• Keine Ergebnisse gefunden

TECHNISCHE UNIVERSIT¨ AT DARMSTADT

N/A
N/A
Protected

Academic year: 2022

Aktie "TECHNISCHE UNIVERSIT¨ AT DARMSTADT"

Copied!
1
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Fachbereich Mathematik Prof. K. Große-Brauckmann

TECHNISCHE UNIVERSIT¨ AT DARMSTADT

A

27.5.2010

5. Problems for CMC Surfaces

Problem 16 – Test:

a) Why is it no loss of generality to assume that the matrixAinLu=A d2u=P

aijiju is symmetric?

b) Prove that ifuis subharmonic (∆u≥0) on a bounded domainU, andhis a harmonic function (∆h = 0) with the same boundary values, u|∂U = h|∂U, then u(x) ≤ h(x) for all x∈U. Discuss also the equality case u(p) = h(p) for an interior point p∈U. c) A standard linear algebra result is that a linear mapL: V →W with kerL= 0 gives

Lx=b has at most one solutionx. Draw the analogy to the uniqueness theorem for the Poisson equation Lu=f. (What are the vector spaces V, W?)

Problem 17 – Uniqueness and symmetry of solutions:

Supposeσ is reflection in the hyperplane {xn= 0} ⊂Rn,

σ: Rn→Rn, σ(x1, . . . , xn) := (x1, . . . , xn−1,−xn).

We call a domain U ⊂ Rn mirror symmetric if σ(U) = U. For a bounded mirror symmetric domain U, consider a function u ∈ C2(U,R)∩ C0(U ,R) whose boundary values are invariant under σ, that is, u(x) = u σ(x)

for all x∈∂U. Consider the following cases:

1. u is harmonic,

2. u solves a uniformly elliptic equation Lu= 0,

a) Decide for each of the two cases if u respects the symmetry σ, i.e., u(x1, . . . , xn) = u(x1, . . . , xn−1,−xn) for all x∈U.

b) On the other hand, find a solutionv of the equation ∆v+v = 0 which has symmetric boundary values, but is not invariant under σ (it suffices to consider n= 1).

c) Consider the cases for which the answer under a) is in the affirmative. Prove the same statement more generally for isometries A∈O(n), for instance for rotations.

Problem 18 – Maximum principle with exceptional points:

Let us first state two facts:

1. log|x|: R2 \ {0} →R is harmonic,

2. If f: Ω2 →R2 is conformal then ∆(u◦f) = (∆u)◦f. Use these facts to prove the following:

a) Let D ⊂ R2 be the unit disk, and set D := D\ {(1,0)}, S := S1\ {(1,0)}. Find a harmonic function u ∈C2(D,R)∩C0(D,R) with boundary values u|S = 0 such that u is not constant.

Hint: Exhibit a nonzero harmonic function with zero boundary values on the upper halfplane.

b) Prove that each bounded harmonic function u∈C2(D,R)∩C0(D,R) is constant.

Hint: Compare with log|z−1|.

c) Generalize: Can you admit more than just one exceptional point? Can you replace the boundedness assumption on u by a growth condition at the exceptional points?

What is the n-dimensional generalization?

d) Prove the two facts stated above by calculation.

Referenzen

ÄHNLICHE DOKUMENTE

Im Falle der zweiten Potenzreihe beobachten wir, dass f¨ ur alle z ∈ C mit |z| = 1 die sum- mierte Folge konstant Betrag eins hat, insbesondere also keine Nullfolge sein kann...

Trotzdem ist f in keiner Weise holomorph, denn man spricht von einer holomorphen Funktion nur dann, wenn sie auf einer offenen Teilmenge von C komplex differenzierbar ist (vgl.

Fachbereich Mathematik Prof.. Show that each atlas of M contains at least

We use the following which has not been defined formally in class: The Klein bottle is a non-orientable manifold, obtained by identifying opposite edges of a square: One pair

Jeder Atlas enth¨ alt alle zu ihm differenzierbar vertr¨ aglichen

Schreiben Sie dazu eine gegebene Matrix A als Summe einer symmetrischen und einer

Fachbereich

Geben Sie im Falle der L¨ osbarkeit die gesamte L¨ osungsmenge in vektorieller Form an. (ii) Welchen Rang hat die Matrix A in Abh¨ angigkeit