• Keine Ergebnisse gefunden

PerfectBASH-Entkopplung:

2 The strongly coupled case: Analysis using density matrices

2.1 Details of the calculation

S9

S10

with their eigenvalues of HAB denoted as a, b, c and d, whereas 4 :

2

2 2

2 2

(2.2) The density operator ρ(t) after passing through the pulse sequence in Figure 2-1 is given by

(2.3)

using exponential propagators for pulses and times of free evolution. Since the AB system under consideration is strongly coupled, the corresponding Hamiltonian HAB for free evolution is used:

2 2

(2.4) The initial state ρ0 after the 90°x pulse is given by

〈 〉 〉.

(2.5)

The expectation value for transversal magnetization during the free induction decay is obtained by taking the trace of the matrix representation of ρ(t) multiplied with the matrix representation for the transversal magnetization F+:

〈 〉

(2.6)

2.2 Results of the density matrix calculations

The result is of the general form hF+i = X

j

Aj·exp [ij,1τ1+ωj,2τ2+ωj,3τ3+ωj,44+t2))] (2.7)

and consists of the 72 terms, listed in Table 2.1:

Table 2.1: Results from the density matrix calculations

Amplitude factor Exponential factor Term No.

i2pq(q+p)4 p2q22

ei((bd) (τ4+t2)+(cd)τ3+(bd)τ2+2(db)τ1) 1 ip2q2(q+p)2 p2q22

ei((c−d) (τ43+t2)+(b−d)τ2+2(d−b)τ1) 2

2ip3q3(q+p)4 ei((bd) (τ432+t2)+2(db)τ1) 3

ip2q2(q+p)2 p2q22

ei((cd) (τ4+t2)+(bd) (τ32)+2(db)τ1) 4

2i(q+p)2 p2q24

ei((bd) (τ4+t2)+(cd)τ3+(bd)τ2+(2dcb)τ1) 5 ipq p2q24

ei((c−d) (τ43+t2)+(b−d)τ2+(2d−c−b)τ1) 6

2ip2q2(q+p)2 p2q22

ei((bd) (τ432+t2)+(2dcb)τ1) 7

ipq p2q24

ei((cd) (τ4+t2)+(bd) (τ32)+(2dcb)τ1) 8

i

2pq p2q24

ei((bd) (τ4+t2)+(cd)τ3+(bd)τ2+2(dc)τ1) 9

−ip2q2(pq)2 p2q22

ei((c−d) (τ43+t2)+(b−d)τ2+2(d−c)τ1) 10 2ip3q3 p2q22

ei((bd) (τ432+t2)+2(dc)τ1) 11 ip2(pq)2q2 p2q22

ei((cd) (τ4+t2)+(bd) (τ32)+2(dc)τ1) 12

2ipq p2q24

ei((c−d) (τ4+t2)+(b−d)τ3+(c−d)τ2+2(d−b)τ1) 13

−ip2q2(q+p)2 p2q22

ei((b−d) (τ43+t2)+(c−d)τ2+2(d−b)τ1) 14 ip2q2(q+p)2 p2q22

ei((bd) (τ4+t2)+(cd) (τ32)+2(db)τ1) 15

2ip3q3 p2q22

ei((cd) (τ432+t2)+2(db)τ1) 16

2i(pq)2 p2q24

ei((c−d) (τ4+t2)+(b−d)τ3+(c−d)τ2+(2d−c−b)τ1) 17

−ipq p2q24

ei((bd) (τ43+t2)+(cd)τ2+(2dcb)τ1) 18 ipq p2q24

ei((bd) (τ4+t2)+(cd) (τ32)+(2dcb)τ1) 19

2ip2(pq)2q2 p2q22

ei((cd) (τ432+t2)+(2dcb)τ1) 20

i

2p(pq)4q p2q22

ei((c−d) (τ4+t2)+(b−d)τ3+(c−d)τ2+2(d−c)τ1) 21 ip2(pq)2q2 p2q22

ei((bd) (τ43+t2)+(cd)τ2+2(dc)τ1) 22

ip2(pq)2q2 p2q22

ei((bd) (τ4+t2)+(cd) (τ32)+2(dc)τ1) 23

2ip3(pq)4q3 ei((cd) (τ432+t2)+2(dc)τ1) 24

i

4(pq)2 p2q24

i4(q+p)2 p2q24

ei((d−b) (τ4+t2)+(d−c)τ3+(d−b)τ2+(2d−c−b)τ1) 25 S11

T able2.1− −continuation

Amplitude factor Exponential factor Term No.

