• Keine Ergebnisse gefunden

Sion’smini-maxtheoremandNashequilibriuminamulti-playersgamewithtwogroupswhichiszero-sumandsymmetricineachgroup Satoh,AtsuhiroandTanaka,Yasuhito MunichPersonalRePEcArchive

N/A
N/A
Protected

Academic year: 2022

Aktie "Sion’smini-maxtheoremandNashequilibriuminamulti-playersgamewithtwogroupswhichiszero-sumandsymmetricineachgroup Satoh,AtsuhiroandTanaka,Yasuhito MunichPersonalRePEcArchive"

Copied!
15
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Munich Personal RePEc Archive

Sion’s mini-max theorem and Nash

equilibrium in a multi-players game with two groups which is zero-sum and

symmetric in each group

Satoh, Atsuhiro and Tanaka, Yasuhito

13 September 2018

Online at https://mpra.ub.uni-muenchen.de/88977/

MPRA Paper No. 88977, posted 15 Sep 2018 07:20 UTC

(2)

Sion’s mini-max theorem and Nash equilibrium in a multi-players game with

two groups which is zero-sum and symmetric in each group

Atsuhiro Satoh

Faculty of Economics, Hokkai-Gakuen University, Toyohira-ku, Sapporo, Hokkaido, 062-8605, Japan,

and

Yasuhito Tanaka

Faculty of Economics, Doshisha University, Kamigyo-ku, Kyoto, 602-8580, Japan.

Abstract

We consider the relation between Sion’s minimax theorem for a continuous function and Nash equilibrium in a multi-players game with two groups which is zero-sum and symmetric in each group. We will show the following results.

1. The existence of Nash equilibrium which is symmetric in each group implies a modified version of Sion’s minimax theorem with the coincidence of the maximin strategy and the minimax strategy for players in each group.

2. A modified version of Sion’s minimax theorem with the coincidence of the maximin strategy and the minimax strategy for players in each group implies the existence of Nash equilibrium which is symmetric in each group.

Thus, they are equivalent. An example of such a game is a relative profit maximization game in each group under oligopoly with two groups such that firms in each group have the same cost functions and maximize their relative profits in each group, and the demand functions are symmetric for the firms in each group.

Keywords: multi-players zero-sum game, two groups, Nash equilibrium, Sion’s minimax theorem JEL Classification: C72

This work was supported by Japan Society for the Promotion of Science KAKENHI Grant Number 15K03481 and 18K01594.

atsatoh@hgu.jp

yasuhito@mail.doshisha.ac.jp

(3)

1 Introduction

We consider the relation between Sion’s minimax theorem for a continuous function and the existence of Nash equilibrium in a multi-players game with two groups which is zero-sum and symmetric in each group. There are𝑛players. Players1,2,. . . ,𝑚are in one group, and Players𝑚+1,𝑚+2,. . . ,𝑛are in the other group. We assume𝑛 ≥ 4and2 ≤ 𝑚𝑛−2. Thus, each group has at least two players.

Players1,2,. . . ,𝑚have the same payoff functions and strategy spaces, and they play a game which is zero-sum in this group, that is, the sum of the payoffs of Players1,2,. . . ,𝑚is zero. Similarly, Players

𝑚+1,𝑚+2,. . . ,𝑛have the same payoff functions and strategy spaces, and they play a game which is

zero-sum in this group, that is, the sum of the payoffs of Players𝑚+1,𝑚+2,. . . ,𝑛is zero.

We will show the following results.

1. The existence of Nash equilibrium which is symmetric in each group implies a modified version of Sion’s minimax theorem with the coincidence of the maximin strategy and the minimax strategy for players in each group.

2. A modified version of Sion’s minimax theorem for players with the coincidence of the maximin strategy and the minimax strategy in each group implies the existence of Nash equilibrium which is symmetric in each group.

Thus, they are equivalent.

An example of such a game is a relative profit maximization game in each group under oligopoly with two groups such that firms in each group have the same cost functions and maximize their relative profits in each group, and demand functions are symmetric for the firms in each group. Assume that there are six firms, A, B, C, D, E and F. Let𝜋̄𝐴, 𝜋̄𝐵,𝜋̄𝐶, 𝜋̄𝐷, 𝜋̄𝐸 and𝜋̄𝐹 be the absolute profits of, respectively, Firms A, B, C, D, E and F. Firms A, B and E have the same cost function, and the demand functions are symmetric for them. Firms C, D and F have the same cost function, and the demand functions are symmetric for them. However, the firms in different groups have different cost functions, and the demand functions are not symmetric for firms in different groups.

The relative profits of Firms A, B and E are 𝜋𝐴 =𝜋̄𝐴− 1

2(𝜋̄𝐵+𝜋̄𝐸), 𝜋𝐵 =𝜋̄𝐵− 1

2(𝜋̄𝐴+𝜋̄𝐸), 𝜋𝐸 =𝜋̄𝐸− 1

2(𝜋̄𝐴+𝜋̄𝐵).

