• Keine Ergebnisse gefunden

The impact of the temperature-CO

N/A
N/A
Protected

Academic year: 2022

Aktie "The impact of the temperature-CO"

Copied!
1
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Geophysical Research Abstracts Vol. 20, EGU2018-7302, 2018 EGU General Assembly 2018

© Author(s) 2018. CC Attribution 4.0 license.

The impact of the temperature-CO

2

decoupling on the state-dependency of paleo climate sensitivity during the late Pleistocene

Peter Köhler (1), Andrey Ganopolski (2), Gregor Knorr (1), and Lennert Stap (1)

(1) Alfred-Wegener-Institut Helmholtz Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany (peter.koehler@awi.de), (2) Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany

Climate change projections for the future are uncertain, also due to inter-model differences. The application of these models to paleo times, which can be constrained by reconstructions, is therefore essential, not only to gain a better understanding of past climate changes, but also for model validation purposes. In this respect both data- and model-based approaches have been used to generate time series of global temperature changes,∆Tg. The ratio of

∆Tgover radiative forcing,∆R, defines the specific equilibrium climate sensitivity S, and has been suggested to be state-dependent, potentially increasing towards warming climates, and therefore suggesting climate sensitivity for the future to be at the upper end of the range of published results (Köhler et al., 2015, 2017). Here we reanalyse existing time series of∆Tg and∆R for the last 800,000 years and show that this proposed state-dependency of S is only found if∆Tg is based on data (reconstructions), and not if∆Tgis based on models (simulations). We furthermore identify that in data-based reconstructions∆Tgis decoupled from atmospheric CO2predominantely during times of decreasing obliquity (identical to periods of land-ice sheet growth and sea level fall), while in model simulations∆Tgand CO2vary in phase throughout. This multi-millennial decoupling of CO2and temperature has been suggested to be partially caused by a sea level-induced surge in magma and CO2fluxes from oceanic hotspot volcanoes and mid ocean ridges (Hasenclever et al., 2017). The neglection of these feedbacks between the solid Earth and the climate system in recent Earth system models is partly responsible for the data/model misfit, and illustrates our current limitation in the model-based interpretation of the paleo records. Paleo-based estimates of S might be restricted to data without this∆Tg-CO2-decoupling leading to a 20% smaller quantification of S for interglacial conditions of the late Pleistocene.

References:

Hasenclever, J., G. Knorr, L. Rüpke, P. Köhler, J. Morgan, K. Garofalo, S. Barker, G. Lohmann, and I. Hall (2017), Sea level fall during glaciation stabilized atmospheric CO2by enhanced volcanic degassing, Nature Communications, 8, 15867, doi: 10.1038/ncomms15867.

Köhler, P., B. de Boer, A. S. von der Heydt, L. S. Stap, and R. S. W. van de Wal (2015), On the state depen- dency of equilibrium climate sensitivity during the last 5 million years, Climate of the Past, 11, 1801–1823, doi:10.5194/cp-11-1801-2015.

Köhler, P., L. S. Stap, A. S. von der Heydt, B. de Boer, R. S. W. van de Wal, and J. Bloch-Johnson (2017), A state-dependent quantification of climate sensitivity based on paleo data of the last 2.1 million years, Paleoceanography, 32, 1102–1114, doi: 10.1002/2017PA003190.

Referenzen

ÄHNLICHE DOKUMENTE

The focus is on the sensitivity of cross-ridge transports and the reaction of the subpolar North Atlantic Ocean circulation to changes in wind stress and buoyancy forcing on seasonal

Altogether we can explain with these processes a global cooling of 3.9 ± 0.8 K in the equilibrium temperature for the Last Glacial Maximum (LGM) directly from the radiative budget

Using a simple energy balance model, trained on CMIP6 climate models and constrained by observed near-surface warming and ocean heat uptake, we derive estimates for the

In terms of global mean precipitation, an increase of 2 – 3% per kelvin global mean surface warming is found for the slow response, independent of the climate drivers studied (CO 2 ,

А для развитой экономики оказывается, что экзогенное ограничение имеет уже величина темпа роста совокупного выпуска g *, и поэтому она не может быть

Annual mean surface temperatures were slightly above average across Central America and the Carib- bean during 2005 (Fig. Temperatures were at least 0.5°C above normal for the

Існуюча в 1923 -24 році податкова напруга посилювалась також діяльністю так званих напів-податків, які мали примусовий характер: добродійні марки, жетони,

Labels denote: d historic length record available (see last column for first data point), $ mass balance observations available, ($) limited mass balance measurements available (a