al.: Functional, structural and dynamic basis of electrical heterogeneity in healthy and diseased cardiac muscle: Implications for arrhythmogenesis and anti-arrhythmic drug therapy. Pharmacol Ther 1999; 84: 207-231.

[39] Brunner M, Zehender M: Das erworbene Long-QT Syndrom. Intensivmed 1998;

35: 557-564.

[40] Burashnikov A, Antzelevitch C: Differences in the electrophysiologic response of four canine ventricular cell types to alpha 1-adrenergic agonists. Cardiovasc Res.

1999; 43: 901-908.

[41] Sicouri S, Antzelevitch C.: A subpopulationof cells with unique electrophysiologic properties in the deep subepicardium of the canine ventricle: The M-Cell. Circ Res 1991; 68: 1729-41.

[42] Antzelevitch C, Shimizu W, Yan GX, et al.: The M-Cell: Its Contribution to the ECG and to normal and abnormal electrical function of the Heart. J Cardiovasc Electrophysiol 1999; 10(8):1124-52

[43] Antzelevitch C: Ionic, molecular, and cellular bases of QT-interval prolongation and torsades de pointes. Europace. 2007; 9 Suppl. 4: 4-15.

[44] Fedida D, Giles WR : Regional variations in action potentials and transient outward current in myocytes isolated from rabbit left ventricle. J Physiol 1991; 442:

191-209.

[45] Yan GX, Shimizu W, Antzelevitch C: Characteristics and distribution of M Cells in arterially perfused canine left ventricular wegde preparations. Circulation 1998;

98:1921-1927.

[46] Yan GX, Antzelevitch C: Cellular basis for the normal T wave and the electrocardiographic manifestations of the long-QT syndrome. Circulation 1998; 98:

1928-1936.

[47] Yamaguchi M, Shimizu M, Ino H, et al.: T wave peak-to-end interval and QT dispersion in acquired long QT syndrome : a new index for arrhythmogenicity.

Clinical Sciene 2003; 105: 671-676.

[48] Thomsen MB, Oros A, Schoenmakers M, et al.: Proarrhythmic electrical remodelling is associated with increased beat-to-beat variability of repolarisation.

Cardiovasc Res 2007; 73: 521-530.

[49] Oosterhoff P, Oros A, Vos MA: Beat-to-beat variability of repolarization: a new parameter to determine arrhythmic risk of an individual or identify proarrhythmic drugs. Anadolu Kardiyol Derg 2007; 7, Suppl. 1, 73-78.

[50] Thomsen MB, Truin M, Opstal JM, et al.: Sudden cardiac death in dogs with remodeled hearts is associated with larger beat-to-beat variability of repolarization.

Basic Res Cardiol 2005; 100: 279-287.

[51] Detre E, Thomsen MB, Beekmann JD, et al.: Decreasing the infusion rate reduces the proarrhythmic risk of NS-7: confirming the short-term variability of repolarisation in predicting in drug-induced torsades de pointes. BJP 2005; 145: 397-404.

[52] Hinterseer M, Thomsen MB, Beckmann BM, et al.: Beat-to-beat variability of QT intervals is increased in patients with drug-induced long-QT syndrome: a case control pilot study. Eur Heart J. 2008; 29:185-90.

[53] Volders PGA, Vos MA, Szabo B, et al.: Progress in the understanding of cardiac early afterdepolarizations and torsades de pointes: time to revise current concepts.

Cardiovasc Res 2000; 46: 376-392.

[54] Priori SG, Corr PB: Mechanisms underlying early and delayed Afterdepolarisations induced by catecholamines. Am J Physiol 1990; 258: H1796-H1805.

[55] Zeng J, Rudy Y: Early afterdepolarisations in cardiac myocytes: Mechanism and rate dependence. Biophysical J 1995; 68: 949-964.

[56] El-Sherif N, Craelius W, Boutjdir M, et al.: Early afterdepolarisations and arrhythmogenesis. J Cardiovasc Electrophysiol 1990; 1: 145-160.

[57] January CT, Riddle JM: Early afterdepolarisations: Mechanism of induction and block: A role for L-type Ca2+ current. Circ Res 1989; 64: 977-989.

