• Keine Ergebnisse gefunden

Insbesondere in Organismen, die kein CaM haben, eröffnet sich aufgrund der strukturellen Identität von GlpD- und CaM- Bindemotiven eine neue experimentelle Strategie, um nach prokaryontischen Membranbindeproteinen zu suchen und diese näher zu charakterisieren.

Im Fall von GlpD wurde dies bereits erfolgreich demonstriert und kann auch bei anderen prokaryontischen CaM-Bindeproteinen angewandt werden. So ist z.B. ein Bereich des CaM-Bindeproteins GlpC hoch konserviert mit der GlpD-Membran-Insertionsdomäne (Abb.27). Durch Sekundärstrukturvorhersageprogramme wie PHD (Rost et al., 1994) und Predator (Rost et al., 1994) wurde für die Aminosäuren in diesem homologen Bereich von GlpC eine basische α-Helix mit amphiphilen Eigenschaften (Eisenberg et al., 1984) ermittelt (Abb30). Ferner wurde gezeigt, dass das CaM-Bindeprotein SecA in anionische Phospholipide inseriert (Breukink et al., 1992) und dass hierfür 70 Aminosäuren des C-Terminus von SecA essentiell sind (Breukink et al., 1995). Über Sekundärstrukturvorhersage-programme wie PHD und Predator wurde eine basisch amphiphile α-Helix im Bereich von Aminosäure 622-635 ermittelt, die mit CaM interagieren und in anionische Phospholipide inserieren könnte. Sekundärstrukturvorhersagen für das CaM-Bindeprotein TraC ermittelten eine basisch amphiphile Helix im Bereich von Aminosäuren 421-434 (Abb. 30).

Diskussion

Abb. 30: Basisch amphiphile Helices von GlpC, TraC und SecA als potentielle CaM- und Membran-bindedomänen. Die Graustufen entsprechen dem Hydrophobizitätsgrad der Aminosäuren, wobei die Aminosäuren mit größerer Hydrophobizität dunkler und hydrophilere Reste heller dargestellt sind.

Ob diese Helices für die CaM-Bindung essentiell sind, könnte durch CaM-Bindetests geprüft werden. CaM-Bindetests haben in experimenteller Hinsicht einige Vorteile gegenüber Monolayer- oder Liposomenbindungstests. Der erste Vorteil betrifft die experimentellen Voraussetzungen. So muss die Reinigung peripherer Membranproteine für CaM-Bindetests im Gegesatz zu Lipidmonolayer- bzw. Liposomenbindungstests nicht ohne den Einsatz von Detergenzien durchgeführt werden. Folglich erhält man für CaM-Bindetests eine höhere Ausbeute an Protein. Zweitens sind CaM-Bindetests experimentell einfacher durchzuführen, da keine speziellen Geräte (z.B. Mikro-Cahn-Waage) benötigt werden und sie nicht so sensitiv gegenüber externen Störungen (elektromagnetische Anziehung, Luftdruck etc.) sind wie Monolayer-Experimente. Drittens sind CaM-Bindetests nicht so zeitaufwendig, denn CaM-Sepharose wird industriell hergestellt und ist somit direkt einsetzbar. Für Liposomen-Bindungstests muss man dagegen die Liposomen erst herstellen.

CaM-Bindetests vereinfachen also die Suche nach peripheren Membranbindeproteinen bzw. -domänen und können als Screeningsystem in E. coli angewandt werden. Die Suche

A L

Diskussion

Identifizierung von Proteinen, die möglicherweise an Mikrodomänen lokalisiert sind, können CaM-Bindetests effizient eingesetzt werden.

Literaturverzeichnis

Literaturverzeichnis

Ames, G. F. (1968), Lipids of Salmonella typhimurium and Escherichia coli: structure and metabolism. J. Bacteriol. 95: 833-843.

Auer, M., M. J. Kim, M. J. Lemieux, A. Villa, J. Song, X. D. Li und D. N. Wang (2001), High-yield expression and functional analysis of Escherichia coli glycerol-3-phosphate transporter. Biochemistry 40: 6628-6635.

Austin, D. und T. J. Larson (1991), Nucleotide sequence of the glpD gene encoding aerobic sn-glycerol 3- phosphate dehydrogenase of Escherichia coli K-12. J. Bacteriol. 173: 101-107.