ip2(pq)2q2 p2q22

ip2q2(q+p)2 p2q22

ei((db) (τ432+t2)+(2dcb)τ1) 26

i

2pq p2q24

ei((db) (τ4+t2)+(dc)τ3+(db)τ2+2(db)τ1) 27 2ip3q3 p2q22

ei((db) (τ432+t2)+2(db)τ1) 28

i

2pq p2q24

ei((d−b) (τ4+t2)+(d−c)τ3+(d−b)τ2+2(d−c)τ1) 29 2ip3q3 p2q22

ei((db) (τ432+t2)+2(dc)τ1) 30

ip2q2(q+p)2 p2q22

ei((db) (τ43+t2)+(dc)τ2+2(db)τ1) 31

ip2q2(q+p)2 p2q22

ei((db) (τ43+t2)+(dc)τ2+2(dc)τ1) 32

i

2pq(q+p)4 p2q22

2ipq p2q24

ei((d−b) (τ43+t2)+(d−c)τ2+(2d−c−b)τ1) 33 ip2q2(q+p)2 p2q22

ei((db) (τ4+t2)+(dc) (τ32)+2(db)τ1) 34 ip2q2(q+p)2 p2q22

ei((db) (τ4+t2)+(dc) (τ32)+2(dc)τ1) 35

i

2pq(q+p)4 p2q22

2ipq p2q24

ei((db) (τ4+t2)+(dc) (τ32)+(2dcb)τ1) 36

i2pq(q+p)4 p2q22

ei((d−b) (τ4+t2)+(d−c)τ3+(d−b)τ2+2(b−d)τ1) 37

2i(q+p)2 p2q24

ei((db) (τ4+t2)+(dc)τ3+(db)τ2+(2d+c+b)τ1) 38

i

2pq p2q24

ei((db) (τ4+t2)+(dc)τ3+(db)τ2+2(cd)τ1) 39

2ip3q3(q+p)4 ei((db) (τ432+t2)+2(bd)τ1) 40

−2ip2q2(q+p)2 p2q22

ei((d−b) (τ432+t2)+(−2d+c+b)τ1) 41 2ip3q3 p2q22

ei((db) (τ432+t2)+2(cd)τ1) 42

ip2q2(q+p)2 p2q22

ei((db) (τ43+t2)+(dc)τ2+2(bd)τ1) 43

ipq p2q24

ei((db) (τ43+t2)+(dc)τ2+(2d+c+b)τ1) 44 ip2(pq)2q2 p2q22

ei((d−b) (τ43+t2)+(d−c)τ2+2(c−d)τ1) 45 ip2q2(q+p)2 p2q22

ei((db) (τ4+t2)+(dc) (τ32)+2(bd)τ1) 46 ipq p2q24

ei((db) (τ4+t2)+(dc) (τ32)+(2d+c+b)τ1) 47

ip2(pq)2q2 p2q22

ei((d−b) (τ4+t2)+(d−c) (τ32)+2(c−d)τ1) 48 ip2(pq)2q2 p2q22

ei((dc) (τ4+t2)+(db) (τ32)+2(db)τ1) 49 ip2(pq)2q2 p2q22

ei((dc) (τ4+t2)+(db) (τ32)+2(dc)τ1) 50

i

2p(pq)4q p2q22

2ipq p2q24

ei((dc) (τ4+t2)+(db) (τ32)+(2dcb)τ1) 51

−ip2(pq)2q2 p2q22

ei((d−c) (τ43+t2)+(d−b)τ2+2(d−b)τ1) 52

−ip2(pq)2q2 p2q22

ei((dc) (τ43+t2)+(db)τ2+2(dc)τ1) 53

i

2pq p2q24

2ip(pq)4q p2q22

ei((dc) (τ43+t2)+(db)τ2+(2dcb)τ1) 54

2ipq p2q24

ei((db) (τ4+t2)+(db)τ3+(dc)τ2+2(db)τ1) 55

S12

T able2.1− −continuation

Amplitude factor Exponential factor Term No.