[58] Jackman WM, Szabo B, Friday KJ, et al.: Ventricular tachyarrhythmias related to early afterdepolarisations and triggerd firing: Relationship to QT interval Prolongation

and potential therapeutic role for calcium channel blocking agents. J Cardiovasc Electrophysiol 1990; 1: 170-195.

[59] Waldo AL, Wit AL: Mechanisms of cardiac arrhythmias. The Lancet 1993; 341:

1189-1193.

[60] Allessie MA, Bonke FI, Schopman FJ: Circus movement in a rabbit atrial muscle as a mechanism of tachycardia. III. The “Leading Circle” concept: A new model of circus movement in cardiac tissue without the involvement of an anatomical obstacle.

Circ Res 1977; 41: 9-18.

[61] Vaughan Williams EM: A classification of antiarrhythmic action reassessed after a decade of new drugs. J Clin Pharmacol 1984; 24: 129-147.

[62] Viswanathan PC, Rudy Y: Pause induced early afterdepolarizations in the long QT syndrome: a simulation study. Cardiovasc Res 1999; 42: 530-542.

[63] Cranefield PF, Aronson RS: Torsades de pointes and early afterdepolarisations.

Cardiovasc Drugs Ther 1991; 5: 531-538.

[64] Huikuri H: Dispersion of repolarisation and the autonomic system – Can we predict torsades de pointes? Cardiovasc Drugs Ther 2002; 16: 93-99.

[65] Dessertenne F: La tachycardia ventriculaire à deux foyers opposés varaibles.

Arch Mal Cœur 1966 ; 59 : 263-272.

[66] Eckardt L, Haverkamp W, Borggreve M: Experimental models of torsades de pointes. Cardiovasc Res 1998; 39: 178-193.

[67] Zwillinger L: Über die Magnesiumwirkung auf das Herz. Klein Wochenschr 1935;

40: 1429-1433

[68] Arstall MA, Hii JT, Lehman RG, et al.: Sotalol induced torsades de pointes:

management with magnesium infusion. Postgrad Med J 1992; 68:289-290

[69] Yang T, Roden DM: Extracellular potassium modulation of drug block of IKr : implications for torsades de Pointes and reverse use-dependence. Circulation 1996;

93: 407-411.

[70] Turgeon J, Daleau P, Bennet PB, et al.: Block of IKs the slow component of the delayed rectifier K+ current, by the diuretic agent idapamid in guinea pig myocytes.

Circ Res 1994; 75: 879-886.

[71] Turgeon J, Lessard E, Bussiere S, et al.: Diuretics potentiate monophasic action potential prolonging effects of class III antiarrhythmic drugs in isolated guinea pig hearts. Circulation 1994; 90: Oct suppl.

[72] Kurita T, Ohe T, Marui N, et al.: Bradycardia-induced abnormal QT-prolongation in patients with complete atrioventricular block with torsades de pointes. Am J Cardiol 1992; 69: 628-633.

[73] Makkar RR, Fromm BS, Steinman RT, et al.: Female gender as a risk factor for torsades de pointes associated with cardiovascular drugs. JAMA 1993; 270: 2590-97.

[74] Lehmann MH, Hardy S, Archibald D, et al.: Arrhythmias/ Pacing/ Heart Block:

sex difference in risk of torsade de pointes with d,l-Sotalol. Circulation 1996; 94:

2535-2541.

[75] Lu HR, Remeysen P, Somers K, et al.: Female gender is a risk factor for drug- induced long QT and cardiac arrhythmias in an in vivo rabbit model. J Cardiovasc Electrophysiol 2001; 12: 538-545.

[76] Cheng J: Evidences of the gender-related differences in cardiac repolarization and the underlying mechanisms in different animal species and human. Fund Clin Pharmacol 2006; 20: 1-8.

[77] Haverkamp W: Kongenitales Long-QT-Syndrom. Herz 2007; 32: 201-205.

[78] Haverkamp W, Mönnig G, Wedekind H, et al.: Klinik und Molekulargenetik der QT-Syndrome. Deutsch Med Wschr 1999; 124: 972-979.

[79] Mönnig G, Schulze-Bahr E, Wedekind H, et al.: Klinik und Molekulargenetik des Jervell und Lange-Nielsen Syndroms. Z Kardiol 2002; 91: 380-388.

