• Keine Ergebnisse gefunden

Integrating out geometry in 2D dilaton gravity coupled to fermions

N/A
N/A
Protected

Academic year: 2022

Aktie "Integrating out geometry in 2D dilaton gravity coupled to fermions"

Copied!
24
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Integrating out geometry in 2D dilaton gravity coupled to fermions

René Meyer

<rene.meyer@itp.uni-leipzig.de>

(2)

Outline

1. Introduction 2. The Action

3. Constraint algebra 4. BRST gauge xing

5. Integrating out Geometry

6. Outlook

(3)

1. Introduction

• GOAL: Use Path Integral to quantize gravity in D=2 + scalar eld X (Dilaton) + Fermions

S (dil) = Z

d 2 x √

−g

X R

2 − U (X )

2 (∇X ) 2 + V (X )

+ S m

• Arise from compactications, spherical reduction and string theory

• 1980s: Jackiw, Teitelboim, D'Hoker, Katanaev, Volovich & others

• Exact path integration of geometry: Pioneering work by W. Kummer, H. Liebl

& D. Vassilevich 1996-1998

(4)

Literature

• Quantum gravity: S. Carlip gr-qc/0108040

• Review on Dilaton Gravity: D. Grumiller, W. Kummer, D. Vassilevich hep-th/0204253

• W. Kummer, H. Liebl, D. Vassilevich: gr-qc/9612012, hep-th/9707115, hep-th/9809168

• D. Grumiller's PhD Thesis: gr-qc/0105078

(5)

2. Action

S = S F OG + S kin + S SI S F OG =

Z

M

2

X a (De) a + Xdω + (U (X )X + X + V (X ))

S kin = i Z

M

2

f (X ) e a ∧ (χγ a dχ) + h.c.c.

S SI = 1 2

Z

M

2

e b ∧ e a ab h(X )g(χχ)

= Z

dx 2 (e)h(X )g(χχ)

(6)

Remarks

• f (X ) , h(X ) and g(χχ) are real functions (hermiticity of S )

• Functions U , V (and f , h , g ) specify the model, e.g. D=4 SRG:

U (X ) = −1/2X , V (X ) = −λ 2

• χ i , χ i are anticommuting, thus the general form of a polynomial self interaction is

g(χχ) = c + mχχ + e(χχ) 2

and c can be absorbed into V(X).

(7)

3. Constraint Algebra - Primary constraints

1st class constraints: p i := L

∂ q ˙

i

= (0, 0, 0) The P i :=

L

L

∂ Q ˙

i

give rise to 2nd class constraints:

Φ 0 = P 0 + i

√ 2 f (p 1 )q 3 Q 2 Φ 1 = P 1 − i

√ 2 f (p 1 )q 2 Q 3 Φ 2 = P 2 + i

√ 2 f (p 1 )q 3 Q 0 Φ 3 = P 3 − i

√ f (p 1 )q 2 Q 1

(8)

Secondary Constraints

We pass to the Dirac bracket formalism. The time evolution of the primary 1st class constraints G i := ˙ p i = {p i , H 0 } = {p i , H 0 } s ≈ 0 gives rise to secondary 1st class constraints

G 1 = G g 1

G 2 = G g 2 + i

√ 2 f (X )(χ 1 ← →

1 χ 1 ) + e + 1 h(X )g(χχ) G 3 = G g 3 − i

√ 2 f (X )(χ 0 ← →

1 χ 0 ) − e 1 h(X )g(χχ) G g 1 = ∂ 1 X + X e + 1 − X + e 1

G g 2 = ∂ 1 X + + ω 1 X + − e + 1 V

G g 3 = ∂ 1 X − ω 1 X + e 1 V

(9)

The Hamiltonian

The Hamiltonian can be written as a sum over the secondary constraints

H = −q i G i ≈ 0

and thus to check the absence of ternary constraints one has to explore the algebra of the G i

{G i , H 0 } = − q j 0 {G i , G 0 j } ≈ 0

(10)

Algebra of secondary constraints

{G i , G 0 i } = 0 i = 1, 2, 3 {G 1 , G 0 2 } = −G 2 δ

{G 1 , G 0 3 } = G 3 δ {G 2 , G 0 3 } =

"

3

X

i=1

dV

dp i G i +

gh 0 − h

f f 0 g 0 · (χχ)

G 1

#

δ

(11)

Remarks on the additional term

• Closes with δ -functions → Lie algebra with structure functions

• It vanishes for minimal coupling, i.e. for h = f = const.