Babu, Y. S., C. E. Bugg und W. J. Cook (1988), Structure of calmodulin refined at 2.2 A resolution. J. Mol. Biol. 204: 191-204.

Ben-Tal, N., B. Honig, R. M. Peitzsch, G. Denisov und S. McLaughlin (1996), Binding of small basic peptides to membranes containing acidic lipids: theoretical models and experimental results. Biophys. J. 71: 561-575.

Ben-Tal, N., B. Honig, C. Miller und S. McLaughlin (1997), Electrostatic binding of proteins to membranes. Theoretical predictions and experimental results with charybdotoxin and phospholipid vesicles. Biophys. J. 73: 1717-1727.

Bernstein, L. S., A. A. Grillo, S. S. Loranger und M. E. Linder (2000), RGS4 binds to membranes through an amphipathic alpha -helix. J. Biol. Chem. 275: 18520-18526.

Bianchini, G. M., A. C. Pastini, J. P. Muschietti, M. T. Tellez-Inon, H. E. Martinetto, H. N.

Torres und M. M. Flawia (1990), Adenylate cyclase activity in cyanobacteria: activation by Ca2+- calmodulin and a calmodulin-like activity. Biochim. Biophys. Acta 1055: 75-81.

Bligh, E. G. und W. J. Dyer (1959), A rapid method of total lipid extraction and purification.

Can. J. Biochem. Physiol. 37: 911-917.

Bogdanov, M., J. Sun, H. R. Kaback und W. Dowhan (1996), A phospholipid acts as a chaperone in assembly of a membrane transport protein. J. Biol. Chem. 271: 11615-11618.

Borgnia, M. J. und P. Agre (2001), Reconstitution and functional comparison of purified GlpF and AqpZ, the glycerol and water channels from Escherichia coli. Proc. Natl. Acad. Sci.

U. S. A. 98: 2888-2893.

Bradford, M. M. (1976), A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:

248-Literaturverzeichnis

Breukink, E., N. Nouwen, A. van Raalte, S. Mizushima, J. Tommassen und B. de Kruijff (1995), The C terminus of SecA is involved in both lipid binding and SecB binding. J. Biol.

Chem. 270: 7902-7907.

Bullock, W. O., J. M. Fernandez und J. M. Short (1987), Xl1-Blue: a high efficiency plasmid transforming recA Escherichia coli strain with beta-galactosidase selection. Bio Techniques 5:

376-378.

Cantor, R. S. (1999), Lipid composition and the lateral pressure profile in bilayers. Biophys. J.

76: 2625-2639.

Casadaban, M. J. (1976), Regulation of the regulatory gene for the arabinose pathway, araC.

J. Mol. Biol. 104: 557-566.

Chung, C. T., S. L. Niemela und R. H. Miller (1989), One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc.

Natl. Acad. Sci. U. S. A. 86: 2172-2175.

Cohen, P. (1988), Calmodulin, Amsterdam, Elsevier.

Cole, S. T., K. Eiglmeier, S. Ahmed, N. Honore, L. Elmes, W. F. Anderson und J. H. Weiner (1988), Nucleotide sequence and gene-polypeptide relationships of the glpABC operon encoding the anaerobic sn-glycerol-3-phosphate dehydrogenase of Escherichia coli K-12. J.

Bacteriol. 170: 2448-2456.

Cooper, S. (1991), Synthesis of the cell surface during the division cycle of rod-shaped, gram-negative bacteria. Microbiol. Rev. 55: 649-674.

Cozzarelli, N. R., J. P. Koch, S. Hayashi und E. C. Lin (1965), Growth stasis by accumulated L-alpha-glycerophosphate in Escherichia coli. J. Bacteriol. 90: 1325-1329.

Cozzarelli, N. R. und E. C. Lin (1966), Chromosomal location of the structural gene for glycerol kinase in Escherichia coli. J. Bacteriol. 91: 1763-1766.

Cozzarelli, N. R., W. B. Freedberg und E. C. Lin (1968), Genetic control of L-alpha-glycerophosphate system in Escherichia coli. J. Mol. Biol. 31: 371-387.

Cronan, J. E., Jr. (1968), Phospholipid alterations during growth of Escherichia coli. J.