[80] Lubinski A, Lewicka-Nowak E, Kempa M, et al.: New insight into repolarization abnormalities in patients with congenital long QT-syndrome: the increased transmural dispersion of repolarization. PACE 1998; 21: 172-175.

[81] Wedekind H, Smits Jp, Schulze-Bahr E, et al.: De novo mutation in the SCN5 gene associated with early onset of sudden infant death. Circulation 2001; 104:

1158-1164.

[82] Roden DM, George ALJ, Bennett PB: Recent advances in understanding the molecular mechanisms of the long QT syndrome. J Cardiovasc Electrophysiol 1995;

6: 1023-1031.

[83] Schulze-Bahr E, Haverkamp W, Wiebusch H, et al.: Molekulare Differenzierung des Romano-Ward Syndroms. Herzschr Elektrophysiol 1995; 7 (Suppl.1): 21-26.

[84] Hill CP, Osslund TD, Eisenberg D: The structure of granulocyte-colony-stimulating factor and its relationship to other growth factors. Proc Natl Acad Sci 1993; 90: 5167-5171.

[85] Paul L. Sorgen: Gap junction modell (http://webmedia.unmc.edu/biochemistry/

gapjunctionmodel.gif), University of Florida, 1999.

[86] Frey W: Weitere Erfahrungen mit Chinidin bei absoluter Herzunregelmäßigkeit.

Wien Klin Wschr 1918; 55: 849-853.

[87] Khan IA: Clinical and therapeutical aspects of congenital and aquired long QT syndrome. Am J Med 2002;112: 58-66.

[88] Haverkamp W, Hördt M, Chen X, et al.: Torsade de Pointes. Z Kardiol 1993 ; 82 : 763-774.

[89] Monahan BP, Ferguson CL, Killeavy ES, et al. : Torsades de Pointes occurring in association with Terfenadine use. JAMA 1990; 264: 2788- 2790.

[90] Vitola J, Vukanovic J, Roden DM: Cisapride- induced torsades de pointes. J Cardiovasc Electrophysiol 1998; 9: 1109-1113.

[91] Hunt N, Stern TA: The association between intravenous haloperidol and Torsades de Pointes. Three cases and a literature review. Psychosomatics 1995; 36:

541- 549.

[92] Shaffer DN, Singer SJ, Korvick J, et al.: Concomitant risk factors in reports of torsades de pointes associated with macrolide use: review of the United States Food and Drug Administration Adverse Event Reporting System. Clin Infect Dis 2002;

35:197-200.

[93] Volberg WA, Koci BJ, Su W, et al.: Blockade of human cardiac potassium channel human ether-a-go-go-related gene (HERG) by macrolide antibiotics. JPET 2002; 302: 320-327.

[94] Denolin H, Kuhn H, Krayenbuehl HP, et al.: The definition of Heart Failure. Eur Heart J 1983; 4: 445-448.

[95] Pschyrembel W, et al.: Pschyrembel Klinisches Wörterbuch- Herzinsuffizienz. De Gruyter 1990; 256: 683.

[96] Hoppe UC, Erdmann E: Leitlinien zur Therapie der chronischen Herzinsuffizienz, im Auftrag der deutschen Gesellschaft für Kardiologie. Z Kardiol 2001; 90: 218-237 [97] Cleland JG, Gemmell I, Khand A, et al.: Is the prognosis of Heart Failure improving? Eur J Heart Fail 1999; 1: 229-241

[98] Kjekshus J: Arrhythmias and mortality in congestive heart failure. Am J Cardiol 1990; 65: 42l -48l

[99] Eckardt L, Breithardt G, Böcker D: Herzrhythmusstörungen bei Herzinsuffizienz.

Internist 2000; 41(3): 241- 252.

[100] Gorgels AP, Vos MA, Smeets JL, et al.: Ventricular arrhythmias in heart failure.

Am J Cardiol 1992; 70: 37C- 43C.

[101] Chen X, Shenasa M, Borggrefe M, et al.: Role of programmed ventricular stimulation in Patients with idiopathic dilated cardiomyopathy and documented sustained ventricular tachyarrhythmias: inducibility and prognostic value in 102 patients. Eur Heart J 1994; 15: 76-82.

