• Keine Ergebnisse gefunden

Problem 2: Coverability Graph and Place Unboundedness

N/A
N/A
Protected

Academic year: 2021

Aktie "Problem 2: Coverability Graph and Place Unboundedness"

Copied!
2
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Concurrency Theory(WS 2011/12) Out: Tue, Nov 29 Due: Mon, Dec 5

Exercise Sheet 7

Jun.-Prof. Roland Meyer, Georgel C˘alin Technische Universit¨at Kaiserslautern

Problem 1: Easy Lemma/Theorem Proofs

LetN = (S, T, W, M0). Prove the following statements:

(a) IfM0[σiM then there is aσ-labeled pathM0 −→σ Mω inCov(N)withMω ≥M. (b) MarkingM ∈NS is coverable inN iff there isMω ∈Cov(N)withMω ≥M. (c) Places∈Sis unbounded iff there isMω ∈Cov(N)withMω(s) = ω.

Problem 2: Coverability Graph and Place Unboundedness

Construct the coverability graph for the following Petri net:

p1 t1 p2

t2

p3

t3 t4

p4

(a) Name the unbounded places in the net by specifying all nodes in the coverability graph which allow you to deduce their unboundedness.

(b) For each of the following markings of the Petri net:

(1 0 0 0)T, (0 0 1 0)T, (1 1 0 0)T, (0 0 1 1)T, (1 0 1 0)T, (0 1 0 1)T specify all the nodes in the coverability graph (if any) that cover them.

Problem 3: Proof of Lemma - t introduces new ω’s

LetN = (S, T, W, M0)be a Petri net with coverability graph Cov(N) = (V, E, M0) and let M0

−→σ Mωn−→t Mωn+1for someσ∈Tnandt ∈T.

Assume that for allk ∈Nthere existsM ∈R(N)such that (M(s)≥k ifs∈Ω(Mωn)

M(s) = Mωn(s) ifs∈S\Ω(Mωn).

Fixk0 ∈Nand assume|Ω(Mωn+1)|=|Ω(Mωn)|+ 1. Prove that there isM0 ∈R(N)such that (M0(s)≥k0 ifs∈Ω(Mωn+1)

M0(s) = Mωn+1(s) ifs∈S\Ω(Mωn+1).

(2)

Problem 4: Coverability Graph and Net Boundedness

Consider the Petri net below:

p1

p2

t2

t1

t3

p3

p4

2

(a) Use the Karp and Miller algorithm to construct the coverability graph.

(b) Describe in words an algorithm that takes a Petri netN = (S, T, W, M0)and returns the optimal boundb∈Nωfor the token count on all places. Argument termination and correctness.

To be precise, the algorithm should

• returnb =ω, ifN is unbounded

• return the smallestb∈Nso thatM(p)≤bfor allM ∈R(N)and allp∈S, otherwise.

Referenzen

ÄHNLICHE DOKUMENTE

Denote by E the midpoint of AC, by D the midpoint of BC, by O the intersection point of BE and AD (i.e. the three bisectors of the sides or medians), by X the midpoint of AO and by

Roland Meyer, Georgel C˘alin Technische Universit¨at Kaiserslautern. Problem 1: Reachability of

[r]

Extending our previous work [17], we propose a memetic algorithm (MA) which uses two different solution representations for the genetic operators and for the local search procedure..

The process of solution evaluation comprises the computation of either the exact chromatic number of a given solution or an upper bound for it, plus a lower bound or the number

Neeb Fachbereich Mathematik Arbeitsgruppe. Algebra,

Bestimmen Sie die Menge der kritischen Punkte einer Funktion der Gestalt (*), indem Sie zeigen, das diese genau die L¨ osungen des linearen Gleichungssys- tems Ax = −b sind.

Wir wollen hierbei den Satz ¨ uber die Umkehrfunktion verwenden, um zu untersuchen, wo diese Umparametrisierungen zu- mindest lokal durch einen Diffeomorphismus gegeben sind.