• Keine Ergebnisse gefunden

M -e st im a to rs

N/A
N/A
Protected

Academic year: 2021

Aktie "M -e st im a to rs"

Copied!
35
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

142

1 0 M u lt iv a ria te S c a tt e r M a tr ic e s

10.1

M o d e ls

aThemultivariateNormalDistributionDensity

f y;µ,|Σ =c·exp 12 (Yµ) T|Σ 1(Yµ)

1/c= 1

(2π) m/2det D|Σ E1/2

Moreinsightisprovidedbythefollowingderivation.

(2)

14310.1

bNormaldistributionasatransformationfamily

ZNmh0,Ii:centered,sphericallydistributedobservations=mrandomvariablesZ (j),standardnormal,independent.

Consider,foranyvectorµandregularmatrixB,

X=µ+BZ

=linear(oraffine)transformationofZ.CallthedistributionofXF µ,B .Transformationsgenerateafamilyofdistributions.

(3)

144

cGeneral:Useanygroupoftransformationsonany“starting”distribution.

dExpectationandcov.matrixforlineartransformations,ifEhZi=0andvarhZi=I,

EhXi=µ,varhXi=BB T

(4)

145

eIdentifiabilityProblem:Orthogonaltransformations

X=µ+QZ,QQ T=IleavethedistributionofZunchanged(=definitionof“sphericallysymmetric”distr.)

ParameterBisnotidentifyable!

Covariancematrix:varhXi=BB T=:|ΣisasuitableparameterinsteadofB.(different|Σdifferentdistributions)

(5)

14610.1 fEllipticaldistributionsLetF0beanysphericallysymmetricdistribution.ZF0.

F µ,|Σ =distributionofX=µ+BZ,

BB T=|Σ,|Σregular.Familyiscalledthefamilyofellipticaldistr.generatedbyF0.

|Σscattermatrix,notcovarianceingeneral.–Covariancemaynotexist,–varhZF0imaybeσ 20 Iwithσ06=1.

(6)

147

gDensitiesDensityofF0mustbeafunctionofthe(squared)“radius”,

f0hzi= ef0 kzk 2 .Fornormal: ef0 kzk 2 =c·exp kzk 2/2

Generalµ,|Σ:LetBsuchthatBB T=|Σ.

z=B 1(xµ)JacobiandethBi=det |Σ 1/2

f x;µ,|Σ =det |Σ 1/2f0hzi=det |Σ 1/2ef0 kzk 2

=det |Σ 1/2ef0 (xµ) T|Σ 1(xµ)

(7)

14810.1 hExamplesofellipticaldistributions:Multivariatetdistr.=distr.ofB b 1bµforXiNmh0,Ii

Not“natural”forobservations!IfZF0,thecomponentsarenotindependent.IndependentX (j)cannotbemodelledbyanyellipticalfamilyexceptfortheNormal!

(8)

14910.1

iSizeandShape(Log-)Sizeofthecovariancematrix:

τ:=log det |Σ = 1m Pk loghλkiλk=eigenvaluesof|Σ.

Shape:“standarddeviation”ofthelogeigenvalues:

η 2= Pk (loghλkiτ) 2.

Bothsize&shapeareinvariantunderorthogonaltransf.

(9)

150

10.2

E q u iv a ria n t E st im a to rs

aEstimatorsbµand b|Σshould“respect”thetransformationnatureofthefamily:IfYi=a+CXi,then

bµhY1,...,Yni=a+CbµhX1,...,Xnib|ΣhY1,...,Yni=C b|ΣhX1,...,XniC Tastheserelationsholdifbµand b|Σarereplacedbytheparametersµand|Σ.

Estimatorsforwhichtheserelationsholdarecalledequivariant(withrespecttoaffinetransf.s,whicharethegeneratingfa-mily)

(10)

15110.2 bOtherway’round:GivenbµhX1,...,Xniand b|ΣhX1,...,XniLetB bbea“squareroot”of b|Σ,B bB b T= b|Σ.Then,

bµ D...,B b 1(Xibµ),... E=0b|Σ D...,B b 1(Xibµ),... E=I

equationdeterminingbµand bB.bµand bB bB T= b|Σusuallyuniquelydeterminedbytheseeqns. Thus,itissufficienttodefinewhenbµ=0and b|Σ=I.EverysuchdefinitionyieldspotentiallysuitableestimatingfunctionalsµhFiand|ΣhFi.

(11)

152

10.3

M -e st im a to rs

aMaximumlikelihoodforellipticaldistributionsWrite ef0hkzk 2i=:exph−ρhkzk 2ii.(Noticethe 2intheargument!)