[102] Eckardt L, Haverkamp W, Johna R, et al.: Arrhythmias in heart failure: current concepts of mechanisms and therapy. J Cardiovasc Electrophysiol 2000; 11: 106-117.

[103] Hasenfuss G, Holubarsch C, Hermann HP, et al.: Influence of the force-frequency relationship on haemodynamics and left ventricular function in patients with non-failing hearts and in patients with dilated cardiomyopathy. Eur Heart j 1994;

15: 164-170.

[104] Pogwizd SM, McKenzie JP, Cain ME: Mechanisms underlying spontaneous and induced ventricular arrhythmias in patients with idiopathic dilated cardiomyopathy. Circulation 1998; 98: 2004- 2014.

[105] Akar FG, Rosenbaum DS: Transmural electrophysiological heterogeneities underlying arrhythmogenesis in heart failure. Circ Res 2003; 93: 638-645.

[106] Tsuji Y, Opthof T, Kamiya K, et al.: Pacing-induced heart failure causes a reduction of delayed rectifier potassium currents along with decreases in calcium and transient outward currents in rabbits ventricle. Cardiovasc Res 2000; 48: 300-309.

[107] Boyden PA, Jeck CD: Ion channel function in disease. Cardiovasc Res 1995;

29: 312-318.

[108] Pak PH, Nuss HB, Tunin RS, et al.: Repolarization abnormalities, arrhythmia and sudden death in canine tachycardia-induced cardiomyopathy. JACC 1997; 30:

576-584.

[109] Tomaselli GF, Marban E: Electrophysiological remodeling in hypertrophy and heart failure. Cardiovasc Res 1999; 42: 270-283.

[110] Pogwizd SM, Schlotthauer K, Li L, et al.: Arrhythmogenesis and contractile dysfunction in heart failure. Roles of sodium-calcium exchange, inward rectifier potassium current, and residual -Adrenergic responsiveness. Circ Res 2001; 88:

1159-1167.

[111] Rose J, Armoundas AA, Tian Y, et al.: Molecular correlates of altered expression of potassium currents in failing rabbit myocardium. Am J Physiol Heart Circ Physiol 2005; 288: H2077- H2087.

[112] Milberg P, Pott C, Fink M, et al.: Inhibition of the Na+/Ca2+ exchanger suppresses torsades de pointes in an intact heart model of long QT syndrome-2 and long QT syndrome-3. Heart Rythm 2008; 5:1444-1452.

[113] Chidsey C, Harrison D, Braunwald E: The augmentation of plasma norepinephrine response to exercise in patients with congestive heart failure. New Engl J Med 1962; 267: 650-654.

[114] Trappe HJ: Plötzlicher Herztod – Häufigkeit, Risikoidentifikation, Behandlungsstrategien. Kardiologe 2007; 1: 261-271.

[115] Andresen D: Epidemiologie des akuten Herz-Kreislaufstillstandes.

Herzschrittmacherther Elektrophysiol 2005; 16: 73-77.

[116] Kirchhof P, Breithardt G: Molekulare Mechanismen des plötzlichen Herztods und ihre klinische Bedeutung. Herzschr Elektrophys 2003; 14: 168-179.

[117] Antz M, Kuck KH: Plötzlicher Herztod bei „Herzgesunden“. Herz 2007; 32: 183-184.

[118] Roden DM: Taking the idio out of idiosyncratic – predicting torsades de pointes.

Pacing Clin Electrophysiol. 1998; 21: 1029-1034.

[119] Roden DM, Yang T: Protecting the heart against arrhythmias: Potassium current physiology and repolarization reserve. Circulation 2005; 112: 1376-1378.

[120] Silva J, Rudy Y: Subunit interaction determines IKs participation in cardiac repolarization and repolarization reserve. Circulation 2005; 112: 1384-1391.

[121] Milberg P, Pott C, Eckardt L,et al.: Herzhypertrophie und Herzinsuffizienz – experimentelle Befunde zur Arrhythmogenese.Dtsch Med Wochenschr 2008; 133: 1-5.

[122] Schimpf R, Kuschyk J, Veltamm C, et al.: Primär elektrische Herzerkrankungen im Erwachsenenalter – Elektrophysiologische Befunde und Therapie. Herzschr Elektrophys 2005; 16: 250-259.