Bacteriol. 95: 2054-2061.

Curran, A. R., R. H. Templer und P. J. Booth (1999), Modulation of folding and assembly of the membrane protein bacteriorhodopsin by intermolecular forces within the lipid bilayer.

Biochemistry 38: 9328-9336.

de Boer, M., C. P. Broekhuizen und P. W. Postma (1986), Regulation of glycerol kinase by enzyme IIIGlc of the phosphoenolpyruvate:carbohydrate phosphotransferase system. J.

Bacteriol. 167: 393-395.

de Kruijff, B. (1994), Anionic phospholipids and protein translocation. FEBS Lett. 346: 78-82.

Literaturverzeichnis

de Kruijff, B. (1997a), Biomembranes. Lipids beyond the bilayer. Nature 386: 129-130.

de Kruijff, B. (1997b), Lipid polymorphism and biomembrane function. Curr. Opin. Chem.

Biol. 1: 564-569.

de Leeuw, E., K. te Kaat, C. Moser, G. Menestrina, R. Demel, B. de Kruijff, B. Oudega, J.

Luirink und I. Sinning (2000), Anionic phospholipids are involved in membrane association of FtsY and stimulate its GTPase activity. EMBO J. 19: 531-541.

de Vrije, T., R. L. de Swart, W. Dowhan, J. Tommassen und B. de Kruijff (1988), Phosphatidylglycerol is involved in protein translocation across Escherichia coli inner membranes. Nature 334: 173-175.

DeChavigny, A., P. N. Heacock und W. Dowhan (1991a), Sequence and inactivation of the pss gene of Escherichia coli. Phosphatidylethanolamine may not be essential for cell viability.

J. Biol. Chem. 266: 5323-5332.

DeChavigny, A., P. N. Heacock und W. Dowhan (1991b), Sequence and inactivation of the pss gene of Escherichia coli. Phosphatidylethanolamine may not be essential for cell viability.

J. Biol. Chem. 266: 10710.

Demel, R. A., W. S. Geurts van Kessel, R. F. Zwaal, B. Roelofsen und L. L. van Deenen (1975), Relation between various phospholipase actions on human red cell membranes and the interfacial phospholipid pressure in monolayers. Biochim. Biophys. Acta 406: 97-107.

Demel, R. A. (1994), Monomolecular layers in the study of biomembranes. Subcell. Biochem.

23: 83-120.

Donahue, J. L., J. L. Bownas, W. G. Niehaus und T. J. Larson (2000), Purification and characterization of glpX-encoded fructose 1, 6-bisphosphatase, a new enzyme of the glycerol 3-phosphate regulon of Escherichia coli. J. Bacteriol. 182: 5624-5627.

Dowhan, W. (1997), Molecular basis for membrane phospholipid diversity: why are there so many lipids? Annu. Rev. Biochem. 66: 199-232.

Dym, O., E. A. Pratt, C. Ho und D. Eisenberg (2000), The crystal structure of D-lactate dehydrogenase, a peripheral membrane respiratory enzyme. Proc. Natl. Acad. Sci. U. S. A. 97:

9413-9418.

Ehrmann, M., W. Boos, E. Ormseth, H. Schweizer und T. J. Larson (1987), Divergent transcription of the 3-phosphate active transport (glpT) and anaerobic sn-glycerol-3-phosphate dehydrogenase (glpA glpC glpB) genes of Escherichia coli K-12. J. Bacteriol.

169: 526-532.

Eiglmeier, K., W. Boos und S. Cole (1987), Nucleotid sequence and transcriptional startpoint

Literaturverzeichnis

Eisenberg, D. (1984), Three-dimensional structure of membrane and surface proteins. Annu.

Rev. Biochem. 53: 595-623.

Eisenberg, D., E. Schwarz, M. Komaromy und R. Wall (1984), Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J. Mol. Biol. 179: 125-142.

Elvin, C. M., C. M. Hardy und H. Rosenberg (1985), Pi exchange mediated by the GlpT-dependent sn-glycerol-3-phosphate transport system in Escherichia coli. J. Bacteriol. 161:

1054-1058.

Fine, J. B. und H. Sprecher (1982), Unidimensional thin-layer chromatography of phospholipids on boric acid- impregnated plates. J. Lipid Res. 23: 660-663.

