• Keine Ergebnisse gefunden

TECHNIKEN ZUR VERMINDERUNG DER EMISSIONEN VON

3.8 Techniken zur Verminderung von

8.3.2 The degree of secondary fuel co-combusted in LCPs

8.3.3 General effects of the co-combustion of

secondary fuel ... 512 8.3.4 Effects of co-combustion on plant efficiency

... 512 8.3.5 Effect of co-combustion on plant

performance... 514 8.3.6 Effects of co-combustion on emissions to

air... 514 8.3.6.1 Particulate matter... 515 8.3.6.2 Acid gases ... 515 8.3.6.3 Carbon oxides ... 515 8.3.6.4 Halides... 515 8.3.6.5 Nitrogen oxides ... 515 8.3.6.6 Sulphur oxides ... 516 8.3.6.7 VOCs and

dioxins... 516 8.3.6.8 Metals ... 516 8.3.6.9 Plume... 517 8.3.6.10 Odour... 517 8.3.7 Effects of co-combustion on emissions to

water ... 518 8.3.8 Effects of co-combustion on

quality of combustion residues and by-products ... 518 8.4 Techniques to consider in the determination of

BAT for co-combustion of waste and recovered fuels ... 520 8.4.1 Techniques for the storage and handling of

dusty and odorous secondary fuel ... 521 8.4.2 Techniques for the pretreatment of secondary fuel... 522 8.4.3 Techniques to introduce secondary fuel into

the combustion process... 523 8.4.4 Techniques for the prevention and control of

air emissions by the co-combustion of secondary fuel... 524 8.4.5 Techniques for the prevention and control of

water pollution by the co-combustion of secondary fuel... 526 8.4.6 Techniques to reduce the impact of

co-combustion on the co-combustion residues and by-products... 526 8.5 Best available techniques (BAT) for

co-combustion of waste and recovered fuels ... 527 8.5.1 Acceptance and pre-acceptance criterias .. 528 8.5.2 Storage and handling of secondary

fuel... 529 8.5.3 Pretreatment of secondary fuel ... 529 8.5.4 Introduction of secondary fuel into the

combustion process ... 529 8.5.5 Air emissions... 529 8.5.6 Water pollution... 530 8.5.7 Combustion residues and by-products... 531 8.6 Emerging techniques for the co-combustion

of waste and recovered fuels... 531 9 CONCLUDING REMARKS ... 533 9.1 Timing of the work... 533 9.2 Sources of information ... 533 9.3 Degree of consensus... 534

8.3.2 Anteil der Ersatzbrennstoffe am

Brennstoffeinsatz in Großfeuerungsanlagen ...510 8.3.3 Allgemeine Auswirkungen der Mitverbrennung

von Ersatzbrennstoffen...512 8.3.4 Auswirkungen der Mitverbrennung auf den

Anlagenwirkungsgrad ...512 8.3.5 Auswirkungen der Mitverbrennung auf die

Leistungsmerkmale der Anlage...514 8.3.6 Auswirkungen der Mitverbrennung auf die

Luftemissionen...514 8.3.6.7 Flüchtige organische Verbindungen (VOC) und

Dioxine...516 8.3.6.8 Metalle ...516 8.3.6.9 Abgasfahne...517 8.3.6.10 Geruch...517 8.3.7 Auswirkungen der Mitverbrennung auf

Wasserverunreinigungen...518 8.3.8 Auswirkungen der Mitverbrennung auf die

Qualität von Verbrennungsrückständen und

Nebenprodukten ...518 8.4 Zu betrachtende Techniken zur Bestimmung

von BVT zur Mitverbrennung von Abfällen und Ersatzbrennstoffen ...520 8.4.1 Techniken zum Lagern und Umschlagen

stau-bender und riechender Ersatzbrennstoffe ...521 8.4.2 Techniken zur Vorbehandlung von

Ersatzbrennstoffen...522 8.4.3 Techniken zum Einbringen von

Ersatzbrennstoffen in die Feuerung ...523 8.4.4 Techniken zur Vermeidung und

Verminderung von Luftemissionen durch Mitverbrennung von Ersatzbrennstoffen...524 8.4.5 Techniken zur Vermeidung und Verminde

rung von Wasserverunreinigungen durch Mitverbrennung von Ersatzbrennstoffen...526 8.4.6 Techniken zur Verminderung der

