• Keine Ergebnisse gefunden

On the mystery of generic models – an invitation – Seminar at the Dipartimento di Matematica (Tullio Levi-Civita) Università degli Studi di Padova June 25th, 2020 Ingo Blechschmidt

N/A
N/A
Protected

Academic year: 2022

Aktie "On the mystery of generic models – an invitation – Seminar at the Dipartimento di Matematica (Tullio Levi-Civita) Università degli Studi di Padova June 25th, 2020 Ingo Blechschmidt"

Copied!
18
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

On the mystery of generic models

– an invitation –

Seminar at the

Dipartimento di Matematica (Tullio Levi-Civita) Università degli Studi di Padova

(2)

The generic ring

LetRbe a ring.

” – Which ring does this phrase refer to?

Z F2 Q[X] R OX

A

Thm.For any?propertyP of rings, the following are equivalent:

1 Thegeneric ringAhas propertyP.

2 Every?ring has propertyP.

3 The ring axioms entail propertyP.

Example A.For anyx,y,z ∈A,x+ (y+z) = (x+y) +z. Example B.

It isnot the casethat 1+16=0 inA. Example C (Anders Kock).The generic ring is afield:

∀x ∈A. (x=0⇒1 =0)⇒(∃y ∈A.xy=1) . Hence: When verifying a coherent sequent for all rings, can without loss of generality assume the field condition.

(3)

The generic ring

“LetRbe a ring.” – Which ring does this phrase refer to?

Z F2 Q[X] R OX

A

Thm.For any?propertyP of rings, the following are equivalent:

1 Thegeneric ringAhas propertyP.

2 Every?ring has propertyP.

3 The ring axioms entail propertyP.

Example A.For anyx,y,z ∈A,x+ (y+z) = (x+y) +z. Example B.

It isnot the casethat 1+16=0 inA. Example C (Anders Kock).The generic ring is afield:

∀x ∈A. (x=0⇒1 =0)⇒(∃y ∈A.xy=1) . Hence: When verifying a coherent sequent for all rings, can without loss of generality assume the field condition.

(4)

The generic ring

“LetRbe a ring.” – Which ring does this phrase refer to?

Z F2 Q[X] R OX A

Thm.For any?propertyP of rings, the following are equivalent:

1 Thegeneric ringAhas propertyP.

2 Every?ring has propertyP.

3 The ring axioms entail propertyP.

Example A.For anyx,y,z ∈A,x+ (y+z) = (x+y) +z. Example B.

It isnot the casethat 1+16=0 inA. Example C (Anders Kock).The generic ring is afield:

∀x ∈A. (x=0⇒1 =0)⇒(∃y ∈A.xy=1) . Hence: When verifying a coherent sequent for all rings, can without loss of generality assume the field condition.

(5)

The generic ring

“LetRbe a ring.” – Which ring does this phrase refer to?

Z F2 Q[X] R OX A

Thm.For any?propertyP of rings, the following are equivalent:

1 Thegeneric ringAhas propertyP.

2 Every?ring has propertyP.

3 The ring axioms entail propertyP.

Example A.For anyx,y,z ∈A,x+ (y+z) = (x+y) +z. Example B.

It isnot the casethat 1+16=0 inA. Example C (Anders Kock).The generic ring is afield:

∀x ∈A. (x=0⇒1 =0)⇒(∃y ∈A.xy=1) . Hence: When verifying a coherent sequent for all rings, can without loss of generality assume the field condition.

(6)

The generic ring

“LetRbe a ring.” – Which ring does this phrase refer to?

Z F2 Q[X] R OX A

Thm.For any?propertyP of rings, the following are equivalent:

1 Thegeneric ringAhas propertyP.

2 Every?ring has propertyP.

3 The ring axioms entail propertyP.

Example A.For anyx,y,z ∈A,x+ (y+z) = (x+y) +z.

Example B.

It isnot the casethat 1+16=0 inA. Example C (Anders Kock).The generic ring is afield:

∀x ∈A. (x=0⇒1 =0)⇒(∃y ∈A.xy=1) . Hence: When verifying a coherent sequent for all rings, can without loss of generality assume the field condition.

(7)

The generic ring

“LetRbe a ring.” – Which ring does this phrase refer to?