Fishov, I. und C. L. Woldringh (1999), Visualization of membrane domains in Escherichia coli. Mol. Microbiol. 32: 1166-1172.

Fiske, L. M. und Y. Subbarow (1925), Method for phosphorus determination. J. Biol. Chem.

66: 375-389.

Flower, A. M. (2001), SecG function and phospholipid metabolism in Escherichia coli. J.

Bacteriol. 183: 2006-2012.

Fraser, A. und H. Yamazaki (1980), Characterization of an Escherichia coli mutant which utilizes glycerol in the absence of cyclic adenosine monophosphate. Can. J. Microbiol. 26:

393-396.

Frishman, D. und P. Argos (1996), Incorporation of non-local interactions in protein secondary structure prediction from the amino acid sequence. Protein Eng. 9: 133-142.

Garner, J. und E. Crooke (1996), Membrane regulation of the chromosomal replication activity of E. coli DnaA requires a discrete site on the protein. EMBO J. 15: 3477-3485.

Garner, J., P. Durrer, J. Kitchen, J. Brunner und E. Crooke (1998), Membrane-mediated release of nucleotide from an initiator of chromosomal replication, Escherichia coli DnaA, occurs with insertion of a distinct region of the protein into the lipid bilayer. J. Biol. Chem.

273: 5167-5173.

Geourjon, C. und G. Deleage (1994), SOPM: a self-optimized method for protein secondary structure prediction. Protein Eng. 7: 157-164.

Gibrat, J. F., J. Garnier und B. Robson (1987), Further developments of protein secondary structure prediction using information theory. New parameters and consideration of residue pairs. J. Mol. Biol. 198: 425-443.

Gietzen, K., A. Wüthrich und H. Bader (1981), R24571: A new powerful inhibitor of red blood cell Ca2+-transport ATPase and of calmodulin-regulated functions. Biochim. Biophys.

Acta 736: 109-118.

Gietzen, K. (1983), Comparsion of the calmodulin antagonists compound 48/80 and calmidazolium. Biochem. J. 216: 611-616.

Literaturverzeichnis

Gordon, V. M., W. W. Young, Jr., S. M. Lechler, M. C. Gray, S. H. Leppla und E. L. Hewlett (1989), Adenylate cyclase toxins from Bacillus anthracis and Bordetella pertussis. Different processes for interaction with and entry into target cells. J. Biol. Chem. 264: 14792-14796.

Gruner, S. M. (1985), Intrinsic curvature hypothesis for biomembrane lipid composition: a role for nonbilayer lipids. Proc. Natl. Acad. Sci. U. S. A. 82: 3665-3669.

Hayashi, S. I. und E. C. C. Lin (1965), Product induction of glycerol kinase in Escherichia coli. J. Mol. Biol. 14: 515-521.

Heacock, P. N. und W. Dowhan (1987), Construction of a lethal mutation in the synthesis of the major acidic phospholipids of Escherichia coli. J. Biol. Chem. 262: 13044-13049.

Heller, K. B., E. C. Lin und T. H. Wilson (1980), Substrate specificity and transport properties of the glycerol facilitator of Escherichia coli. J. Bacteriol. 144: 274-278.

Hellstern, S. (1997), Expression, Reinigung und Charakterisierung der katalytischen Untereinheit der Ca2+/Calmodulin-abhängigen Proteinphosphatase (Calcineurin A) von Dictyostelium discoideum. Dissertation. Universität Konstanz.

Hinrichsen, R. D. (1993), Calcium and calmodulin in the control of cellular behavior and motility. Biochim. Biophys. Acta 1155: 277-293.

Ho, S. N., H. D. Hunt, R. M. Horton, J. K. Pullen und L. R. Pease (1989), Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77: 51-59.

Holtman, C. K., A. C. Pawlyk, N. D. Meadow und D. W. Pettigrew (2001a), Reverse genetics of Escherichia coli glycerol kinase allosteric regulation and glucose control of glycerol utilization in vivo. J. Bacteriol. 183: 3336-3344.

Holtman, C. K., R. Thurlkill und D. W. Pettigrew (2001b), Unexpected presence of defective glpR alleles in various strains of Escherichia coli. J. Bacteriol. 183: 1459-1461.