The relative profits of Firms C, D and F are

𝜋𝐶 =𝜋̄𝐶− 1

2(𝜋̄𝐷+𝜋̄𝐹), 𝜋𝐷 =𝜋̄𝐷− 1

2(𝜋̄𝐶+𝜋̄𝐹), 𝜋𝐹 =𝜋̄𝐹− 1

2(𝜋̄𝐶+𝜋̄𝐷).

We see

𝜋𝐴+𝜋𝐵+𝜋𝐸 =0,

(4)

𝜋𝐶+𝜋𝐷+𝜋𝐹 =0.

Firms A, B, C, D, E and F maximize, respectively,𝜋𝐴,𝜋𝐵,𝜋𝐶,𝜋𝐷,𝜋𝐸and𝜋𝐹. Thus, the relative profit maximization game in each group is a zero-sum game1. In Section 4 we present an example of relative profit maximization in each group under oligopoly with two groups.

2 The model and Sion’s minimax theorem

Consider a multi-players game with two groups which is zero-sum and symmetric in each group. Our analysis can be easily extended to a case with more than two groups. However, since notation is very complicated, we will present arguments of a two groups case. There are𝑛players. Players1,2,. . . ,𝑚 are in one group, and Players𝑚+1,𝑚+2,. . . ,𝑛 are in the other group. We assume 𝑛 ≥ 4 and 2 ≤ 𝑚𝑛−2. Thus, each group has at least two players. Players1,2,. . . ,𝑚have the same payoff functions and strategy spaces, and they play a game which is zero-sum in this group, that is, the sum of the payoffs of Players1,2,. . . ,𝑚is zero. Similarly, Players𝑚+1,𝑚+2,. . . ,𝑛have the same payoff functions and strategy spaces, and they play a game which is zero-sum in this group, that is, the sum of the payoffs of Players𝑚+1,𝑚+2,. . . ,𝑛is zero. The strategic variables for the players are𝑠1,𝑠2, . . . ,𝑠𝑛, and (𝑠1,𝑠2,. . . ,𝑠𝑛) ∈𝑆1×𝑆2× · · · ×𝑆𝑛. 𝑆1,𝑆2, . . . , 𝑆𝑛are convex and compact sets in linear topological spaces.

The payoff function of each player is𝑢𝑖(𝑠1,𝑠2,. . . ,𝑠𝑛),𝑖 =1,2,. . . ,𝑛. We assume

𝑢𝑖’s for𝑖 =1,2,. . . ,𝑛are continuous real-valued functions on𝑆1×𝑆2× · · · ×𝑆𝑛, quasi- concave on𝑆𝑖for each𝑠𝑗𝑆𝑗, 𝑗<𝑖, and quasi-convex on𝑆𝑗 for𝑗<𝑖for each𝑠𝑖𝑆𝑖. Since the game is zero-sum in each group, we have

𝑢1(𝑠1,𝑠2,. . . ,𝑠𝑛)+𝑢2(𝑠1,𝑠2,. . . ,𝑠𝑛)+. . . ,𝑢𝑚(𝑠1,𝑠2,. . . ,𝑠𝑛)=0, (1) 𝑢𝑚+1(𝑠1,𝑠2,. . . ,𝑠𝑛)+𝑢𝑚+2(𝑠1,𝑠2,. . . ,𝑠𝑛)+. . . ,𝑢𝑛(𝑠1,𝑠2,. . . ,𝑠𝑛)=0, (2) for given(𝑠1,𝑠2,. . . ,𝑠𝑛).

Sion’s minimax theorem (Sion (1958), Komiya (1988), Kindler (2005)) for a continuous function is stated as follows.

Lemma 1. Let𝑋 and 𝑌 be non-void convex and compact subsets of two linear topological spaces, and let𝑓 :𝑋 ×𝑌 → ℝbe a function, that is continuous and quasi-concave in the first variable and continuous and quasi-convex in the second variable. Then

max𝑥∈𝑋 min

𝑦∈𝑌𝑓(𝑥,𝑦)=min

𝑦∈𝑌max

𝑥∈𝑋 𝑓(𝑥,𝑦).

We follow the description of this theorem in Kindler (2005).

Let𝑠’s for<𝑖,𝑗; 𝑖,𝑗 ∈ {1,2,. . . ,𝑚}be given; then,𝑢𝑖(𝑠1,𝑠2,. . . ,𝑠𝑛)is a function of𝑠𝑖 and𝑠𝑗. We can apply Lemma 1 to such a situation, and get the following equation.

max𝑠𝑖∈𝑆𝑖 min

𝑠𝑗∈𝑆𝑗𝑢𝑖(𝑠1,𝑠2,. . . ,𝑠𝑛)= min

𝑠𝑗∈𝑆𝑗max

𝑠𝑖∈𝑆𝑖 𝑢𝑖(𝑠1,𝑠2,. . . ,𝑠𝑛). (3)

1About relative profit maximization under imperfect competition please see Matsumura, Matsushima and Cato (2013), Satoh and Tanaka (2013), Satoh and Tanaka (2014a), Satoh and Tanaka (2014b), Tanaka (2013a), Tanaka (2013b) and Vega-Redondo (1997)

(5)

By symmetry

𝑠max𝑗∈𝑆𝑗min

𝑠𝑖∈𝑆𝑖𝑢𝑗(𝑠1,𝑠2,. . . ,𝑠𝑛)=min

𝑠𝑖∈𝑆𝑖max

𝑠𝑗∈𝑆𝑗𝑢𝑗(𝑠1,𝑠2,. . . ,𝑠𝑛).

