• Keine Ergebnisse gefunden

Track reconstruction for the Mu3e experiment Alexandr Kozlinskiy (Mainz, Institut für Kernphysik) on behalf of the Mu3e collaboration

N/A
N/A
Protected

Academic year: 2022

Aktie "Track reconstruction for the Mu3e experiment Alexandr Kozlinskiy (Mainz, Institut für Kernphysik) on behalf of the Mu3e collaboration"

Copied!
18
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Track reconstruction for the Mu3e experiment

Alexandr Kozlinskiy (Mainz, Institut für Kernphysik) on behalf of the Mu3e collaboration

DPG 2019 @ Aachen (.03.26, T42.1)

(2)

Mu3e Experiment

Mu3e experiment:

• Search for Lepton Flavor Violation (LFV)

• Decay: µ+→e+e+e

• Standard Model: Br<10−54(not observable)

• Enhanced in New Physics (NP) models

• Any observed decay will point to NP

• Location: Paul Scherrer Institute (PSI)

• Commission in 2020-21 Current experimental status:

• SINDRUM (1988)Nucl.Phys.B299(1988)1

• Br<10−12at 90% c.l

Mu3e aim for sensitivity of one in1015µ-decays

• With existing beam line at PSI:108µ/s

• Better sensitivity with new beam line (109µ/s)

e+

µ+ νµ νe e+ W+

e

Neutrino mixing γ SMµ+→e+e+e

(3)

Signal & Background

Signal:

• Three tracks

• Decay at rest

• P

Ee=mµ (Ee<53 MeV/c)

• P pe= 0

• Common vertex & time

Background:

• Random combinations:

• µ+→e++ 2ν,e± scattering

• Fake tracks

• Not same vertex, time, etc.

• Internal conversion:

• µ+→e+e+e+2ν

• Missing momentum & energy

µ3e+ 2ν

e+ e+

e

νµ ¯νe

101 102 103 104 105 106

Internal conversion background 1018

1016 10−14

e+e+emass [MeV/c2]

Background

Signal

µ3e(signal)

e+ e+

e

(4)

Mu3e Detector (1)

Target µ+beam

Inner pixel e+ e+

e tiles

layers Helium atmosphere

mag.field:B= 1T 12 cm

r123mm r230mm O(108)µ+/s

pµ28MeV/c

Muons stop and decay on target:

• Double cone hollow target

• O(100) µmthickness

• Vertex separation

• Existing beam line at PSI:

• Continuous muon beam

• O(108+/s

Inner pixel layers:

• Thin & high granularity

• 99.9% efficiency

• As close as possible to target

• Reduce effect of Multiple Scattering (MS) and pixel size

• Improve vertex resolution

(5)

Mu3e Detector (2)

Target µ+beam

Scintillating fibres

Inner pixel e+ e+

e Outer pixel layers

layers

r372mm r485mm

Fibres

Two outer pixel layers:

• Reconstruct momentum

• 1Tesla→minpT ≈12MeV/c (limited by outer layer radius)

Scintillating fibres:

• σt<1ns

• Suppress accidental BG

• Charge ID

(6)

Mu3e Detector (3)

Target µ+beam

Scintillating fibres

Inner pixel e+ e+

e Outer pixel layers Recurl pixel layers

Scintillator tiles

layers Tiles

Particles bend back in magnetic field:

• Dedicated ’recurl’ stations

• Improve momentum resolution (factor 5-10 improvement)

constraint on radius:

pixel size (minσp)

Recurl stations:

• Two pixel layers (same as central station)

• Scintillating tiles

• σt<100ps

• Suppress accidentals

(7)

HV-MAPS

High Voltage - Monolithic Active Pixel Sensor

• Commercially available technology

• Large area (2×2 cm2)

• High granularity (pixel size80×80µm2)

• Thin (50µm)

• Fast - charge collection via drift (HV,σt≈15 ns)

• High efficiency (>99%)

P-substrate

N-well E field

Particle

I.Peric, NIM A582(2007)876

SeeT-27.1andT-27.2

(8)

"Motivation"

A lot of data from detector:

• 108µ/sstop and decay on target

≈same number of electrons

• O(1010) pixel hits/s + fibre & tile hits Need reconstruction:

• Fast (online tracking @ filter farm)

• →fast fit

(9)

Triplet fit

Track in mag.field:

• Helical trajectory

• Require minimum 3 hits

If no pixel uncertainty and no energy loss:

• Triplet - trajectory with Multiple Scattering (MS) in middle point

• One parameter - curvaturer(momentump)

• MS angles -ϕM S(r), λM S(r) Fit - minimizeχ2 (scattering angle):

• χ22M S(r)/σ2M S2M S(r)/σ2M S

• No analytical solution

• Small MS angles→linearization around known solution (circle inxy-plane)

ϕM S

y x

hit 1 hit 2 hit 3 B

NIM A844(2017)135

(10)

Track fit

Track/Segment:

• Sequence of triplets

• 3D radius:

• Minimize combinedχ2

• Simple solutionr=

Prii2

1/σ2i

where ri - individual triplet solution (weighted average)

Note:

• Theoretically individual triplets can be fitted in parallel and then combined.