Iuchi, S., S. T. Cole und E. C. Lin (1990), Multiple regulatory elements for the glpA operon encoding anaerobic glycerol-3-phosphate dehydrogenase and the glpD operon encoding aerobic glycerol-3-phosphate dehydrogenase in Escherichia coli: further characterization of respiratory control. J. Bacteriol. 172: 179-184.

James, P., T. Vorherr und E. Carafoli (1995), Calmodulin-binding domains: just two faced or multi-faceted? Trends Biochem. Sci. 20: 38-42.

Keller, S. L., S. M. Bezrukov, S. M. Gruner, M. W. Tate, I. Vodyanoy und V. A. Parsegian (1993), Probability of alamethicin conductance states varies with nonlamellar tendency of bilayer phospholipids. Biophys. J. 65: 23-27.

Kessen, U., R. Schaloske, A. Aichem und R. Mutzel (1999), Ca(2+)/calmodulin-independent

Literaturverzeichnis

Kistler, W. S. und E. C. C. Lin (1971), Anaerobic L-alpha-glycerophosphate dehydrogenase of Escherichia coli: its genetic locus and its physiological role. J. Bacteriol. 108: 1224-1234.

Kistler, W. S. und E. C. C. Lin (1972), Purification and properties of the flavine-stimulated anaerobic L-alpha-glycerophosphate dehydrogenase of Escherichia coli. J. Bacteriol. 112:

539-547.

Kretsinger, R. H., D. Tolbert, S. Nakayama und W. Pearson (1991), The EF-Hand, homologs and analogs, In: C. W. Heizmann (ed), Novel calcium-binding proteins, Berlin, Springer Verlag, 20-30.

Kung, H. F. und U. Henning (1972), Limiting availability of binding sites for dehydrogenases on the cell membrane of Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 69: 925-929.

Kuritzkes, D. R., X. Y. Zhang und E. C. Lin (1984), Use of phi(glp-lac) in studies of respiratory regulation of the Escherichia coli anaerobic sn-glycerol-3-phosphate dehydrogenase genes (glpAB). J. Bacteriol. 157: 591-598.

Kusters, R., W. Dowhan und B. de Kruijff (1991), Negatively charged phospholipids restore prePhoE translocation across phosphatidylglycerol-depleted Escherichia coli inner membranes. J. Biol. Chem. 266: 8659-8662.

Kusters, R., E. Breukink, A. Gallusser, A. Kuhn und B. de Kruijff (1994), A dual role for phosphatidylglycerol in protein translocation across the Escherichia coli inner membrane. J.

Biol. Chem. 269: 1560-1563.

Kyhse-Andersen, J. (1984), Electroblotting of multiples gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J Biochem Biophys Meth 10: 203-209.

Lämmli, U. K. (1970), Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.

Larson, T., G. Schumacher und W. Boos (1982), Identification of the glpT-encoded sn-glycerol-3-phosphate permease of Escherichia coli, an oligomeric integral membrane protein.

J. Bacteriol. 152: 1008-1021.

Larson, T., M. Ehrmann und W. Boos (1983), Periplasmic glycerophosphodiester phosphodiesterase of Escherichia coli, a new enzyme of the glp regulon. J. Biol. Chem. 258:

5428-5432.

Larson, T. I., S. Ye, D. Weissenborn, H. Hoffmann und H. Schweizer (1987), Purification and characterization of the repressor for the sn-glycerol-3-phosphate regulon of Escherichia coli K12. J. Biol. Chem. 262: 15869-15874.

Larson, T. J., D. Ludtke und R. M. Bell (1984), I-glycerol-3-phosphate auxotrophy of plsB strains of Escherichia coli: evidence that a second mutation, plsX, is required. J. Bacteriol.

160: 711-717.

Literaturverzeichnis

Larsson, C., I. L. Pahlman, R. Ansell, M. Rigoulet, L. Adler und L. Gustafsson (1998), The importance of the glycerol 3-phosphate shuttle during aerobic growth of Saccharomyces cerevisiae. Yeast 14: 347-357.

Larsson, K., R. Ansell, P. Eriksson und L. Adler (1993), A gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) complements an osmosensitive mutant of Saccharomyces cerevisiae. Mol. Microbiol. 10: 1101-1111.