[123] Tomaselli GF, Zipes DP: What causes sudden death in heart failure? Circ Res 2004; 95: 754-763.

[124] Morady F, Shen EN, Bhandari A, et al.: Clinical symptoms in patients with sustained ventricular tachycardia. West J Med 1985; 142: 341- 344.

[125] Frey HH, Löscher W: Lehrbuch der Pharmakologie und Toxikologie für die Veterinärmedizin – Macrolid-Antibiotika. Enke Verlag 2002; 2: 371-373.

[126] Ray WA, Murray KT, Meredith S, et al.: Oral Erythromycin and the Risk of Sudden Death from Cardiac Causes. N Engl J Med 2004; 351: 1089-1096.

[127] Milberg P, Eckardt L, Bruns HJ, et al.: Divergent proarrhythmic potential of macrolide antibiotics despite similar QT prolongation: Fast phase 3 replarisation prevents early afterdepolarizations and torsades de pointes. JPET 2002; 303: 218- 225.

[128] Daleau P, Lessard E, Groleau MF, et al.: Erythromycin blocks the rapid component of the delayed rectifier potassium current and lengthens repolarization of guinea pig ventricular myocytes. Circulation 1995; 91: 3010-3016.

[129] Stanat SJC, Carlton CG, Crumb WJ, et al.: Characterization of the inhibitory effects of erythromycin and clarithromycin on the HERG potassium channel. Mol Cell Biochem 2003; 254: 1-7.

[130] Rampe M, Murawsky MK: Blockade of the humen cardiac K+ channel Kv1.5 by the antibiotic erythromycin. Naunyn Schmiedebergs Arch Pharmacol 1997; 355: 743-750.

[131] Rubart M, Pressler ML, Pride HP, et al.: Electrophysiological mechanisms in a canine model of erythromycin- associated long QT- syndrome. Circulation 1993; 88:

1832-1844.

[132] Antzelevitch C, Sun ZQ, Zhang ZQ, et al.: Cellular and ionic mechanisms underlying erythromycin-induced long QT intervals and torsade de pointes. J Am Coll Cardiol 1996; 28: 1836-1848.

1996; 93: 407-411.

[133] Freedman RA, Anderson KP, Green LS, et al.: Effect of erythromycin on ventricular arrhythmias and ventricular repolarization in idiopathic long QT syndrome.

Am J Cardiol 1987; 59: 168-169.

[134] Wasmer K, Hindricks G, Kottkamp H: Clarithromycin-assoziierte Synkope als Erstmanifestation eines angeborenen langen QT-Syndroms? Intensivmed 1999; 36:

534-540.

[135] Nattel S, Ranger S, Talajic M, et al.: Erythromycin-induced long QT syndrome:

cancordance with quinidine and underlying cellular electrophysiologic mechanism.

Am J Med 1990; 89: 235- 238.

[136] Schoenenberger RA, Haefeli WE, Weiss P, et al.: Association of intravenous erythromycin and potentially fatal ventricular tachycardia with Q-T prolongation (torsades de pointes). Br Med J 1990; 300: 1375-1376.

[137] Link H, Hess CF, Albers P, et al.: Rationale Therapie mit den hämato-poetischen Wachstumsfaktoren G-CSF und GM-CSF. Chemother J 2003; 12: 4-12.

[138] Guan K, Wagner Stefan, Unsöld B, et al.: Generation of functional cardiomyocytes from adult mouse spermatogonial stem cells. Circ Res 2007; 100:

1615-1625.

[139] Hierlihy AM, Seale P, Lobe CG, et al.: The post-natal heart contains a myocardial stem cell population. FEBS Lett 2002; 530: 239-243.

[140] Hill CP, Osslund TD, Eisenberg D: The structure of granulocyte-colony-stimulating factor and its relationship to other growth factors. Proc Natl Acad Sci 1993; 90: 5167-5171.

[141] Theiss HD, Franz WM: Stammzelltherapie bei der Herzinsuffizienz. Med Klin 2006; 101: 77-81.

[142] Werner N, Nickenig G: Stammzellen in der kardiovaskulären Medizin. Dtsch Med Wochenschr 2006; 131: 1438- 1440.

[143] Boheler KR, Czyz J, Tweedie D, et al.: Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ Res 2002; 91: 189-201.