2ipq p2q24

ei((db) (τ4+t2)+(db)τ3+(dc)τ2+2(dc)τ1) 56

i

4(q+p)2 p2q24

i4(pq)2 p2q24

ei((db) (τ4+t2)+(db)τ3+(dc)τ2+(2dcb)τ1) 57

ip3q3 p2q22

ei((dc) (τ432+t2)+2(db)τ1) 58

−ip3q3 p2q22

ei((d−c) (τ432+t2)+2(d−c)τ1) 59 ip2q2(q+p)2 p2q22

ip2(pq)2q2 p2q22

ei((dc) (τ432+t2)+(2dcb)τ1) 60

ip2q2(q+p)2 p2q22

ei((dc) (τ4+t2)+(db) (τ32)+2(bd)τ1) 61 ip2(pq)2q2 p2q22

ei((dc) (τ4+t2)+(db) (τ32)+2(cd)τ1) 62

−ipq p2q24

ei((d−c) (τ4+t2)+(d−b) (τ32)+(−2d+c+b)τ1) 63 ip2q2(q+p)2 p2q22

ei((dc) (τ43+t2)+(db)τ2+2(bd)τ1) 64

ip2(pq)2q2 p2q22

ei((dc) (τ43+t2)+(db)τ2+2(cd)τ1) 65 ipq p2q24

ei((dc) (τ43+t2)+(db)τ2+(2d+c+b)τ1) 66

2ipq p2q24

ei((d−c) (τ4+t2)+(d−b)τ3+(d−c)τ2+2(b−d)τ1) 67

i

2p(pq)4q p2q22

ei((dc) (τ4+t2)+(db)τ3+(dc)τ2+2(cd)τ1) 68

2i(pq)2 p2q24

ei((dc) (τ4+t2)+(db)τ3+(dc)τ2+(2d+c+b)τ1) 69

2ip3q3 p2q22

ei((dc) (τ432+t2)+2(bd)τ1) 70

2ip3(pq)4q3 ei((d−c) (τ432+t2)+2(c−d)τ1) 71

2ip2(pq)2q2 p2q22

ei((dc) (τ432+t2)+(2d+c+b)τ1) 72

p = cosξ q = sinξ

ξ = 1

2arctan 2πJ

ω1ω2

=

q

1ω2)2 + 4π2J2

(2.8)

Using the energy eigenvalues (in angular frequency units) of the four basis functions,

a = d = πJ

2 , b = πJ

2 + 2, c = πJ

2 2

(2.9)

and the timing conditions for removal ofJcoupling effects at the centre of every data-chunk and for chemical shift refocusing at the beginning of the first data-chunk

S13

τ1 = t1

2 +δ1 = t1

2 + 2δ2+δ4, τ2 = t1

2 +δ2,

τ3 = δ3 = δ2+δ4, τ4 = t1

2 +δ4

(2.10)

the exponential factors can be simplified:

Table 2.2: Simplified terms

Amplitude factor Exponential factor No.