Leenhouts, J. M., P. W. van den Wijngaard, A. I. de Kroon und B. de Kruijff (1995), Anionic phospholipids can mediate membrane insertion of the anionic part of a bound peptide. FEBS Lett. 370: 189-192.

Leppla, S. H. (1982), Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells. Proc. Natl. Acad. Sci. U. S. A. 79: 3162-3166.

Lill, R., W. Dowhan und W. Wickner (1990), The ATPase activity of SecA is regulated by acidic phospholipids, SecY, and the leader and mature domains of precursor proteins. Cell 60:

271-280.

Lin, E. C. (1976), Glycerol dissimilation and its regulation in bacteria. Annu. Rev. Microbiol.

30: 535-578.

Lin, E. C. C. (1987), Dissimilatory pathways for sugars, polyols and carboxylates, In: F. C.

Neidhardt, K. B. Ingraham, B. Magasanik, M. Schaechter und H. E. Umbarger (ed), Escherichia coli and Salmonella typhimurium: cellular and molecular biology, 1, Washington, D.C., American Society for Microbiology, p. 224-284.

Liu, W. Z., R. Faber, M. Feese, S. J. Remington und D. W. Pettigrew (1994), Escherichia coli glycerol kinase: role of a tetramer interface in regulation by fructose 1,6-bisphosphate and phosphotransferase system regulatory protein IIIglc. Biochemistry 33: 10120-10126.

Lloyd, S. A., F. G. Whitby, D. F. Blair und C. P. Hill (1999), Structure of the C-terminal domain of FliG, a component of the rotor in the bacterial flagellar motor. Nature 400: 472-475.

Luirink, J., C. M. ten Hagen-Jongman, C. C. van der Weijden, B. Oudega, S. High, B.

Dobberstein und R. Kusters (1994), An alternative protein targeting pathway in Escherichia coli: studies on the role of FtsY. EMBO J. 13: 2289-2296.

Macedo-Ribeiro, S., W. Bode, R. Huber, M. A. Quinn-Allen, S. W. Kim, T. L. Ortel, G. P.

Bourenkov, H. D. Bartunik, M. T. Stubbs, W. H. Kane und P. Fuentes-Prior (1999), Crystal structures of the membrane-binding C2 domain of human coagulation factor V. Nature 402:

434-439.

Maulet, Y. und J. A. Cox (1983), Structural changes in melittin and calmodulin upon complex formation and their modulation by calcium. Biochemistry 22: 5680-5686.

Literaturverzeichnis

Miki, K., T. J. Silhavy und K. J. Andrews (1979), Resolution of glpA and glpT loci into separate operons in Escherichia coli K12 strains. J. Bacteriol. 138: 268-269.

Mileykovskaya, E., Q. Sun, W. Margolin und W. Dowhan (1998), Localization and function of early cell division proteins in filamentous Escherichia coli cells lacking phosphatidylethanolamine. J. Bacteriol. 180: 4252-4257.

Mileykovskaya, E. und W. Dowhan (2000), Visualization of phospholipid domains in Escherichia coli by using the cardiolipin-specific fluorescent dye 10-N-nonyl acridine orange.

J. Bacteriol. 182: 1172-1175.

Milla, M. E. und C. R. Raetz (1996), Association of lipid A disaccharide synthase with aerobic glycerol-3- phosphate dehydrogenase in extracts of Escherichia coli. Biochim.

Biophys. Acta 1304: 245-253.

Miller, A., L. Wang und D. A. Kendall (1998), Synthetic signal peptides specifically recognize SecA and stimulate ATPase activity in the absence of preprotein. J. Biol. Chem.

273: 11409-11412.

Miller, J. H. (1972), Experiments in molecular genetics, Cold Spring Harbour, New York, Cold Spring Harbour Laboratory Press.

Morein, S., A. Andersson, L. Rilfors und G. Lindblom (1996), Wild-type Escherichia coli cells regulate the membrane lipid composition in a "window" between gel and non-lamellar structures. J. Biol. Chem. 271: 6801-6809.

Nikaido, H. und M. Vaara (1985), Molecular basis of bacterial outer membrane permeability.