Aus-wirkung von Mitverbrennung auf die Ver-brennungsrückstände und Nebenprodukte ...526 8.5 Beste Verfügbare Techniken (BVT) zur

Mitverbrennung von Abfall und

Ersatzbrennstoffen...527 8.5.1 Akzeptanz- und Vorakzeptanzkriterien...528 8.5.2 Lagerung und Umschlagen von

Ersatzbrennstoffen...529 8.5.3 Vorbehandlung von Ersatzbrennstoffen ...529 8.5.4 Einführung von Ersatzbrennstoffen in die

Feuerung ...529 8.5.5 Luftemissionen ...529 8.5.6 Wasserverunreinigungen...530 8.5.7 Verbrennungsrückstände und Nebenprodukte531 8.6 Emerging techniques for the co-combustion of

waste and recovered fuels ...531 9 SCHLUSSBEMERKUNGEN ...533 9.1 Zeitablauf der Arbeiten ...533 9.2 Informationsquellen...533 9.3 Konsensgrad ...534

9.4 Recommendations for future work ... 535 REFERENCES ... 537 GLOSSARY ... 547 10 ANNEXES ... 559 10.1 Annex 1: Principles of combustion cycles

and efficiency concepts ... 559 10.1.1 Annex 2: Thermodynamic principles.... 559 10.1.1.1 First law of thermodynamics ... 559 10.1.1.2 Second law of thermodynamics ... 559 10.1.1.3 Enthalpy and entropy... 560 10.1.1.4 The concept of reversibility... 560 10.1.1.5 The ideal cycle (Carnot cycle)... 561 10.1.1.6 Properties of vapour (water vapour)... 562 10.1.2 The Rankine cycle as the standard cycle

for steam power plants ... 562 10.1.2.1 The externally irreversible Rankine cycle ..

... 563 10.1.2.2 Efficiency improvement of the Rankine

cycle... 564 10.1.2.3 Reheat ... 566 10.1.2.4 Regeneration ... 567 10.1.3 The Joule or Brayton cycle as the standard cycle for gas turbines ... 568 10.1.3.1 The ideal Brayton cycle ... 568 10.1.3.2 Non-ideal Brayton cycle ... 570 10.1.3.3 Regeneration ... 571 10.1.3.4 Compressor intercooling ... 571 10.1.3.5 Turbine reheat ... 572 10.1.4 Combined cycles... 572 10.1.5 Co-generation (CHP)... 574 10.2 Annex 2. Technical options to remove CO2

from flue-gases ... 576 10.2.1 Absorption techniques to remove CO2 from

flue-gases... 576 10.2.2 Adsorption techniques to remove CO2 from

flue-gases... 576 10.2.3 Cryogenic techniques to remove CO2 from flue-gases... 577 10.2.4 Membrane techniques to remove CO2 from

flue-gases... 577 10.2.5 The Carnol technique to remove CO2 from flue-gases... 577 10.2.6 Comparison of the different CO2 removal

options... 578

9.4 Empfehlungen für die künftige Arbeit ...535 REFERENCES...537 GLOSSAR...547 10 ANHANG...559 10.1 Anhang 1: Prinzipien von Feuerungszyklen und

Effizienzkonzepte ...559 10.1.1 Anhang 2: Thermodynamische Prinzipien ...559 10.1.1.1 Erster Hauptsatz der Thermodynamik ...559 10.1.1.2 Zweiter Hauptsatz der Thermodynamik ...559 10.1.1.3 Enthalpie und Entropie ...560 10.1.1.4 Konzept der Umkehrbarkeit ...560 10.1.1.5 Der ideale Kreisprozess (Carnot-Zyklus) ...561 10.1.1.6 Dampfeigenschaften (Wasserdampf)...562 10.1.2 Der Rankine-Kreisprozess als

Standardkreisprozess bei Dampfkraftwerken ...562 10.1.2.1 Der externe irreversible Rankine-

Kreisprozess ...563 10.1.2.2 Verbesserung des Wirkungsgrades des

Rankine-Kreisprozesses ...564 10.1.2.3 Zwischenüberhitzung ...566 10.1.2.4 Regeneration...567 10.1.3 Der Joule- oder Brayton-Kreisprozess als