i2pq(q+p)4 p2q22

eiΩt22−iπJ t2−iΩδ4−2iΩδ2+2iπJ δ2 1 ip2q2(q+p)2 p2q22

eiΩt22iπJ t2iΩt212iΩδ42iΩδ2+2iπJ δ2 2

2ip3q3(q+p)4 eiΩt22iπJ t2iΩδ2+2iπJ δ2 3

ip2q2(q+p)2 p2q22

eiΩt22iπJ t2iΩt21iΩδ4iΩδ2+2iπJ δ2 4

2i(q+p)2 p2q24

eiΩt22−iπJ t2+iΩt21+2iπJ δ2 5 ipq p2q24

eiΩt22 iπJ t2iΩδ4+2iπJ δ2 6

2ip2q2(q+p)2 p2q22

eiΩt22iπJ t2+iΩt21+iΩδ4+iΩδ2+2iπJ δ2 7

ipq p2q24

eiΩt22iπJ t2+iΩδ2+2iπJ δ2 8

i

2pq p2q24

eiΩt22−iπJ t2+iΩt1+iΩδ4+2iΩδ2+2iπJ δ2 9

ip2q2(pq)2 p2q22

eiΩt22 iπJ t2+iΩt12 +2iΩδ2+2iπJ δ2 10 2ip3q3 p2q22

eiΩt22iπJ t2+iΩt1+2iΩδ4+3iΩδ2+2iπJ δ2 11 ip2(pq)2q2 p2q22

eiΩt22iπJ t2+iΩt21+iΩδ4+3iΩδ2+2iπJ δ2 12

2ipq p2q24

eiΩt22−iπJ t2−iΩt1−iΩδ4−2iΩδ2+2iπJ δ2 13

ip2q2(q+p)2 p2q22

eiΩt22 iπJ t2iΩt12 2iΩδ2+2iπJ δ2 14 ip2q2(q+p)2 p2q22

eiΩt22iπJ t2iΩt21iΩδ43iΩδ2+2iπJ δ2 15

2ip3q3 p2q22

eiΩt22iπJ t2iΩt12iΩδ43iΩδ2+2iπJ δ2 16

2i(pq)2 p2q24

eiΩt22−iπJ t2iΩt21+2iπJ δ2 17

ipq p2q24

eiΩt22 iπJ t2+iΩδ4+2iπJ δ2 18 ipq p2q24

eiΩt22iπJ t2iΩδ2+2iπJ δ2 19

2ip2(pq)2q2 p2q22

eiΩt22iπJ t2iΩt21iΩδ4iΩδ2+2iπJ δ2 20

i

2p(pq)4q p2q22

eiΩt22−iπJ t2+iΩδ4+2iΩδ2+2iπJ δ2 21 ip2(pq)2q2 p2q22

eiΩt22iπJ t2+iΩt21+2iΩδ4+2iΩδ2+2iπJ δ2 22

ip2(pq)2q2 p2q22

eiΩt22iπJ t2+iΩt21+iΩδ4+iΩδ2+2iπJ δ2 23

S14

T able2.2− −continuation

Amplitude factor Exponential factor No.