ℓℓ x;µ,|Σ =log f x;µ,|Σ

=ρ (xµ) T|Σ 1(xµ) 12 logdet |Σ

ℓℓµ =ρ kzk 2 2|Σ 1(xµ)=ρ kzk 2 2B 1z

ℓℓ|Σ =ρ kzk 2 |Σ 1(xµ)(xµ) T|Σ 1|Σ 1

=B Tρ kzk 2 zz TI B 1

(12)

153

Forthesecondequation,wehaveusedtheformulas

(logdethAi)A =A T

u=x TV 1x uV =V 1xx TV 1

Thus,maximumlikelihoodsolves

ave ρ kzik 2 zi =0 ave ρ kzik 2 ziz Ti =I

Here,ρ isaweightingfunction,notaψfunction(becauseofthe 2intheargumentofρ).

(13)

15410.3

bM-estimators

avei Dw (µ) kzik 2 zi E=0

avei Dw (η) kzik 2 ziz Ti E=avei Dw (δ) kzik 2

I E

NotethatforMLEs,w (µ)=w (η)andw (δ)hui=1.Asinthelocation-scalecase,theM-estimatorsaremoregeneralthanMLEforlong-taileddistributions.

w (δ)isnotintroducedintheusualliterature(Maronna+...).

(14)

155

Alternativeform:Weightedclassicalestimatorswithimplicitelydefinedweights

bµ= avei w (µ) D 2i Xi

avei w (µ) D 2i

b|Σ= avei w (η) D 2i (Xibµ)(Xibµ) T

avei w (δ) D 2i

D 2i =(Xibµ) Tb|Σ 1(Xibµ)

Weightedclassicalestimatorscanonlybeobtainedwhenallo-wingforaw (δ),andchoosingw (δ)=w (η)(=w (µ)).

Computation:Iterativelyreweightedclassicalestimates.

(15)

156

cInfluenceFunctionAbbreviateIFhzi=IF Dz;[bµ, b|Σ],Nmh0,Ii E

IF (µ)hzi=a (µ)w (µ)hkzk 2izIF (|Σ)hzi=a (η)w (η)hkzk 2izz Tew (δ)hkzk 2iIwhereew (δ)dependsonw (δ)andw (η).

Generalcase:IF (µ) Dx;[bµ, b|Σ],Nm µ,|Σ

E

=BIF (µ)hzi IF (|Σ) Dx;[bµ, b|Σ],Nm µ,|Σ

E

=BIF (|Σ)hziB T

Forallequivariantestimators,theIFmusthavethisform.(notonlyM-estimators)

(16)

157 Calculationofa (µ),a (η),a (τ):Weneedintegralsoftheform

D= Zahuibhui Td eF0hui

whereahkzki=ψhz;0,Ii,bhkzki=shz,0,IiFortheFisherInformationandtheas.var.ofanequivariantest.thesametypeofintegralisneededwitha=b=sanda=b=ψ,respectively.

Theseintegralsarecharacterizedbyd (µ),d (η),d (τ),where

d (µ)= Zum ω (µ)a huiω (µ)b huid eF0hui d (η)=(1+2/m) 1 Zum 2ω (µ)a huiω (µ)b huid eF0hui

d (τ)= 12m Zψ (τ)a huiψ (τ)b huid eF0hui

(17)

158

Proof:SeeHampeletal.

D=“d-typematrix”=specialstructure!Thisshowsthatψ (τ)hui=u·ω (η)huim·ω (δ)huiisthefunctionthatcharacterizestheM-estimatorof|Σtogetherwithω (η)—notω (δ)!

(18)

15910.3 dSensitivitiesMaximumofthenormoftheIF.Itisnaturaltofocusonthestandardizedsensitivities.Standardizedsensitivitiesinvariantw.r.t.affinetransf.=independentofµ,|Σ.

onlyneedtoconsiderIFatF0.Thenormsplitsinto2parts,kIFk 2=kIF (µ)k 2+kIF (|Σ)k 2

(19)

160 Forthe|Σterm,wegetafurthersplit:Letψ (τ)hui:=u·w (η)huim·w (δ)hui

kIF (|Σ)hzik 2:= X

j,k IF (|Σ)hzi 2

j,k

= a (η)w (η)hkzk 2ikzk 2 2+ a (τ)ψ (τ)hkzk 2i 2

=:kIF (η)hzik 2+|IF (τ)hzi| 2

ψ (τ)&w (η)connectedtosizeandshapeparameters,see10.1.i.