Standardkreisprozess für Gasturbinen ...568 10.1.3.1 Der ideale Brayton-Kreisprozess...568 10.1.3.2 Der nicht ideale Brayton-Kreisprozess...570 10.1.3.3 Regeneration...571 10.1.3.4 Verdichter mit Zwischenkühlung ...571 10.1.3.5 Turbinen-Zwischenüberhitzung...572 10.1.4 Gas- und Dampfturbinenprozess ...572 10.1.5 Kraft-Wärmekopplung (KWK) ...574 10.2 Anhang 2. Technische Optionen zur

Abscheidung von CO2 aus Abgasen ...576 10.2.1 Absorptionstechniken zum Abscheiden von CO2

aus Abgasen...576 10.2.2 Adsorptiontechniken zum Abscheiden von CO2

aus Abgasen...576 10.2.3 Kryogenische Techniken/Verfahren zum

Abscheiden von CO2 aus Abgasen ...577 10.2.4 Membran-Techniken zum Abscheiden von CO2

aus Abgasen...577 10.2.5 Die Carnol-Technik zum Entfernen von CO2 aus

Abgasen ...577 10.2.6 Vergleich der verschiedenen Optionen zum

Abscheiden von CO2...578

List of figures

Figure 1.1: Worldwide energy sources in the power-generating sector (1995) ... 1 Figure 1.2: Energy consumption for electricity generation by fuel (1997)... 2 Figure 1.3: Generalised flow diagram of a combustion plant and its associated operations... 10 Figure 1.4: Partitioning of trace elements during coal combustion ... 16 Figure 1.5: Global mean temperature and amount of CO2 emitted over the past century... 18 Figure 1.6: Change in CO2 concentrations in the atmosphere over time ... 19 Figure 1.7: Examples of CO2 releases for different types of combustion plants ... 20 Figure 1.8: Effluents from fossil fuel fired large combustion plants ... 23 Figure 2.1: Modern steam turbine of a coal-fired power plant ... 36 Figure 2.2: Schematic of an ideal combustion cycle ... 37 Figure 2.3: Possible concept of a power plant ... 38 Figure 2.4: Natural circulation and the once-through boiler concept ... 39 Figure 2.5: Specific investments and their structure for selected power plant concepts... 41 Figure 2.6: Ideal (Carnot) efficiency compared to the efficiencies actually achieved by the thermal energy

generation techniques currently in use ... 42 Figure 2.7: Energy transfer in a thermal power plant ... 43 Figure 2.8: Example demonstrating the methodology for calculating the exergetic efficiency... 44 Figure 2.9: Improvements in the efficiency of power plants between 1993 and 2000 ... 50 Abbildung 3.1: Übersicht der momentan verwendeten Vorrichtungen zur Staubminderung ... 54 Abbildung 3.2: Typisches Konfigurationsschema eines Elektrofilters... 55 Abbildung 3.3: Allgemeine Anordnung eines Gewebefilters (mit einer Kammer im Reinigungszyklus) ... 58 Abbildung 3.4: Niederdruck-Jetimpuls-Gewebefilter... 59 Abbildung 3.5: Typisches Flussdiagram eines Venturisystems... 61 Abbildung 3.6: Bewegtbettwäscher... 62 Abbildung 3.7: Übersicht der Technologien zur Verminderung von Schwefeloxidemissionen