Z F2 Q[X] R OX A

Thm.For any?propertyP of rings, the following are equivalent:

1 Thegeneric ringAhas propertyP.

2 Every?ring has propertyP.

3 The ring axioms entail propertyP.

Example A.For anyx,y,z ∈A,x+ (y+z) = (x+y) +z.

Example B.Is 1+1=0 inA?

It isnot the casethat 1+16=0 inA. Example C (Anders Kock).The generic ring is afield:

∀x ∈A. (x=0⇒1 =0)⇒(∃y ∈A.xy=1) . Hence: When verifying a coherent sequent for all rings, can without loss of generality assume the field condition.

(8)

The generic ring

“LetRbe a ring.” – Which ring does this phrase refer to?

Z F2 Q[X] R OX A

Thm.For any?propertyP of rings, the following are equivalent:

1 Thegeneric ringAhas propertyP.

2 Every?ring has propertyP.

3 The ring axioms entail propertyP.

Example A.For anyx,y,z ∈A,x+ (y+z) = (x+y) +z.

Example B.It isnot the casethat 1+1=0 inA.

It isnot the casethat 1+16=0 inA. Example C (Anders Kock).The generic ring is afield:

∀x ∈A. (x=0⇒1 =0)⇒(∃y ∈A.xy=1) . Hence: When verifying a coherent sequent for all rings, can without loss of generality assume the field condition.

(9)

The generic ring

“LetRbe a ring.” – Which ring does this phrase refer to?

Z F2 Q[X] R OX A

Thm.For any?propertyP of rings, the following are equivalent:

1 Thegeneric ringAhas propertyP.

2 Every?ring has propertyP.

3 The ring axioms entail propertyP.

Example A.For anyx,y,z ∈A,x+ (y+z) = (x+y) +z.

Example B.It isnot the casethat 1+1=0 inA. But also:

It isnot the casethat 1+16=0 inA.

Example C (Anders Kock).The generic ring is afield:

∀x ∈A. (x=0⇒1 =0)⇒(∃y ∈A.xy=1) . Hence: When verifying a coherent sequent for all rings, can without loss of generality assume the field condition.

(10)

The generic ring

“LetRbe a ring.” – Which ring does this phrase refer to?

Z F2 Q[X] R OX A

Thm.For any?propertyP of rings, the following are equivalent:

1 Thegeneric ringAhas propertyP.

2 Every?ring has propertyP.

3 The ring axioms entail propertyP.

Example A.For anyx,y,z ∈A,x+ (y+z) = (x+y) +z.

Example B.It isnot the casethat 1+1=0 inA. But also:

It isnot the casethat 1+16=0 inA.

Hence: When verifying a coherent sequent for all rings, can without loss of generality assume the field condition.

(11)

The generic ring

“LetRbe a ring.” – Which ring does this phrase refer to?

Z F2 Q[X] R OX A

Thm.For any?propertyP of rings, the following are equivalent:

1 Thegeneric ringAhas propertyP.

2 Every?ring has propertyP.

3 The ring axioms entail propertyP.

Example A.For anyx,y,z ∈A,x+ (y+z) = (x+y) +z.

Example B.It isnot the casethat 1+1=0 inA. But also:

It isnot the casethat 1+16=0 inA. Example C (Anders Kock).The generic ring is afield:

(12)

A selection of noncoherent sequents

Thegeneric objectMvalidates:

1 ∀x,y ∈M.¬¬(x =y).

2 ∀x1, . . . ,xn ∈M.¬∀y ∈M.y =x1∨ · · · ∨y=xn. Thegeneric ringAvalidates:

1 ∀x∈A.(x=0⇒1 =0)⇒(∃y ∈A.xy=1).

2 ∀x∈A.¬¬(x=0).

Thegeneric local ringA0validates:

∀x∈ 0.(x =0 ⇒1 =0)⇒(∃y ∈ 0.xy=1).

(13)

An application in commutative algebra

LetAbe a reduced ring (xn =0⇒x=0). Letpbe thegeneric prime ideal? ofA. ThenAp :=A[p−1]validates:

Ap is afield: ∀x∈Ap.(¬(∃y ∈Ap.xy=1)⇒x =0).

Ap has¬¬-stable equality: ∀x,y ∈Ap.¬¬(x =y)⇒x =y.

Ap isanonymously Noetherian.

This observation unlocks a short and conceptual proof of Grothen- dieck’sgeneric freeness lemmain algebraic geometry.

Thm. (baby freeness) LetM be anA-module. Then 1 implies 3.