Naturalchoicew (δ)=w (η) kIF (|Σ)hzik 2=w (η) kzk 2 (a (η)+a (τ))kzk 2a (µ)m allowsforeasydefinitionofredescendingestimatorswhui0foru(cf.“weightedscale”7.1.e)

(20)

16110.3

eOptimalrobustestimationBoundedinfluencefunction,butasefficientforcentralmodel(normaldistribution)aspossible!Bound3“parts”separately,

kIF (µ)kγµ,kIF (η)kγη,|IF (τ)|γτ. Result:w (µ)hui=min D1, pbµ/u E,w (η)hui=minh1,bη/ui,

ψ (τ)hui=hbτ humβi(Huberfunction)or

w (δ)hui=uw (η)hui(umβ)minh1,bτ/(umβ)i,

βasuitableconstantforFisherconsistency,dependingonbηandbτ.

(21)

162

10.4

B re a k d o w n

aBreakdownofcovariancematrixestimatorsNobreakdownof b|Σmeanseigenvalues<and>γh|Σi>0(boundedawayfrom0).

If|Σsingular, b|Σshouldalsobesingular(equalsubspace).Goalofmultivariatestatistics:Studyrelationsbetweenvariables Forallaffinelyequivariantestimators,boundednessof b|Σfor|Σ=Iissufficient.

(22)

163 10.4

bBreakdownofM-estimatorsResult:breakdownpoint<1/m.

Proof:Considerthe“barrowwheel”distribution:LetFτ=Nh0,diaghτ,1,...,1ii,Hdistributionof[U,0,...,0]withUχ 2p1 Chisqu.distr.,Gε,τ=(1ε)Fτ+εHlookslikethewheelofabarrow.

(23)

164 Letε=1/mandτ0.Then,ThGε,0i=cIisasolutionoftheM-estimatingequationfor|Σ.

Breakdown!

Thebarrowwheelsituationiseasilydetectedinpractise–unlessrotatedsuchthatthefirstaxisismappedtothespacediagonal.Then,thescatterplotofeverypairofvariableslookssphericalifthedimensionisnotsmall.

(24)

16510.4

cWhatdoesthismean?Consider100obs.of7variables=700data.Assume2%grosserrors

about13-14(multivar.)obs.contain1error(s)

breakdownat2%ofthedata,not1/m=1/7

another“curseofdimension”

(25)

16610.4

dNonaffinelyequivariantestimators?Idea:Estimateeachelementofthecovariancematrixrobustly!

E.g.,GnanadesikanandKettenring(1972):Notethat

cov X (j),X (k) = 14 var X (j)+X (k) var X (j)+X (k)

Robustversion:

bρ DX (j),X (k) E= 14 bσ 2 DX (j)bσhX (j)i + X (k)bσhX (k)i E

bσ 2 DX (j)bσhX (j)i X (k)bσhX (k)i E

dcov DX (j),X (k) E=bρ DX (j),X (k) E·bσ DX (j) Ebσ DX (k) E

(26)

167 10.4

eProblem:Theresultingmatrixwillingeneralnotbepositive(semi-)definite.

Tricktomakethempositivedefinite:ApplyEigenvalueanalysise|Σ=QDQ T

withdiagonalDandorthogonalQ.If e|Σwasacovariancematrix,thenDwouldcontainthevariancesDiioftheuncorrelatedvariablesZ=Q 1X.

Estimaterobustvariancesbvk oftheZ (k)

Thenuseback-transformedmatrixasestimate,b|Σ=Q Tdiaghbv1,...,bvmiQ

(27)

16810.4

fOntheotherhand:

Theseestimatorsarenotequivariant.Buttheywanttoreactto“outliersinsinglevariables”,whichisnotanaffinelyinvariantmodel.

Singularcovariancematriceswillmostprobablynotbedetected.(Thinkofthebarrowwheel!)

(28)

169

10.5

E st im a tio n w it h h ig h b re a k d o w n p o in t

aProjectionestimatorOutlyingnessofanobservation:One-dimensional:|xibµ|/bσbµ,bσ:robustestimatorsoflocationandscatter.

Multi-dimensional:Examineprojectionsb TXi,|b|=1.Outlyingness:|xibµh...,b TXh ,...i|/bσh...,b TXh ,...iMultivariateoutlyingness:Maximizeoverprojectiondirectionsb

(29)

170

Useoutlyingnesstodefineweightsforweightedestimator:

Di=maxb:kbk=1

hixbµ...,bX,... T

h/bσ...,bX,... T

bµ= avei w D 2i Xi

avei w D 2i

b|Σ= avei w D 2i (Xibµ)(Xibµ) T

avei w D 2i

Disadvantage:Computationally“impossible”!Wayout:seebelow.