• In practice start from seed triplet and then add more hits.

triplet 1

triplet 2

(11)

Reconstruction: triplets

Hits

Fibres

combine hits

Fake triplets (red) Truth (MC) triplets

(black)

Combine hits of first 3 layers:

• 10 hits per layer per event (50 ns)

• O(1K) triplet combinations

• Factor 50 reduction with geometrical selections

• 108 triplet fits each second Result:

• Collection of triplets (seeds)

• Fake rate≈1(1 fake per truth track)

(12)

Reconstruction: short tracks

r z

Make short tracks:

• Use triplets as seeds

• Estimate hit at last layer

• Lookup inϕ/z window

• Combine 4 hits (triplet + hit)

• 2 triplets (2 shared hits)

• Fit (weighted average) O(10) short tracks

• Fake rate≈1.0%

(13)

Reconstruction: long tracks

long 8-hit track (2 short tracks)

long 6-hit track (short + 2 hits)

Long (6- and 8-hit) tracks:

• Combine short track with pair of hits or another short tracks

• Fake rate≈3.7%

• ≈0.5%true random combinations

• Rest - hits from same tracks, different turns

(14)

Acceptance & efficiency

Full Geant4 simulation of Mu3e detector

• Decay: µ+→e+νν (≈5 decays within frame)

• 50 ns frame (event size) Reconstruction efficiency:

• Acceptance: ǫacc≈80%

• Require minimum 4 hits (1 per layer)

• minpT, etc.

• Short tracks: εS ≈95%·εacc

• Geometrical andχ2 cuts

• Long tracks: εL ≈80%·εS

• Used for analysis (vertex fit, etc.)

(15)

Reconstruction efficiency: long tracks

1.5 1 0.5 0 0.5 1 1.5

[rad]

λ

0 10 20 30 40 50 60

p [MeV/c]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Target µ+beam

Scintillating fibres

Inner pixel e+ e+

e Outer pixel layers Recurl pixel layers

Scintillator tiles

layers (polar angle) minpT

10MeV/c End of recurl

stations

Service areas between stations

(16)

Momentum resolution

Short tracks(4 hits)

• hσpi ≈1.4MeV/c

• Depends linearly on momentum

Long tracks (6 and 8 hits)

• hσpi ≈0.2MeV/c

• minσp≈100KeV/c

5 4 3 2 1 0 1 2 3 4 5 [MeV/c]

- pmc

prec 0

0.05 0.1 0.15 0.2 0.25 106

×

Long tracks σp0.2MeV/c

Short tracks σp1.4MeV/c

0 10 20 30 40 50

[MeV/c]

pmc 0

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

[MeV/c]pσ

minσp100KeV/c (pmindepends onλ)

(17)

Sensitivity

• Vertex fit (3 long tracks and/or short track)

• Fit invariant mass

• Better tracking→narrow mass distribution

• With current design and1015µ/s: SES≈2·10−15

2] [MeV/c mrec

96 98 100 102 104 106 108 110

2Events per 0.2 MeV/c

4

10 3

10 2

10 1

10

1 10 102

at 10-12

eee

µ

at 10-13

eee

µ

at 10-14

eee

µ

at 10-15

eee µ ν

ν eee

µ

Bhabha +Michel

muons/s muon stops at 108

1015

Mu3e Phase I

(18)

Questions

2

] [MeV/c m

96 98 100 102 104 106 108 110

2

Events per 0.2 MeV/c

4

10

3

10

2

10

1

10

1 10 10

2

at 10

-12

eee

→ µ

at 10

-13

→ eee µ

at 10

-14

eee

→ µ

at 10

-15

eee

→ µ ν

ν eee

→ µ

Bhabha +Michel

muons/s muon stops at 10

8

10

15

Mu3e Phase I

Referenzen

ÄHNLICHE DOKUMENTE

Dependent on the detector parts used for the recontruction, several muon types are defined: Combined muons use the information of both inner detector and muon spectrom- eter,

Increased luminosity, however, leading to higher particle rates, requires improvements of numerous detector properties, like granularity, radiation tolerance of sensors and

The muon identification could be fully commis- sioning with cosmic ray data by aligning the inner detector and the muon spectrometer with muon tracks with an accuracy ensuring

Figure 3: Observed and expected 95% CL limits on the SM Higgs boson production in the H → ZZ → ``νν (left) and H → ZZ → ``jj (right) decay channels normalized to the predicted

• Offline implementation also takes into account pixel size and energy loss (minor fitter change). • Mu3e readout is

From Switching board: get 50 ns time slices of data containing full detector information..

Track reconstruction for the Mu3e experiment based on a novel Multiple Scattering fit.. Alexandr Kozlinskiy (Mainz, KPH) for the Mu3e collaboration CTD/WIT 2017

If all cuts passed: Count triplets and save hits in global memory using atomic function. Copy back global