(Sekundärmaßnahmen)... 66 Abbildung 3.8: Flussdiagramm eines Nasswaschverfahrens der Kalk/Kalkstein-REA... 68 Abbildung 3.9: Verschiedene Typen von Kalk/Kalkstein-Nasswäschern ... 71 Abbildung 3.10: Verschiedene Absorbertypen... 73 Abbildung 3.11: Grundschaltplan des Meerwasserwaschverfahren ... 75 Abbildung 3.12: Meerwasserwaschverfahren... 76 Abbildung 3.13: Ammoniak-Nasswaschverfahren ... 77 Abbildung 3.14: Flussdiagramm eines Sprühtrocken-Waschverfahren... 78 Abbildung 3.15: Sorbenseindüsung in die Feuerung ... 81 Abbildung 3.16: SO2-Abscheidungsreaktionen bei Sorbenseindüsung in die Feuerung ... 81 Abbildung 3.17: Sorbens-Eindüsung in den Abgaskanal ... 83 Abbildung 3.18: Modifiziertes trockenes REA-Verfahren ... 85 Abbildung 3.19: Übersicht der Primärmaßnahmen zur Verminderung von Stickstoffoxidemissionen... 95 Abbildung 3.20: Abgas-Rückführung... 97 Abbildung 3.21: Die drei Verbrennungszonen und relevante Parameter im Nachverbrennungs-verfahren... 98 Abbildung 3.22: Vergleich von Kohle, Öl und Erdgas als Nachverbrennungs-Brennstoff ... 99 Abbildung 3.23: Entstickungsrate als Funktion der Nachverbrennungs-Rate ... 100 Abbildung 3.24: Vergleich zwischen konventionellen luftgestuften und modernen luftgestuften Low-NOX

-Brennern... 101 Abbildung 3.25: Gas/Öl-Low-NOX-Brenner mit Abgasrückführung ... 102 Abbildung 3.26: Brennstoffstufung am Brenner... 103 Abbildung 3.27: Wabenförmige oder plattenförmige Katalysatoren... 107 Abbildung 3.28: Konfiguration des Katalysatorreaktors, seiner Elemente, Module und Schichten... 108 Abbildung 3.29: Gegenwärtige Konfigurationen von Verminderungstechnologien ... 109 Abbildung 3.30: Beispiel eines High-Dust-SCR-Katalysators ... 110 Abbildung 3.31: Investitionskosten für das SCR-Verfahren in einerFeuerungsanlage ... 111 Abbildung 3.32: Das SNCR-Verfahren ... 113 Abbildung 3.33: Das Aktivkohleverfahren... 118 Abbildung 3.34: WSA-SNOX-Verfahren... 119 Abbildung 3.35: DESONOX-Verfahren... 120 Abbildung 3.36: Massenbilanz von Schwermetallen, Fluoriden und Chlorid in kohlebefeuerten

Verbrennungsanlagen... 123 Abbildung 3.37: Verbesserung des Wirkungsgrads von Energieerzeugungstechnologien seit 50 Jahren ... 129 Abbildung 3.38: CO2-Ausstoß im Vergleich zum Wirkungsgrad... 130 Abbildung 3.39: Spezifische CO2-Emissionen im Vergleich zur Anlagengröße... 130 Abbildung 3.40: CO2-Emissionsbereiche der gegenwärtigen Technologien... 131

Abbildung 3.41: REA-Abwasseraufbereitungsanlage ... 135 Abbildung 3.42: Zwei Emissionsüberwachungskonfigurationen ... 143 Abbildung 3.43: Beispiel für Verfahrenüberwachung und Überwachung der Luftemissionen in Kraftwerken... 144 Figure 4.1: Coal- and lignite-fired power plants in EU-15 countries... 159 Figure 4.2: Capacity and age of coal- and lignite-fired power plants in EU-15 countries... 159 Figure 4.3: Age of coal- and lignite-fired power plants in EU-15 countries... 160 Figure 4.4: Capacity weighted average age of coal- and lignite-fired power plants in EU-15 countries... 160 Figure 4.5: Ball coal mill ... 164 Figure 4.6: Roller and race coal mill ... 165 Figure 4.7: Fan mill for lignite milling ... 166 Figure 4.8: New large lignite-fired power plant with cooling tower discharge ... 167 Figure 4.9: Examples of dry- and wet-bottom boilers operated in the EU ... 169 Figure 4.10: Different coal-burner configurations (main systems applied) ... 169 Figure 4.11: Tangentially-fired combustion chamber... 170 Figure 4.12: Schematic of the bubbling fluidised bed boiler and the circulating fluidised bed boiler... 171 Figure 4.13: CFBC boiler for burning low-sulphur coal ... 172 Figure 4.14: Schematic drawing of a bubbling bed PFBC system ... 174 Figure 4.15: Travelling grate-firing for coal combustion ... 175 Figure 4.16: Main features of an oxygen-blown IGCC ... 176 Figure 4.17: Flow sheet of an IGCC power plant operated in Spain ... 177 Figure 4.18: Retrofitting FGD technology into an existing plant ... 182 Figure 4.19: Wet FGD process with a spray tower... 182 Figure 4.20: Heat displacement around the FGD unit ... 183 Figure 4.21: Large lignite-fired boiler that has applied primary measures to reduce the generation of NOX