Microbiol. Rev. 49: 1-32.

Norris, V., S. Grant, P. Freestone, J. Canvin, F. N. Sheikh, I. Toth, M. Trinei, K. Modha und R. I. Norman (1996), Calcium signalling in bacteria. J. Bacteriol. 178: 3677-3682.

Norris, V. und I. Fishov (2001), Hypothesis: membrane domains and hyperstructures control bacterial division. Biochimie 83: 91-97.

Novotny, M. J., W. L. Frederickson, E. B. Waygood und M. H. Saier, Jr. (1985), Allosteric regulation of glycerol kinase by enzyme IIIglc of the phosphotransferase system in Escherichia coli and Salmonella typhimurium. J. Bacteriol. 162: 810-816.

O'Neil, K. T. und W. F. DeGrado (1990), How calmodulin binds its targets: sequence independent recognition of amphiphilic alpha-helices. Trends Biochem. Sci. 15: 59-64.

Overkamp, K. M., B. M. Bakker, P. Kotter, A. van Tuijl, S. de Vries, J. P. van Dijken und J.

T. Pronk (2000), In vivo analysis of the mechanisms for oxidation of cytosolic NADH by Saccharomyces cerevisiae mitochondria. J. Bacteriol. 182: 2823-2830.

Picot, D., P. J. Loll und R. M. Garavito (1994), The X-ray crystal structure of the membrane protein prostaglandin H2 synthase-1. Nature 367: 243-249.

Postma, P. W., J. W. Lengeler und G. R. Jacobson (1993), Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol. Rev. 57: 543-594.

Literaturverzeichnis

Raetz, C. R. (1978), Enzymology, genetics, and regulation of membrane phospholipid synthesis in Escherichia coli. Microbiol. Rev. 42: 614-659.

Raetz, C. R. (1986), Molecular genetics of membrane phospholipid synthesis. Annu. Rev.

Genet. 20: 253-295.

Raetz, C. R. und W. Dowhan (1990), Biosynthesis and function of phospholipids in Escherichia coli. J. Biol. Chem. 265: 1235-1238.

Rajasekharan, R., T. K. Ray und J. E. Cronan, Jr. (1988), A direct nonchromatographic assay for 1-acyl-sn-glycerol-3-phosphate acyltransferase. Anal. Biochem. 173: 376-382.

Ray, W. K., G. Zeng, M. B. Potters, A. M. Mansuri und T. J. Larson (2000), Characterization of a 12-kilodalton rhodanese encoded by glpE of Escherichia coli and its interaction with thioredoxin. J. Bacteriol. 182: 2277-2284.

Rhoads, A. R. und F. Friedberg (1997), Sequence motifs for calmodulin recognition. FASEB J. 11: 331-340.

Rietveld, A. G., J. A. Killian, W. Dowhan und B. de Kruijff (1993), Polymorphic regulation of membrane phospholipid composition in Escherichia coli. J. Biol. Chem. 268: 12427-12433.

Rietveld, A. G., M. C. Koorengevel und B. de Kruijff (1995), Non-bilayer lipids are required for efficient protein transport across the plasma membrane of Escherichia coli. EMBO J. 14:

5506-5513.

Rietveld, A. G., A. J. Verkleij und B. de Kruijff (1997), A freeze-fracture study of the membrane morphology of phosphatidylethanolamine-deficient Escherichia coli cells.

Biochim. Biophys. Acta 1324: 263-272.

Robinson, J. J. und J. H. Weiner (1980), The effects of amphipaths on the flavin-linked aerobic glycerol-3-phosphate dehydrogenase from Escherichia coli. Can. J. Biochem. 58:

1172-1178.

Rost, B., C. Sander und R. Schneider (1994), PHD--an automatic mail server for protein secondary structure prediction. Comput. Appl. Biosci. 10: 53-60.

Sambrook, J., E. F. Fritsch und T. Maniatis (1989), Molecular cloning: A laboratory manual, Cold Spring Harbour, New York, Cold Spring Harbour Laboratory Press.

Sanderson, K. E. (1976), Genetic relatedness in the family Enterobacteriaceae. Annu. Rev.

Microbiol. 30: 327-349.