• If f ∝ h , a mass term mχχ doesn't contribute, but a Thirring term does

∝ h 0 (g − g 0 · (χχ)) = −h 0 e(χχ) 2

• The new contribution does not contain derivatives of χ , opposing to the scalar

case, where ∝ f f

0

L scalar .

(12)

4. BRST gauge xing

• BRST charge: Ω 2 . := {Ω, {Ω, .} } = 0 ⇐⇒ {Ω, J.I. Ω} = 0

• Ghosts for the G i : (c i , p c i ) s.t. {c i (x), p c j (x 0 )} s = −δ j i δ(x − x 0 )

• Result:

Ω = Ω (1) + Ω (2)(1) = c i G i

(2) = 1

2 c i c j C ij k p c k

(13)

Gauge xed Hamiltonian

Gauge xing fermion: Ψ = p c 2 Gauge xed Hamiltonian:

H gf =

=0

z }| {

H BRST +{Ω, Ψ}

= −G 2 − C 2i k c i p c k

= −G 2 − c 1 p c 2 − C 23 k c 3 p c k

⇒ Eddington-Finkelstein gauge (ω 0 , e 0 , e + 0 ) = (0, 1, 0)

(14)

5. Integrating out Geometry

Path integral: Z [J, j, S ] = N R

Dµ[Q, P, q, p, c, p c ]e i

R d

2

x(L

gf

+L

src

)

Measure: Dµ[Q, P, q, p, c, p c ] =

3

Q

i=0

DQ i0 [q, p]

3

Q

i=0

DP i δ(Φ i )

3

Q

j=1

Dc j Dp c j

Lagrangian:

L gf = p i q ˙ i + ˙ Q i P i + p c i c i − H gf

= p i q ˙ i + ˙ Q i P i + G 2 + p c k M l k c l

L src = J i p i + j i q i + S i Q i

(15)

Ghost integration

M =

0 0 ∂p ∂V

1

gh 0h f f 0 g 0 · (χχ)

−1 ∂ 0 ∂p ∂V

2

0 0 ∂ 0 + ∂p V

3

Z 3 Y

j =1

Dc j Dp c j exp{i Z

d 2 xp c k M l k c l } ∝ DetM = Det(∂ 0 2 (∂ 0 + U (p 1 )p 2 ))

will be cancelled later

(16)

Matter Momenta

Φ i linear in P , Q & δ(Φ i ) in the path integral ⇒ P i -Integration trivial

⇒ L (1) ef f = p i q ˙ i + G 2 + i

√ 2 f (p 1 ) h

q 3 (Q 0 ← →

0 Q 2 ) − q 2 (Q 1 ← →

0 Q 3 ) i

+ L src G 2 = G g 2 + i

√ 2 f (p 1 )(Q 3 ← →

1 Q 3 ) + q 3 h(p 1 )g(χχ) G g 2 = ∂ 1 p 2 + q 1 p 2 − q 3 V

→ linear in q i , thus their integration is trivial too, giving Delta functionals

(17)

Covariant path integral measure for fermions (1)

2nd class constraints → local measure in path integral [Henneaux/Teitelboim Ch. 16;

Henneaux/Slavnov hep-th/9406161]

q

sdet{Φ i , Φ j } s = 2f 2 (p 1 )|q 2 q 3 |

Dirac fermions on a curved, but xed background (in D=2) [D.J. Toms Phys. Rev. D 35, 3796 (1987); M. Basler Fortsch.Phys.41:1-43,1993]

Y

i=0,1

ii Y

x

[−g(x)] −1 = Y

i=0,1

ii Y

x

q 3 −2

→ change the measure by hand [Kummer, Liebl, Vassilevich hep-th/9707115 for scalar elds]

(18)

Covariant path integral measure for fermions (2)

→ Trick to get rid of the measure factor [Kummer, Liebl, Vassilevich hep-th/9809168]

Z [J, j, S ] = N Z

Df f −2 δ

f − 1 i

δ δj 3

Z ˜ [J, j, S ]

Z ˜ [J, j, S ] =

Z Y

i=0,1

i χ i

3

Y

i=1

Dp i Dq i detM e i

R d

2

xL

(1)

ef f

(19)

Integrating the q i

→ Delta functionals give system of PDEs

0 = ∂ 0 p 1 − p 2 − j 1 (1)