emissions ... 184 Figure 4.22: The relationship between NOX, CO and excess air at various sections in a 150 MWel lignite-fired

boiler ... 185 Figure 4.23: Closed gypsum storage facilities... 189 Figure 4.24: Principle of axial and radial air staging... 193 Figure 4.25: NOX versus burner stoichiometry and firing system ... 193 Figure 4.26: Comparison of the NOX values for some selected power plants ... 194 Figure 4.27: Arch-fired burner with fuel preheat... 195 Figure 4.28: Changes in the existing boiler when applying coal-over-coal reburning ... 199 Figure 4.29: DS swirl burner integrated in an opposed fired boiler... 200 Figure 4.30: NOX emissions of several retrofitted boilers ... 201 Figure 4.31: Performance of the swirl burner using different coals... 201 Figure 4.32: Hot-type (‘Ignifluid’) fluidised-bed technology... 202 Figure 4.33: CFBC plant for high-sulphur lignite... 205 Figure 4.34: Computerised optimisation system ... 209 Figure 4.35: Characterisation of combustion conditions through advanced monitoring systems... 210 Figure 4.36: Results from PC arch-fired (anthracite) and front-wall-fired (bituminous + lignite) boilers ... 212 Figure 4.37: Efficiency improvement ... 217 Figure 4.38: Coal-fired boiler operated together with a gas turbine combined cycle ... 221 Figure 4.39: Industrial CFBC boiler ... 228 Figure 4.40: Influence of coal quality on the performance of the combustion plant ... 233 Figure 4.41: Total efficiency of coal-fired power plants in Europe in relation to capacity ... 233 Figure 4.42: Efficiency of coal-fired power plants in Europe in relation to the commissioning year ... 234 Figure 4.43: Increased efficiency of a hard coal-fired power plant-individual measures ... 235 Figure 4.44: Increased the efficiency of a hard coal-fired power plant –development of materials ... 236 Figure 4.45: Annual Production of CCPs in a 750 MWe coal-fired power plant at 6000 hours full load (total

production of CCPs = 154000 tonnes) ... 253 Figure 4.46: Production of CCPs in the EU-15 in 1999 ... 254 Figure 4.47: Utilisation and disposal of CCPs in the EU-15 in 1999 ... 254 Figure 4.48: Utilisation and disposal of CCPs in the EU-15 in 1999 ... 255 Figure 4.49: Overview of CCP utilisation in the EU-15 in 1999... 256 Figure 4.50: Pilot plant for lignite dying ... 282 Figure 5.1: Peat, wood and coal handling system... 286 Figure 5.2: Spreader-stoker grate firing for solid fuels... 288 Figure 5.3: Circulating fluidised bed boiler... 290 Figure 5.4:Foster and Wheeler gasifier... 291 Figure 5.5: Industrial CFB boiler with multi inlet cyclone applied for co-firing... 293 Figure 5.6: The effect of biomass co-combustion on SO2 emissions (500 MWth, 1.2 % S in coal)... 293 Figure 5.7: Fuel and bed material flow in a biomass fired CFBC boiler ... 297

Figure 5.8: BFBC boiler converted from a pulverised peat boiler... 301 Figure 5.9: Straw firing combustion plant ... 308 Figure 5.10: Example of the mass stream of a peat-fired CFBC boiler ... 313 Figure 6.1: Heavy fuel oil boiler... 347 Figure 6.2: Wet FGD process applied to a HFO fired boiler ... 354 Figure 6.3: SCR system applied to a stationary engine combustion plant... 360 Figure 6.4: Retrofitted heavy fuel oil-fired power plant with SCR, wet FGD and a heat displacement system... 365 Figure 6.5: Combined gas turbine-steam turbine-district heating power plant burning heavy fuel oil and natural