(30)

171 10.5 bS-estimators“Backwarddefinition”:Assumethat b|Σistheestimate.ShapematrixS= b|Σ/(det b|Σ 1/mdeterminesoutlyingnessd 2i =(xibµ) TS 1(xibµ).Scaleestimatebσ d 21 ,...,d 2n .Minimizethisscale!...anduseitastheestimateofsize.

[bµ,S b]=argmin bσ 2 ...,(xiµ) TS 1(xiµ),... |

µ,S:dethSi=1

b|Σ=S bbσ 2 D...,(xibµ) TS b 1(xibµ),... E

bσcanbeanM-estimatorofscaleoranotherrobustestimator.

Earlyexample:MinimalCovarianceDeterminant(MCD):usestrimmedscale.

Computation:SimilarcomplexityasProjectionestimator.

(31)

172

Finally,adataexample:Irisdata,firstspecies=50obs.,first2vars.–contaminatedby4grosserrors(colored).Ellipsesaresizedsuchthattheyshouldcontain80%ofthedata.Classicalestimates(larger,red...)andMCD(smaller,blue,---).

4.44.64.85.05.25.45.65.8

2.5 3.0 3.5 4.0 4.5

Length

Width

(32)

173 10.5 cComputationofhighbreakdownpointestimatorsMinimaneeded–overalldirectionsinR morallshapematricescannotbecomputed(exceptforverysmalldim.).Needan“intelligent”selection,overwhichtheminimumis“hopefully”closetotheglobalminimum.Atleast:Breakdownshouldbeavoided.

Basicidea:Choose“candidate”forminimumfromarandomminimalsubsetofobs.(called“elementalsubset”).Hopeforcandidatesthatarefreeofcontamination.Thisshouldgiveareliablestartingpointforsomekindoflocalminimzation,whichwilldefinetheestimate.

(33)

174

Projections:mpointsdetermineahyperplane.Projectonthedirectionperpendiculartoit.Shapematrices:needm+1points.

Probabilitytogeta“clean”elementalsubset:

P=1(1(1ε) m) rforrrandomchoices.Exercise:CalculatethenumberofreplicatesneededtoobtainP=0.9,say,forseveralcombinationsofεandm!

(34)

175 10.5

dMessages

Normaldistribution:The“onlyrealistic”model!

f x;µ,|Σ =c·exp 12 d 2,whered 2=(xµ) T|Σ 1(xµ) T

Affinetransformations,appliedtoNmh0,Iidefinethefamilyofnormaldistributions,Nm µ,|Σ

transformationfamily,Ellipticaldistributions,asksforequivariantestimators.

M-estimatorsgivenbyonly3scalarfunctionsw (µ),w (η),ψ (τ).

(35)

176

BreakdownofM-estimatorsispoor:

1/mofthe(vector)obs.1/m 2ofthedata!

Estimatorswithhighbreakdownpoint:Projection-andS-estimatorsComputationis“impossible”.Thebestwecandois“elementalsubsets”whichavoidsbreakdownwithaprobabilitythatdependsonthedimensionmandthenumberofreplicatesr.

Referenzen

ÄHNLICHE DOKUMENTE

Das konstante Feld in Rich- tung des geraden Drahtes erf¨ullt trivialerweise alle Bedingungen... Um Vollausschlag zu bekommen, muß dieser I =

Syn- thesis and Anti-HIV Activity of New 4-Nitroimidazole Derivatives Using the Suzuki Cross-Coupling

Die Geburtenrate steigt bis 2010 von 1,32 auf 1,4 Kinder je Frau und bleibt danach über den gesamten Zeitraum bis 2050 konstant. Die Lebenserwartung nimmt bis 2050 bei Frauen (von

 „Bilanzierung der Kooperation zwischen LVR und Historischer Geographie am GIUB zu KulaDig“ und.  „Die Unterzeichnung der Kooperationsvereinbarung zwischen LVR und GIUB

An dieser Stelle muss auch noch einmal festgehalten werden, dass das Lehrwerk sich ausdrücklich an „lerngewohnte Erwachsene, akademisch geprägte Lerner[Innen],

Heute gehören wir zu den namhaften Herstellern hochwertiger Industrie- und Garagentore.. Unser Sortiment umfasst ein vollständiges

Für die Lichtwiese, den Campus der TU Darmstadt 2012 wurde im Zuge einer Rahmenplanung ein Entwicklungskonzept mit der Stadt Darmstadt abgestimmt und darauf aufbauend

Dmrumbuglo werden diese Vorhaenge genannt: Beides zu- sammen g~bt dann einen dichten Verschluss~ ( Bei Tage wenn man nur auf kurze Zeit oder fuer ein paar