2ip3(pq)4q3 eiΩt22iπJ t2+iΩδ2+2iπJ δ2 24

i

4(pq)2 p2q24

i4(q+p)2 p2q24

eiΩt22+iπJ t2iΩt21+2iπJ t1+4iπJ δ4+6iπJ δ2 25 ip2(pq)2q2 p2q22

ip2q2(q+p)2 p2q22

eiΩt22+iπJ t2iΩt21+2iπJ t1iΩδ4+4iπJ δ4iΩδ2+6iπJ δ2 26

i

2pq p2q24

eiΩt22+iπJ t2−iΩt1+2iπJ t1−iΩδ4+4iπJ δ4−2iΩδ2+6iπJ δ2 27 2ip3q3 p2q22

eiΩt22+iπJ t2iΩt1+2iπJ t12iΩδ4+4iπJ δ43iΩδ2+6iπJ δ2 28

i

2pq p2q24

eiΩt22+iπJ t2+2iπJ t1+iΩδ4+4iπJ δ4+2iΩδ2+6iπJ δ2 29 2ip3q3 p2q22

eiΩt22+iπJ t2+2iπJ t1+4iπJ δ4+iΩδ2+6iπJ δ2 30

−ip2q2(q+p)2 p2q22

eiΩt22+iπJ t2iΩt21+2iπJ t1−2iΩδ4+4iπJ δ4−2iΩδ2+6iπJ δ2 31

ip2q2(q+p)2 p2q22

eiΩt22 +iπJ t2+iΩt12 +2iπJ t1+4iπJ δ4+2iΩδ2+6iπJ δ2 32

i

2pq(q+p)4 p2q22

2ipq p2q24

eiΩt22+iπJ t2+2iπJ t1iΩδ4+4iπJ δ4+6iπJ δ2 33 ip2q2(q+p)2 p2q22

eiΩt22+iπJ t2iΩt21+2iπJ t1iΩδ4+4iπJ δ4iΩδ2+6iπJ δ2 34 ip2q2(q+p)2 p2q22

eiΩt22+iπJ t2+iΩt21+2iπJ t1+iΩδ4+4iπJ δ4+3iΩδ2+6iπJ δ2 35

i

2pq(q+p)4 p2q22

2ipq p2q24

eiΩt22 +iπJ t2+2iπJ t1+4iπJ δ4+iΩδ2+6iπJ δ2 36

i2pq(q+p)4 p2q22

eiΩt22+iπJ t2+iΩδ4+2iΩδ22iπJ δ2 37

2i(q+p)2 p2q24

eiΩt22+iπJ t2iΩt212iπJ δ2 38

i

2pq p2q24

eiΩt22+iπJ t2−iΩt1−iΩδ4−2iΩδ2−2iπJ δ2 39

2ip3q3(q+p)4 eiΩt22 +iπJ t2+iΩδ22iπJ δ2 40

2ip2q2(q+p)2 p2q22

eiΩt22+iπJ t2iΩt21iΩδ4iΩδ22iπJ δ2 41 2ip3q3 p2q22

eiΩt22+iπJ t2iΩt12iΩδ43iΩδ22iπJ δ2 42

−ip2q2(q+p)2 p2q22

eiΩt22+iπJ t2+iΩt21+2iΩδ2−2iπJ δ2 43

ipq p2q24

eiΩt22+iπJ t2iΩδ42iπJ δ2 44 ip2(pq)2q2 p2q22

eiΩt22+iπJ t2iΩt212iΩδ42iΩδ22iπJ δ2 45 ip2q2(q+p)2 p2q22

eiΩt22+iπJ t2+iΩt21+iΩδ4+3iΩδ2−2iπJ δ2 46 ipq p2q24

eiΩt22+iπJ t2+iΩδ22iπJ δ2 47

ip2(pq)2q2 p2q22

eiΩt22+iπJ t2iΩt21iΩδ4iΩδ22iπJ δ2 48 ip2(pq)2q2 p2q22

eiΩt22+iπJ t2iΩt21+2iπJ t1iΩδ4+4iπJ δ43iΩδ2+6iπJ δ2 49 ip2(pq)2q2 p2q22

eiΩt22+iπJ t2+iΩt21+2iπJ t1+iΩδ4+4iπJ δ4+iΩδ2+6iπJ δ2 50

i

2p(pq)4q p2q22

2ipq p2q24

eiΩt22+iπJ t2+2iπJ t1+4iπJ δ4iΩδ2+6iπJ δ2 51

ip2(pq)2q2 p2q22

eiΩt22+iπJ t2iΩt21+2iπJ t1+4iπJ δ42iΩδ2+6iπJ δ2 52

ip2(pq)2q2 p2q22

eiΩt22+iπJ t2+iΩt21+2iπJ t1+2iΩδ4+4iπJ δ4+2iΩδ2+6iπJ δ2 53

S15

T able2.2− −continuation

Amplitude factor Exponential factor No.

i

2pq p2q24

2ip(pq)4q p2q22

eiΩt22+iπJ t2+2iπJ t1+iΩδ4+4iπJ δ4+6iπJ δ2 54

2ipq p2q24

eiΩt22+iπJ t2iΩt21+2iπJ t12iΩδ4+4iπJ δ42iΩδ2+6iπJ δ2 55

2ipq p2q24

eiΩt22+iπJ t2+iΩt21+2iπJ t1+4iπJ δ4+2iΩδ2+6iπJ δ2 56

i

4(q+p)2 p2q24

i4(pq)2 p2q24

eiΩt22+iπJ t2+2iπJ t1−iΩδ4+4iπJ δ4+6iπJ δ2 57

−ip3q3 p2q22

eiΩt22+iπJ t2+2iπJ t1+4iπJ δ4iΩδ2+6iπJ δ2 58

ip3q3 p2q22

eiΩt22+iπJ t2+iΩt1+2iπJ t1+2iΩδ4+4iπJ δ4+3iΩδ2+6iπJ δ2 59 ip2q2(q+p)2 p2q22

ip2(pq)2q2 p2q22

eiΩt22+iπJ t2+iΩt21+2iπJ t1+iΩδ4+4iπJ δ4+iΩδ2+6iπJ δ2 60

−ip2q2(q+p)2 p2q22

eiΩt22+iπJ t2+iΩt21+iΩδ4+iΩδ2−2iπJ δ2 61 ip2(pq)2q2 p2q22

eiΩt22 +iπJ t2iΩt12 iΩδ43iΩδ22iπJ δ2 62

ipq p2q24

eiΩt22+iπJ t2iΩδ22iπJ δ2 63 ip2q2(q+p)2 p2q22

eiΩt22+iπJ t2+iΩt21+2iΩδ4+2iΩδ22iπJ δ2 64

−ip2(pq)2q2 p2q22

eiΩt22+iπJ t2iΩt21−2iΩδ2−2iπJ δ2 65 ipq p2q24

eiΩt22 +iπJ t2+iΩδ42iπJ δ2 66

2ipq p2q24

eiΩt22+iπJ t2+iΩt1+iΩδ4+2iΩδ22iπJ δ2 67

i

2p(pq)4q p2q22

eiΩt22+iπJ t2iΩδ42iΩδ22iπJ δ2 68

2i(pq)2 p2q24

eiΩt22+iπJ t2+iΩt21−2iπJ δ2 69

2ip3q3 p2q22

eiΩt22 +iπJ t2+iΩt1+2iΩδ4+3iΩδ22iπJ δ2 70

2ip3(pq)4q3 eiΩt22+iπJ t2iΩδ22iπJ δ2 71

2ip2(pq)2q2 p2q22

eiΩt22+iπJ t2+iΩt21+iΩδ4+iΩδ22iπJ δ2 72

Cosine modulated terms

Out of these 72 terms 48 terms can be combined into 24 cosine modulated terms using the complex exponential identity:

e + e = 2 cos (φ) (2.11)

These terms are purely imaginary which means that since

F+ = Fx + iFy (2.12)

they represent y-magnetization and will appear as in-phase multiplets in the spectra. These cosine modulated terms can further be decomposed into nine term groups listed in Table 2.3.