gas ... 370 Figure 6.6: Sulphur and nitrogen contents in HFO (vacuum residues) according to their geographical origin... 375 Figure 7.1: European natural gas network ... 409 Figure 7.2: Firing mode of gas turbines-worldwide status ... 410 Figure 7.3: Heavy duty gas turbine electricity generating unit... 411 Figure 7.4: Gas turbine (159 MW) with a silo combustion chamber... 411 Figure 7.5: First row of turbine vanes before and after turbine washing ... 412 Figure 7.6: Natural gas fired engine ... 414 Figure 7.7: Gas turbine combined cycle power plant ... 416 Figure 7.8: Recently built gas turbine combined cycle power plant in Belgium ... 417 Figure 7.9: Schematic of a combined cycle power plant with a heat recovery steam generator (HRSG) ... 418 Figure 7.10: Schematic of a topping cycle combined power plant ... 419 Figure 7.11: NOX reduction by steam or water injection... 424 Figure 7.12: Schematic of a DLN combustion chamber... 425 Figure 7.13: HRSG design and SCR installation... 427 Figure 7.14: SCR installation with vertical flow ... 427 Figure 7.15: North Sea oil platform... 431 Figure 7.16: Principle sketch of Cheng Steam Injection Cycle ... 439 Figure 7.17: NOX and CO emission as a function of steam ratio... 440 Figure 7.18: Schematic representation of the catalyst system ... 442 Figure 7.19: NOX emissions from offshore gas turbines with a DLN combustion chamber ... 457 Figure 7.20: Flow diagram of the combined cycle heat and power plant offshore... 459 Figure 7.21: Example of a combined cycle power plant installed on an offshore platform on the Norwegian

continental shelf ... 460 Figure 7.22: Grassmann diagram of a gas turbine with HRSG... 462 Figure 8.1: CFB gasifier connected with a coal-fired boiler... 493 Figure 8.2: Flow sheet of a gasifier concept ... 494 Figure 8.3: Wood gasification with gas cleaning... 495 Figure 8.4: Co-combustion of coal and sewage sludge ... 496 Figure 8.5: Internal grates in pulverised coal-fired boiler... 497 Figure 8.6: Injection of activated carbon into the flue-gas channel from a CFBB with co-combustion of sewage

sludge ... 506 Figure 10.1: Ideal Carnot cycle... 561 Figure 10.2: The simple ideal Rankine cycle... 563 Figure 10.3: Deviation of an actual vapour power cycle from the ideal Rankine cycle ... 563 Figure 10.4: The effect of lowering the condenser pressure of the ideal Rankine cycle... 565 Figure 10.5: The effect of superheating the steam to higher temperatures in the ideal Rankine cycle... 565 Figure 10.6: The effect of increasing the boiler pressure in the ideal Rankine cycle ... 566 Figure 10.7: A supercritical Rankine cycle... 566 Figure 10.8: The ideal reheat Rankine cycle ... 567 Figure 10.9: The ideal regenerative Rankine cycle with a closed feed-water heater ... 568 Figure 10.10: A closed cycle gas turbine engine ... 569 Figure 10.11: T-s and P-v diagrams for the ideal Brayton cycle ... 569 Figure 10.12: The deviation of an actual gas turbine cycle from the ideal Brayton cycle as a result of

irreversibilities... 570 Figure 10.13: Thermal efficiency of the Brayton cycle as a function of pressure ratio (rP) and temperature (T3)... 571 Figure 10.14: Evaporative cooling and recuperative cycles ... 571 Figure 10.15: Intercooled cycle ... 572 Figure 10.16: Reheat cycle ... 572 Figure 10.17: An ideal co-generation plant ... 575 Figure 10.18: A co-generation plant with adjustable loads... 575

List of tables

Table 1.1: Installed electrical capacity in EU-15 Member States ... 2 Table 1.2: Electric power gross generation in EU Member Sates in 1997 ... 3 Table 1.3: European energy balance summary from 1990 to 2030 (prospective (estimated) energy outlook)... 5 Table 1.4: European energy balance summary from 1990 to 2030 (prospective (estimated) energy outlook)... 6 Table 1.5: Potential emission pathways by source type and substance ... 11 Table 1.6: Contributions of emissions from different LCP categories to the total air emissions from IPPC

