• Keine Ergebnisse gefunden

On the background state dependency of (palaeo) climate sensitivity

N/A
N/A
Protected

Academic year: 2022

Aktie "On the background state dependency of (palaeo) climate sensitivity"

Copied!
1
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Geophysical Research Abstracts Vol. 16, EGU2014-5865-1, 2014 EGU General Assembly 2014

© Author(s) 2014. CC Attribution 3.0 License.

On the background state dependency of (palaeo) climate sensitivity

Anna von der Heydt (1), Henk Dijkstra (1), Peter Köhler (2), and Roderik van de Wal (1)

(1) Utrecht University, Institute for Marine and Atmospheric Research Utrecht, Department of Physics and Astronomy, Utrecht, Netherlands (a.s.vonderheydt@uu.nl), (2) Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany

The equilibrium (Charney) climate sensitivity, here indicated bySa, is the equilibrium change in Earth’s global mean surface temperature due to a radiative forcing associated with a doubling ofpCO2, the atmospheric CO2

concentration. Although known for decades, little progress has been made in constraining upper and lower limits for climate sensitivity. Originally,Sawas derived from climate models where the atmospheric CO2concentration is doubled in typically about 100 years. Also palaeo data have been frequently used to determineSa, and — if slow feedback processes are adequately taken into account — indicate a similar range as those based on climate models used in the IPCC. However, palaeo data usually span a much larger time than the 100 year model experiments.

Here, we focus on the last 800 kyr, where climate variability has occurred on time scales ranging from the 100.000- year ice-age cycles to millennial-scale climate variations. The traditional linear and equilibrium concept of climate sensitivity as is applied in typical (short time scale) climate model simulations might not apply to the climate system’s non-stationary and non-linear response to changing forcing.

One example is the background state dependency of the fast feedback processes. In this presentation, we assess the dependency of the fast feedback processes on the background climate state using data of the last 800 kyr and a conceptual climate model. Though still (locally) linear, we propose a different approach to estimate climate sensi- tivity which better accounts for a possible state dependency of the fast feedbacks. This approach uses local slopes of temperature versus radiative perturbation and is most suitable for palaeo-data spanning a range of background climate states. We find the specific climate sensitivities generally lower during cold (glacial) than during warm periods.

Within the conceptual climate model we further estimate how the background state-dependency of the fast feed- back processes might affect the distributions of feedback factors and projected temperature change when noise is included in the forcing of the model. In particular, we investigate the appearance of small but finite probabili- ties of a very large temperature response and how the shape of the response distribution might be related to state dependency.

Referenzen

ÄHNLICHE DOKUMENTE

Annual mean surface temperatures were slightly above average across Central America and the Carib- bean during 2005 (Fig. Temperatures were at least 0.5°C above normal for the

Існуюча в 1923 -24 році податкова напруга посилювалась також діяльністю так званих напів-податків, які мали примусовий характер: добродійні марки, жетони,

A probability distribution for values of the effective climate sensitivity, with a lower bound of 1.6 K (5- percentile), is obtained on the basis of the increase in ocean heat

Some important details, however, of our study and the previous study (von der Heydt et al., 2014) differ because (i) the assumed changes in temperature and land ice albedo are based

For RCP4.5, the scenario closest to the 2 °C warming target for the climate change treaty, the range of cumulative emis- sions in 2100 from thawing permafrost decreases to between

Dijkstra (1) (1) Utrecht University, Institute for Marine and Atmospheric Research Utrecht, Department of Physics and Astronomy, Utrecht, Netherlands (a.s.vonderheydt@uu.nl), (2)

We here combine a data set of radiative forcing ∆R of greenhouse gases and albedo changes (Köhler et al., 2010) with an estimate of ∆T based on the deconvolution of benthic δ 18 O

In COCOON, the main efforts are de- voted to the development of a core object model and the related optimization issues; COMFORT is oriented towards automating performance tuning