S16

In Table 2.3, the term groups are separated into an amplitude factor and four exponential modulation factors, which represent the offset 121 +ω2), the evolution of Jcoupling and chemical shift Ω during the evolution times t1 andt2 and a constant phase factor depending on Ω,δ2 andδ4. Note that the density matrix calculation was performed with an offset set to zero (121 +ω2) = 0). The classification is performed depending on the frequency of the coherence transfer between the two protons and which of the four pulses in the PEPSIE pulse sequence causes this transfer (Table 2.4).

Table 2.3: Cosine modulated terms

Frequency modulation factor for all terms: e±(iπJ(t22))·e2i1+ω2)(t1+t2) Term

Terms Amplitude Chem. Shift Constant phase

group factor modulation factor

1 5, 38 i(qp)4(q+p)6 e±iΩ2(t2+t1)

1 17, 69 −i(qp)6(q+p)4 eiΩ2(t2+t1)

2 9, 39 ipq p2q24

e±iΩ2(t2+ 2t1) e±iΩ(2δ24) 13, 67 −ipq p2q24

eiΩ2(t2+ 2t1) eiΩ(2δ24)

3 1, 37 ipq(q+p)4 p2q22

e±iΩt22 e∓iΩ(2δ24) 21, 68 ipq(pq)4 p2q22

eiΩt22 e±iΩ(2δ24)

4 6, 66, 8, 63 2ipq p2q24

eiΩt22

e∓iΩδ4e±iΩδ2 18, 44, 19, 47 2ipq p2q24

e±iΩt22

eiΩδ2e±iΩδ4

5 2, 64, 4, 61 ip2q2(q+p)2 p2q22

eiΩ2(t2+t1)

e∓iΩ(δ24)e∓2iΩ(δ24) 22, 45, 23, 48 ip2q2(qp)2 p2q22

e±iΩ2(t2+t1)

e±2iΩ(δ24)e±iΩ(δ24)

6 10, 65, 12, 62 ip2q2(pq)2 p2q22

eiΩ2(t2t1)

e±iΩ(3δ24)e±2iΩδ2 14, 43, 15, 46 ip2q2(q+p)2 p2q22

e±iΩ2(t2t1)

e2iΩδ2eiΩ(3δ24)

7 7, 41 2ip2q2(q+p)2 p2q22

e±iΩ2(t2+t1) e±iΩ(δ24) 20, 72 2ip2q2(pq)2 p2q22

eiΩ2(t2+t1) eiΩ(δ24)

8 11, 42 2ip3q3 p2q22

e±iΩ2(t2+ 2t1) e±iΩ(3δ2+2δ4) 16, 70 2ip3q3 p2q22

eiΩ2(t2+ 2t1) eiΩ(3δ2+2δ4)

9 3, 40 2ip3q3(p+q)4 e±iΩt22 eiΩδ2

24, 71 2ip3q3(pq)4 eiΩt22 e±iΩδ2

S17

Table2.4:Cosinemodulatedterms:Assignment GroupTermsAssignmentCoherencetransfer frequencycausingpulse 15,17,38,69desiredpeaksNoNo 29,13,39,67phase-modulated doubletransfer180-pulsefirstecho artifacts&central90-pulse 31,21,37,68centralartifactsingletransfer180-pulsefirstecho 46,8,18,19, centralartifactsingletransfer1st.or2nd.180- 44,47,63,66pulsesecondecho 52,4,22,23,phase-modulated doubletransfer180-pulsefirstecho& 45,48,61,64artifacts1st.or2nd.180-pulsesecondecho 610,14,43,65phase-modulated tripletransfer180-pulsefirstecho,central90-pulse& 12,15,46,62artifacts1st.or2nd.180-pulsesecondecho 77,20,41,72phase-modulated doubletransfer1st.&2nd.180-pulse artifactssecondecho 811,16,42,70phase-modulated fourfoldtransferall180-pulses artifacts&central90-pulse 93,24,40,71centralartifacttripletransferall180-pulses

S18

Evolution of the amplitude factors with increasing degree of strong coupling

For illustration, how the amplitudes of the cosine modulated terms in table 2.3 evolve with increasing degree of strong coupling, their amplitude factors are plotted against the relation of shift difference ∆νand coupling constantJ. In all plots the constant phase factor in table 2.3 is considered, whereas Ω was calculated from ∆νJ using the proton coupling constant of 2,3-dibromothiopheneJ = 5.75 Hz. Figure 2.2 shows the plots of the term groups contributing to the central artifact (3,4and9) in comparison to the desired in-phase peaks (term group1).

1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0

amplitude / a.u.