1 Mis finitely generated (⇐⇒Mpis finitely generated)

(14)

A systematic source

Gavin Wraith.Some recent developments in topos theory.

In: Proc. of the ICM (Helsinki, 1978).

Thm. (Nullstellensatz):The genericT-modelUT validates:

For any coherent sequentσ,

(15)

Arithmetic universes

Places where we can do mathematics (among others):

1 Set (sets)

2 Eff (data types)

3 sSet (simplicial sets)

4 Sh(X)(sheaves overX)

These are examples forarithmetic universes.

Definition.Anarithmetic universeis a category with finite lim- its (“×”), stable finite disjoint coproducts (“q”), stable effective quotients (“X/∼”) and parametrized list objects (“N”, “List(X)”). Thm. Any statement which is provable inpredicative con- structive mathematics(no powersets, noϕ∨¬ϕ, no¬¬ϕ⇒ϕ, no axiom of choice) is true in any arithmetic universe.

Further examples:

5 theinitialarithmetic universe

6 theclassifyingarithmetic universe for the theory of rings

(16)

Arithmetic universes

Places where we can do mathematics (among others):

1 Set (sets)

2 Eff (data types)

3 sSet (simplicial sets)

4 Sh(X)(sheaves overX) These are examples forarithmetic universes.

Definition.Anarithmetic universeis a category with finite lim- its (“×”), stable finite disjoint coproducts (“q”), stable effective quotients (“X/∼”) and parametrized list objects (“N”, “List(X)”). Thm. Any statement which is provable inpredicative con- structive mathematics(no powersets, noϕ∨¬ϕ, no¬¬ϕ⇒ϕ, no axiom of choice) is true in any arithmetic universe.

Further examples:

5 theinitialarithmetic universe

6 theclassifyingarithmetic universe for the theory of rings

(17)

Arithmetic universes

Places where we can do mathematics (among others):

1 Set (sets)

2 Eff (data types)

3 sSet (simplicial sets)

4 Sh(X)(sheaves overX) These are examples forarithmetic universes.

Definition.Anarithmetic universeis a category with finite lim- its (“×”), stable finite disjoint coproducts (“q”), stable effective quotients (“X/∼”) and parametrized list objects (“N”, “List(X)”).

Thm. Any statement which is provable inpredicative con- structive mathematics(no powersets, noϕ∨¬ϕ, no¬¬ϕ⇒ϕ, no axiom of choice) is true in any arithmetic universe.

Further examples:

5 theinitialarithmetic universe

6 theclassifyingarithmetic universe for the theory of rings

(18)

Arithmetic universes

Places where we can do mathematics (among others):

1 Set (sets)

2 Eff (data types)

3 sSet (simplicial sets)

4 Sh(X)(sheaves overX) These are examples forarithmetic universes.

Definition.Anarithmetic universeis a category with finite lim- its (“×”), stable finite disjoint coproducts (“q”), stable effective quotients (“X/∼”) and parametrized list objects (“N”, “List(X)”).

Thm. Any statement which is provable inpredicative con- structive mathematics(no powersets, noϕ∨¬ϕ, no¬¬ϕ⇒ϕ, no axiom of choice) is true in any arithmetic universe.

Referenzen

ÄHNLICHE DOKUMENTE

Laza: Lineare Algebra individuell Online-Version 0.62, http://www.math.hu-berlin.de/∼roczen/la.htm.3. Bestimmen Sie f im

Eine prinzipielle M¨ oglichkeit zur Behandlung solcher Aufgaben ist durch das Determinantenkriterium gegeben; dazu sind die Nullstellen aller Determinanten quadratischer Teilmatrizen

Eine prinzipielle M¨ oglichkeit zur Behandlung solcher Aufgaben ist durch das Determinantenkriterium gegeben; dazu sind die Nullstellen aller Determinanten quadratischer Teilmatrizen

In Abschnitt 5 der heutigen Vorlesung formulierten wir den Satz ¨uber die Unabh ¨angigkeit von Zv’en mit Dichten. X

Let ϕ(S, R, x) be a first-order formula over the signature ¯ τ ∪ {R, S} such that R and S occur only positively (i.e. in the scope of an even number of negations) in ϕ and such that

[r]

[r]

Auf diesem Projektzettel werden wesentlich selbstadjungierte Fortsetzungen des Laplace- Operators untersucht.