0 = ∂ 0 p 2 − j 2 + i

√ 2 f (p 1 )(Q 1 ← →

0 Q 3 ) (2)

0 = (∂ 0 + U (p 1 )p 2 )p 3 − j 3 − i

√ 2 f (p 1 )(Q 0 ← →

0 Q 2 ) − h(p 1 )g(χχ) + V (p 1 ) (3)

→ det M cancels during p i integration

(20)

Solving the PDEs (1)

Minimal coupling f (p 1 ) ≡ f = const.

p 1 = B 1 = ∇ −1 0 (j 1 + B 2 ) + ˜ p 1 (x 1 ) p 2 = B 2 = ∇ −1 0

j 2 − f i

√ 2 (Q 1 ← →

0 Q 3 )

+ ˜ p 2 (x 1 ) p 3 = B 3 = e −Q

−1 0 e Q

j 3 − V (B 1 ) + h(B 1 )g(χχ) + f i

√ 2 (Q 0 ← →

0 Q 2 )

+ ˜ p 3 (x 1 )

Q := ∇ −1 0 (U (B 1 )B 2 )

(21)

Solving the PDEs (2)

General case → Weak matter approximation, i.e. p i =

P

n=0

p (n) i , i = 1, 2 and p (n) 1 (Q 1 ← →

0 Q 3 )

| {z }

(n+1)th order

→ recursion for e.g. f (p 1 ) = p 1

p (0) 2 = ∇ −1 0 j 2 + ˜ p (0) 2 (x 1 )

p (0) 1 = ∇ −1 0 (j 1 + p (0) 2 ) + ˜ p (0) 1 (x 1 ) p (n) 2 = − i

√ 2 ∇ −1 0

p (n−1) 1 (Q 1 ← →

0 Q 3 )

+ ˜ p (n) 2 (x 1 ) n ≥ 1

p (n) 1 = ∇ −1 0 p (n) 2 + ˜ p (n) 1 (x 1 )

(22)

Eective action

L (2) ef f = J i B ˆ i + S i Q i + i

√ 2 f ( ˆ B 1 )(Q 3 ← →

1 Q 1 ) + L amb L amb = g ˜ 3 e Q ˆ

j 3 − V ( ˆ B 1 ) + h( ˆ B 1 )g(χχ) + i

√ 2 f ( ˆ B 1 )(Q 0 ← →

0 Q 2 )

Z [J, j = 0; S ] = N R Q 3

i=0

DQ i [˜ g 3 e Q ˆ ] −2 e i

R d

2

xL

(2)

ef f

J,j=0

→ propagators, vertices, perturbation theory, S-Matrix elements

(23)

6. Outlook

• "Bosonization": g = mχχ + e(χχ) 2 , f ∝ h

→ {G 2 , G 3 } = − ∂p V

i

G i − h 0 e(χχ) 2 G 1

→ {G 2 , G 2 } scalar p = − ∂p ∂V

i

G i − 2h 0 G 1 S + S S ± = ∗d(S ∧ e ± ) (anti)selfdual

→ j ± = χγ ± χ ⇒ j + j = −(χχ) 2

→ Map S ± = p e

2 e ±iφ j ±

→ Q: Relationship to Coleman's bosonization, Quantum level?

• Conformal and chiral anomalies → known on xed background & for scalar

matter in this formalism

(24)

Discussion

Referenzen

ÄHNLICHE DOKUMENTE

Then R is a complete, compact, separable, order complete

We prove a complete set of integral geometric formulas of Crofton type (involving in- tegrations over affine Grassmannians) for the Minkowski tensors of convex bodies.. Min-

(16) This eliminates two bosonic boundary degrees of freedom at the horizon, but only one fermionic one because one can choose p − = 0 as boundary condition in the generic case

VBH: Intermediary effective geometry in scattering processes encoding the vertices and the classical

Light-cone components and Eddington-Finkelstein gauge (87: Polyakov, 92: Kummer, Schwarz, 96: Klösch, Strobl). Constant

As a non-perturbative quantization of two-dimensional dilaton gravity theories coupled to scalar matter is already available [4–6], the question arises whether and how

tion for the exact string black hole and for scientific collaboration with Luzi Bergamin and Wolfgang Kummer, which helped a lot to focus on our common project on 2D dilaton

Besides the obvious application to general relativity with a self-interacting scalar matter field, an example relevant to string theory is also discussed in detail, namely 2D type