∆ν/ J

D e s i r e d i n - p h a s e p e a k s T e r m g r o u p 3

T e r m g r o u p 9 T e r m g r o u p 4

S u m o f g r o u p s 3 , 4 a n d 9

Figure 2.2: Plot of the amplitude factors of the term groups contributing to the central artifact (3,4and9in Table 2.3) in comparison to the desired in-phase peaks (term group1, blue line) against the relation of shift difference ∆νand coupling constantJ. The black line is the sum of the terms contributing to the central artifact.

S19

1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0 - 0 . 2

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0

amplitude / a.u.

∆ν/ J

D e s i r e d i n - p h a s e p e a k s ( s u m m e d a m p l i t u d e ) T e r m g r o u p 2

T e r m g r o u p 5 T e r m g r o u p 6 T e r m g r o u p 7 T e r m g r o u p 8

Figure 2.3: Plot of the amplitude factors of the term groups2,5,6, 7and8in Table 2.3 in comparison to the desired in-phase peaks (term group1, blue line) against the relation of shift difference ∆ν and coupling constantJ.

Figure 2.3 shows the plots of the term groups 2, 5, 6, 7and 8, which lead to artifacts with phase distortions, in comparison to the desired in-phase peaks. Theses artifacts are not visible in the pure shift spectra of 2,3-dibromothiophene. However, these are potentially observable in other systems or in pure shift spectra obtained with other acquisition parameters, since their amplitudes depends on shift difference Ω, theJcoupling constant and the time constantsδ2

andδ4as well.

Exponential modulated terms

The remaining 24 terms in table 2.2 have complex exponential modulation and can be decom-posed into a real and an imaginary part, thus they represent mixed x- and y-magnetization. This would lead to a phase-modulated multiplet appearance. All these terms exhibitJcoupling evo-lution duringt1and are listed in table 2.5 The terms25and57have amplitude factors with two components, which do not vanish in the weak coupling case (p = 1 andq = 0). However, the first component cancels the second one in the weakly coupled case. If strong coupling is present this is not achieved. Thus we assume that these are the anti-phase terms of equation 1.12 in chapter 1.2. Furthermore there are additional terms with polarisation transfer as a result of strong coupling.

S20

Table 2.5: Exponential modulated terms

Amplitude factor Exponential factor No.