[144] Fukuda K, Yuasa S: Stem cells as a source of regenerative cardiomyocytes.

Circ Res 2006; 98: 1002-1013.

[145] Wei H, Juhasz O, Li J, et al.: Embryonic stem cells and cardiomyocyte differentiation: phenotypic and molecular analyses. J Cell Mol Med 2005; 9: 804-817.

[145] He JQ, Ma Y, Lee Y, et al.: Human embryonic stem cells develop into multiple types of cardiac myocytes-Action potential characterization. Circ Res 2003; 93: 32-39.

[146] Xiao YF: Cardiac application of embryonic stem cells. Acta Physiol Sin 2003;

55: 493- 504.

[147] Zhang YM, Hartzell C, Narlow M, et al.: Stem cell-derived cardiomyocytes demontrate arrhythmic potential. Circulation 2002; 106: 1294-1299.

[148] Zeus T, Brehm M, Strauer BE: Möglichkeiten und Grenzen der Stammzelltherapie bei der Herzinsuffizienz. Z Kardiol 2005; 94 (Suppl. 4): IV100-IV101.

[149] Schächinger V, Assmus B, Zeiher AM: Die Herzfunktion wieder regenerieren?

Stammzelltherapie bei ischämischer Herzkrankheit. Klinikarzt 2004; 33: 68-73.

[150] Murry CE, Soonpaa MH, Reinecke H, et al.: Haematopoietic stem cells do not transdiffentiate into cardiac myocytes in Myocardial infarcts. Nature 2004; 428: 664- 668.

[151] Liao R, Pfister O, Jain M, et al.: The bone marrow- cardaic axis of myocardial regeneration. Prog Cardiovasc Dis 2007; 50: 18-30.

[152] Menasché P, Hagège AA, Scorsin M, et al.: Myoblast transplantation for heart failure. The Lancet 2001; 357: 279- 280.

[153] Lüscher TF, Corti R: Stammzellthrapie in der Kardiologie: der ersehnte Jungbrunnen oder falsche Hoffnung? Kardiovaskuläre Med 2006; 9: 177-180.

[154] Strauer BE, Brehm M, Zeus T, et al.: Intrakoronare, humane autologe Stammzelltransplantation zur Myokardregeneration nach Herzinfarkt. Dtsch med Wschr 2001; 126: 932-938.

[155] Brehm M, Strauer BE: Stammzellersatz bei Herzerkrankungen. Medizin 2005;

2: 62-65.

[156] Assmus B, Schächinger V, Teupe C, et al.: Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI).

Circulation 2002; 106: 3009-3017.

[157] Zeiher A: Interview – Stammzellen halten Gewebe-Umbau nach Herzinfarkt auf. Ärzte Zeitung, 05. 03. 2007

[158] Meyer GP, Wollert KC, Lotz J, et al.: Intracoronary bone marrow cell transfer after myocardial infarction: Eighteen months’ follow- up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) Trial. Circulation 2006; 113: 1287- 1294.

[159] Schächinger V, Erbs S, Elsässer A, et al.: Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 2006; 355: 1210-1221.

[160] Rosenzweig A: Cardiac cell therapy – Mixed results from mixed cells. N Engl J Med 2006; 355: 1274- 1277.

[161] Ishida M, Tomita S, Nakatani T, et al.: Bone marrow mononuklear cell transplantation had beneficial effects on doxorubicin- induced cardiomyopathy. J Heart Lung Transplant 2004; 23: 436- 445.

[162] Tomita S, Ishida M, Nakatani T, et al.: Bone marrow is a source of regenerated cardiomyocytes in doxorubicin- induced cardiomyopathy and granulocyte colony- stimulating factor enhances migration of bone marrow cells and attenuates cardiotoxicity of doxorubicin under electron microscopy. J Heart Lung Transplant 2004; 23: 577-584.

[163] Matsumori A, Yamada T, Suzuki H, et al.: Increased circulating cytokines in patients with myocarditis and cardiomyopathy. Br Heart J 1994; 72: 561-566.

[164] Sugano Y, Anzai T, Yoshikawa T, et al.: Granulocyte colony- stimulating factor

[164] Sugano Y, Anzai T, Yoshikawa T, et al.: Granulocyte colony- stimulating factor