installations operating in EU-15 in 2001 according to the European Pollutant Emission Register 2001 (EPER) ... 13 Table 1.7:Fuel bound nitrogen... 14 Table 1.8: Annual emissions of heavy metals from combustion installations in EU-15 in 1990 ... 17 Table 1.9: Greenhouse gases: concentration changes, contribution to global warming and main sources... 19 Table 1.10: Specific CO2 emission factors for the main fuels burned in large combustion plants ... 20 Table 1.11: Greenhouse gas emissions and removals/sinks in 1996... 21 Table 1.12: List of water pollutants from large combustion plants ... 24 Table 2.1: CHP in EU-15 and CHP as a percentage of thermal and total electricity generation in 1998 ... 35 Table 2.2: Examples of energetic and exergetic efficiencies of different types of combustion plants ... 45 Table 2.3: Examples of effect of climatic conditions in Europe on the lost of efficiency of power plants... 47 Tabelle 3.1: Primärmaßnahmen zur Emissionsminderung ... 53 Tabelle 3.2: Allgemeine Leistungsdaten der Geräte zur Staubabscheidung ... 64 Tabelle 3.3: REA in Großfeuerungsanlagen in EU-15 ... 67 Tabelle 3.4: Vergleich zwischen Zwangsoxidation und natürlicher Oxidation ... 69 Tabelle 3.5: Allgemeine Leistung der Kalk/Kalkstein-Nasswäscher zur Verminderung von

Schwefeloxidemissionen ... 89 Tabelle 3.6: Allgemeine Leistungsdaten der Meerwasserwäsche zur Verminderung von Schwefeloxidemissionen... 90 Tabelle 3.7: Allgemeine Leistungsdaten des Sprühtrockenwäschers zur Verminderung von

Schwefeloxidemissionen ... 91 Tabelle 3.8: Allgemeine Leistungsdaten verschiedener Sorbenseindüsungstechniken zur Verminderung von

Schwefeloxidemissionen ... 92 Tabelle 3.9: Allgemeine Leistungsdaten regenerativer Techniken zur Verminderung von

Schwefeloxidemissionen ... 93 Tabelle 3.10: DENOX (Sekundärmaßnahmen, außer Primärmaßnahmen) bei Großfeuerungsanlagen in EU-15... 94 Tabelle 3.11: Allgemeine Leistungsdaten von Primärmaßnahmen zur Verminderung von NOX-Emissionen... 104 Tabelle 3.12: Allgemeine Leistungsdaten von Primärmaßnahmen zur Verminderung von NOX -Emissionen... 105 Tabelle 3.13: Kostenberechung für SCR-Anlagen nach Kraftwerken als Funktion des Abgasvolumens ... 112 Tabelle 3.14: Allgemeine Leistungsdaten der Sekundärmaßnahmen zur Verminderung von NOX-Emissionen... 116 Tabelle 3.15: Allgemeine Leistungsdaten verschiedener Sorbenseindüsungstechniken zur Verminderung von

Schwefeloxid/Stickstoffoxid-Emissionen ... 122 Tabelle 3.16: Beispiele der Kapazität und thermodynamischen Merkmale verschiedener Kühlsysteme für

Anwendungen in der Energieindustrie ... 141 Table 4.1: Types of mills using different coal qualities... 165 Table 4.2: Examples of re-use of residues and by-products from coal and lignite combustion... 191 Table 4.3: Analysis of different test coals ... 196 Table 4.4: Overview of measured emissions (at 6 % O2) ... 203 Table 4.5: Costs for an Ignifluid boiler... 204 Table 4.6: Typical NOX and SO2 emissions for CFBC plants ... 207 Table 4.7: Application of advanced control technology in coal-fired boilers... 211 Table 4.8: Typical reductions of NOX emissions at PC power plants by the presented technology ... 211 Table 4.9: Comparison of relevant operational data before and after retrofitting primary NOX control measures... 214 Table 4.10: Measure emissions to the air in 1999... 215 Table 4.11: Average characteristics of the fired hard coal... 215 Table 4.12: Concentration of impurities in the waste water from the condensate treatment and other sources of

the steam generation process... 216 Table 4.13: Concentration of impurities in the waste waters from the desulphurisation process ... 216 Table 4.14: Measured emissions to the air in 1999... 218 Table 4.15: Characteristics of the fired lignite... 218 Table 4.16: Consumption of important auxiliary supplies in 1999... 219 Table 4.17: Concentrations of impurities in the waste water after the waste water treatment plant ... 219 Table 4.18: Residues generated in 1999 ... 219 Table 4.19: Investments for retrofitting... 219 Table 4.20: Performance data at different operational states... 221 Table 4.21: Measured emission levels in 1999... 223