i

4(pq)2 p2q24

i4(q+p)2 p2q24

eiΩt22 +iπJ t2iΩt12 +2iπJ t1+4iπJ δ4+6iπJ δ2 25 ip2(pq)2q2 p2q22

ip2q2(q+p)2 p2q22

eiΩt22+iπJ t2iΩt21+2iπJ t1iΩδ4+4iπJ δ4iΩδ2+6iπJ δ2 26

i

2pq p2q24

eiΩt22+iπJ t2iΩt1+2iπJ t1iΩδ4+4iπJ δ42iΩδ2+6iπJ δ2 27 2ip3q3 p2q22

eiΩt22+iπJ t2−iΩt1+2iπJ t1−2iΩδ4+4iπJ δ4−3iΩδ2+6iπJ δ2 28

i

2pq p2q24

eiΩt22 +iπJ t2+2iπJ t1+iΩδ4+4iπJ δ4+2iΩδ2+6iπJ δ2 29 2ip3q3 p2q22

eiΩt22+iπJ t2+2iπJ t1+4iπJ δ4+iΩδ2+6iπJ δ2 30

ip2q2(q+p)2 p2q22

eiΩt22+iπJ t2iΩt21+2iπJ t12iΩδ4+4iπJ δ42iΩδ2+6iπJ δ2 31

−ip2q2(q+p)2 p2q22

eiΩt22+iπJ t2+iΩt21+2iπJ t1+4iπJ δ4+2iΩδ2+6iπJ δ2 32

i

2pq(q+p)4 p2q22

2ipq p2q24

eiΩt22+iπJ t2+2iπJ t1iΩδ4+4iπJ δ4+6iπJ δ2 33 ip2q2(q+p)2 p2q22

eiΩt22+iπJ t2iΩt21+2iπJ t1iΩδ4+4iπJ δ4iΩδ2+6iπJ δ2 34 ip2q2(q+p)2 p2q22

eiΩt22+iπJ t2+iΩt21+2iπJ t1+iΩδ4+4iπJ δ4+3iΩδ2+6iπJ δ2 35

i

2pq(q+p)4 p2q22

2ipq p2q24

eiΩt22+iπJ t2+2iπJ t1+4iπJ δ4+iΩδ2+6iπJ δ2 36 ip2(pq)2q2 p2q22

eiΩt22+iπJ t2iΩt21+2iπJ t1iΩδ4+4iπJ δ43iΩδ2+6iπJ δ2 49 ip2(pq)2q2 p2q22

eiΩt22+iπJ t2+iΩt21+2iπJ t1+iΩδ4+4iπJ δ4+iΩδ2+6iπJ δ2 50

i

2p(pq)4q p2q22

2ipq p2q24

eiΩt22+iπJ t2+2iπJ t1+4iπJ δ4−iΩδ2+6iπJ δ2 51

−ip2(pq)2q2 p2q22

eiΩt22+iπJ t2iΩt21+2iπJ t1+4iπJ δ42iΩδ2+6iπJ δ2 52

ip2(pq)2q2 p2q22

eiΩt22+iπJ t2+iΩt21+2iπJ t1+2iΩδ4+4iπJ δ4+2iΩδ2+6iπJ δ2 53

i

2pq p2q24

2ip(pq)4q p2q22

eiΩt22+iπJ t2+2iπJ t1+iΩδ4+4iπJ δ4+6iπJ δ2 54

2ipq p2q24

eiΩt22+iπJ t2iΩt21+2iπJ t1−2iΩδ4+4iπJ δ4−2iΩδ2+6iπJ δ2 55

2ipq p2q24

eiΩt22 +iπJ t2+iΩt12 +2iπJ t1+4iπJ δ4+2iΩδ2+6iπJ δ2 56

i

4(q+p)2 p2q24

i4(pq)2 p2q24

eiΩt22+iπJ t2+2iπJ t1iΩδ4+4iπJ δ4+6iπJ δ2 57

ip3q3 p2q22

eiΩt22+iπJ t2+2iπJ t1+4iπJ δ4iΩδ2+6iπJ δ2 58

−ip3q3 p2q22

eiΩt22+iπJ t2+iΩt1+2iπJ t1+2iΩδ4+4iπJ δ4+3iΩδ2+6iπJ δ2 59 ip2q2(q+p)2 p2q22

ip2(pq)2q2 p2q22

eiΩt22 +iπJ t2+iΩt12 +2iπJ t1+iΩδ4+4iπJ δ4+iΩδ2+6iπJ δ2 60

To estimate the consequences for the observation, let us discuss the behaviour based on term 25. The evolution of anti-phase coherences into detectable in-phase coherence is sine-modulated with theJ−coupling constant andt2. The classical COSY-experiment, which shows anti-phase multiplets in the direct and indirect dimension, teaches us, that a sine-modulated antiphase FID, which starts at zero intensity fort2 = 0 requires a minimum acquisition of data points to get enough signal intensity. In pure shift experiments, which were aquired with the interferogram-based aquisition mode, the duration of one FID-chunk is comparably low ( 20 ms) to keep J−coupling evolution at minimum. Subsequently, the effect of the anti-phase terms on the PEPSIE pure shift spectra can be neglected. Note, that in systems with comparably large

S21

coupling constants these anti-phase artifacts might be visible. This context is exemplary illus-trated in Figure 2.4 for the term 25in Table 2.5. The plot shows the evolution of the pure amplitude factor of anti-phase term25with increasing degree of strong coupling. Comparing to the amplitude of the desired in-phase signals (blue line) the pure amplitude of term25(black) is low. If an aquisition time t2 = 20 ms of one data-chunk and the Jcoupling constant of 2,3-dibromothiophene of 5.75 Hz is considered, the amplitude is further decreased by weighting with the sine-modulation factor (see equation 1.12). Assuming aJ−coupling constant of 15 Hz higher amplitude values can be expected, but they are negligible compared to the amplitude of the desired in-phase signals.

1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0

- 0 . 2 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0

absolute amplitude / a.u.

∆ν/ J T e r m 2 5 : p u r e a m p l i t u d e T e r m 2 5 : t2= 2 0 m s , J = 5 . 7 5 H z T e r m 2 5 : t2= 2 0 m s , J = 1 5 H z d e s i r e d i n - p h a s e p e a k s

Figure 2.4: Plot of the amplitude factor of term25in comparison to the desired in-phase peaks (term group1, blue line) against the relation of shift difference ∆νand coupling constantJ. The black line is the evolution of the pure amplitude factor at the beginning of signal detection (zero detectable intensity). The green and the orange plots show the potentially detectable intensity after 20 ms aquisition time for the case of 2,3-dibromothiophene (J = 5.75 Hz) and the case of a comparably large proton-protonJ-coupling constant of 15 Hz.

S22

S23

3 PSYCHE, TSE-PSYCHE and simulated spectra with increasing