Schryvers, A., E. Lohmeier und J. H. Weiner (1978), Chemical and functional properties of

Literaturverzeichnis

Schryvers, A. und J. H. Weiner (1981), The anaerobic sn-glycerol-3-phosphate dehydrogenase of Escherichia coli. Purification and characterization. J. Biol. Chem. 256:

9959-9965.

Schryvers, A. und J. H. Weiner (1982), The anaerobic sn-glycerol-3-phosphate dehydrogenase: cloning and expression of the glpA gene of Escherichia coli and identification of the glpA products. Can. J. Biochem. 60: 224-231.

Schweizer, H. und T. J. Larson (1987), Cloning and characterization of the aerobic sn-glycerol-3-phosphate dehydrogenase structural gene glpD of Escherichia coli. J. Bacteriol.

169: 507-513.

Segrest, J. P., M. K. Jones, H. De Loof, C. G. Brouillette, Y. V. Venkatachalapathi und G. M.

Anantharamaiah (1992), The amphipathic helix in the exchangeable apolipoproteins: a review of secondary structure and function. J. Lipid Res. 33: 141-166.

Segrest, J. P., M. K. Jones, V. K. Mishra, V. Pierotti, S. H. Young, J. Boren, T. L. Innerarity und N. Dashti (1998), Apolipoprotein B-100: conservation of lipid-associating amphipathic secondary structural motifs in nine species of vertebrates. J. Lipid Res. 39: 85-102.

Slater, S. J., M. B. Kelly, F. J. Taddeo, C. Ho, E. Rubin und C. D. Stubbs (1994), The modulation of protein kinase C activity by membrane lipid bilayer structure. J. Biol. Chem.

269: 4866-4871.

Smith, P. K., R. I. Krohn, G. T. Hermanson, A. K. Mallia, F. H. Gartner, M. D. Provenzano, E. K. Fujimoto, N. M. Goeke, B. J. Olson und D. C. Klenk (1985), Measurement of protein using bicinchoninic acid. Anal. Biochem. 150: 76-85.

Spiro, S. und J. R. Guest (1987), Regulation and over-expression of the fnr gene of Escherichia coli. J. Gen. Microbiol. 133: 3279-3288.

Sprague, G. F. und J. E. Cronan (1977), Isolation and characterization of Saccharomyces cerevisiae mutants defective in glycerol catabolism. J. Bacteriol. 129: 1335-1342.

Stams, T., Y. Chen, P. A. Boriack-Sjodin, J. D. Hurt, J. Liao, J. A. May, T. Dean, P. Laipis, D. N. Silverman und D. W. Christianson (1998), Structures of murine carbonic anhydrase IV and human carbonic anhydrase II complexed with brinzolamide: molecular basis of isozyme-drug discrimination. Protein Sci. 7: 556-563.

Sundarajan, T. A. (1963), Interference with glycerolkinase induction in mutants of E. coli accumulation Gal-1-P. Biochem 50: 463-469.

van den Brink-van der Laan, E., R. E. Dalbey, R. A. Demel, J. A. Killian und B. de Kruijff (2001), Effect of nonbilayer lipids on membrane binding and insertion of the catalytic domain of leader peptidase. Biochemistry 40: 9677-9684.

van Klompenburg, W., I. Nilsson, G. von Heijne und B. de Kruijff (1997), Anionic phospholipids are determinants of membrane protein topology. EMBO J. 16: 4261-4266.

van Klompenburg, W. und B. de Kruijff (1998), The role of anionic lipids in protein insertion and translocation in bacterial membranes. J. Membr. Biol. 162: 1-7.

Literaturverzeichnis

van Klompenburg, W., M. Paetzel, J. M. de Jong, R. E. Dalbey, R. A. Demel, G. von Heijne und B. de Kruijff (1998), Phosphatidylethanolamine mediates insertion of the catalytic domain of leader peptidase in membranes. FEBS Lett. 431: 75-79.

Van Voorst, F. und B. De Kruijff (2000), Role of lipids in the translocation of proteins across membranes. Biochem. J. 347 Pt 3: 601-612.

Venema, R. C., H. S. Sayegh, J. F. Arnal und D. G. Harrison (1995), Role of the enzyme

Venema, R. C., H. S. Sayegh, J. F. Arnal und D. G. Harrison (1995), Role of the enzyme