Table 4.22: Consumption of important auxiliary supplies in 1999... 223 Table 4.23: Concentrations of pollutants in the waste water of the desulphurisation plant after treatment... 224 Table 4.24: Residues generated in 1999 ... 224 Table 4.25: Measured emission levels in 1999... 226 Table 4.26: Consumption of important auxiliary supplies in 1999... 226 Table 4.27: Concentrations of impurities in the effluent of the cooling system ... 226 Table 4.28: Concentrations of impurities in the waste water of the desulphurisation plant after treatment ... 227 Table 4.29: Residues generated in 1999 ... 227 Table 4.30: Comparison of achieved and guaranteed pollutants emission values for three hard coal-fired fluidised

bed boilers operated in Poland ... 229 Table 4.31: Indicative analyses of typical coals (general practice)... 231 Table 4.32: Concentrations of heavy metals and trace elements in coals from different regions ... 232 Table 4.33: Typical energy efficiencies (LHVnet) for different LCP technologies ... 234 Table 4.34: Effect of the steam characteristics on efficiencies for different techniques... 235 Table 4.35: Emissions (in concentration) to air from coal-fired combustion plants in normal operation and at

constant load... 238 Table 4.36: Specific emissions to air from coal-fired combustion plants in normal operation and at constant load ... 239 Table 4.37: Emissions to air from lignite-fired combustion plants in normal operation and at constant load... 241 Table 4.38: Specific emissions to air from lignite-fired combustion plants in normal operation and at constant

load... 242 Table 4.39: Level of NOX emissions for existing plants without secondary measures... 243 Table 4.40: Combined heavy metal mass balances for various types of power plants ... 243 Table 4.41: Pathways of heavy metals in coal-fired combustion plants ... 244 Table 4.42: Mercury content in coal from different origins... 245 Table 4.43 Mercury content in flue-gases downstream of the ESP ... 245 Table 4.44: Measured N2O emission levels taken from different literature sources... 246 Table 4.45: Emission levels of HCl and HF for plants with and without secondary measures ... 246 Table 4.46: Emission levels of dioxin and PAH from the combustion of different fuels ... 246 Table 4.47: Emissions to water from coal-fired combustion plants... 247 Table 4.48: Emissions to water from coal-fired combustion plants... 248 Table 4.49: Emissions to water from four different coal-fired combustion plants ... 249 Table 4.50: Emissions to water from four different coal-fired combustion plants ... 250 Table 4.51: Emissions to water from lignite-fired combustion plants ... 251 Table 4.52: Emissions to water from lignite-fired combustion plants ... 252 Table 4.53: Heavy metals of coal and some coal combustion residues (this data should be seen as examples

load... 242 Table 4.39: Level of NOX emissions for existing plants without secondary measures... 243 Table 4.40: Combined heavy metal mass balances for various types of power plants ... 243 Table 4.41: Pathways of heavy metals in coal-fired combustion plants ... 244 Table 4.42: Mercury content in coal from different origins... 245 Table 4.43 Mercury content in flue-gases downstream of the ESP ... 245 Table 4.44: Measured N2O emission levels taken from different literature sources... 246 Table 4.45: Emission levels of HCl and HF for plants with and without secondary measures ... 246 Table 4.46: Emission levels of dioxin and PAH from the combustion of different fuels ... 246 Table 4.47: Emissions to water from coal-fired combustion plants... 247 Table 4.48: Emissions to water from coal-fired combustion plants... 248 Table 4.49: Emissions to water from four different coal-fired combustion plants ... 249 Table 4.50: Emissions to water from four different coal-fired combustion plants ... 250 Table 4.51: Emissions to water from lignite-fired combustion plants ... 251 Table 4.52: Emissions to water from lignite-fired combustion plants ... 252 Table 4.53: Heavy metals of coal and some coal combustion residues (this data should be seen as examples