Similarly, let𝑠’s for<𝑘,𝑙; 𝑘,𝑙∈ {𝑚+1,𝑚+2,. . . ,𝑛}be given; then we obtain

𝑠max𝑘∈𝑆𝑘min

𝑠𝑙∈𝑆𝑙𝑢𝑘(𝑠1,𝑠2,. . . ,𝑠𝑛)=min

𝑠𝑙∈𝑆𝑙max

𝑠𝑘∈𝑆𝑘𝑢𝑖(𝑠1,𝑠2,. . . ,𝑠𝑛). (4)

By symmetry

max𝑠𝑙∈𝑆𝑙 min

𝑠𝑘∈𝑆𝑘𝑢𝑙(𝑠1,𝑠2,. . . ,𝑠𝑛)= min

𝑠𝑘∈𝑆𝑘max

𝑠𝑙∈𝑆𝑙𝑢𝑗(𝑠1,𝑠2,. . . ,𝑠𝑛).

We assume thatarg max𝑠𝑖∈𝑆𝑖min𝑠𝑗∈𝑆𝑗𝑢𝑖(𝑠1,𝑠2,. . . ,𝑠𝑛),arg min𝑠𝑗∈𝑆𝑗max𝑠𝑖∈𝑆𝑖𝑢𝑖(𝑠1,𝑠2,. . . ,𝑠𝑛)and so on are unique, that is, single-valued. By the maximum theorem they are continuous in𝑠’s,<𝑖,𝑗or in𝑠’s, < 𝑘,𝑙. Also, throughout this paper we assume that the maximin strategy and the minimax strategy of players in any situation are unique, and the best responses of players in any situation are unique.

Let us consider a point such that𝑠𝑖 =𝑠for𝑖 ∈ {1,2,. . . ,𝑚}and𝑠𝑘 =𝑠for𝑘∈ {𝑚+1,𝑚+2,. . . ,𝑛}, and consider the following function.

(𝑠 𝑠

)

(arg max𝑠𝑖∈𝑆𝑖min𝑠𝑗∈𝑆𝑗𝑢𝑖(𝑠𝑖,𝑠𝑗,𝑠,. . . ,𝑠,𝑠,. . . ,𝑠) arg max𝑠𝑘∈𝑆𝑘min𝑠𝑙∈𝑆𝑙𝑢𝑘(𝑠,. . . ,𝑠,𝑠𝑘,𝑠𝑙,𝑠,. . . ,𝑠)

) ,

for 𝑖 ∈ {1,2,. . . ,𝑚},𝑘 ∈ {𝑚+1,𝑚+2,. . . ,𝑛}. Since𝑢𝑖 and𝑢𝑘 are continuous,𝑆𝑖 =𝑆𝑗 is compact

and𝑆𝑘 =𝑆𝑙 is compact, these functions are also continuous. Thus, there exists a fixed point of(𝑠,𝑠).

Denote it by(̃𝑠,𝑠). It satisfieŝ 𝑠̃=arg max

𝑠𝑖∈𝑆𝑖 min

𝑠𝑗∈𝑆𝑗𝑢𝑖(𝑠𝑖,𝑠𝑗,𝑠,̃ . . . ,̃𝑠,𝑠,̂ . . . ,𝑠),̂ 𝑖 ∈ {1,2,. . . ,𝑚}, (5) 𝑠̂=arg max

𝑠𝑘∈𝑆𝑘min

𝑠𝑙∈𝑆𝑙𝑢𝑘(𝑠,̃ . . . ,𝑠,̃ 𝑠𝑘,𝑠𝑙,𝑠,̂ . . . ,𝑠),̂ 𝑘∈ {𝑚+1,𝑚+2,. . . ,𝑛}. (6) Now we assume

Assumption 1. About𝑠̃and𝑠̂which satisfy (5) and (6), arg max

𝑠𝑖∈𝑆𝑖 min

𝑠𝑗∈𝑆𝑗𝑢𝑖(𝑠𝑖,𝑠𝑗,𝑠,̃ . . . ,𝑠,̃ 𝑠,̂ . . . ,𝑠)̂ =arg min

𝑠𝑗∈𝑆𝑗max

𝑠𝑖∈𝑆𝑖 𝑢𝑖(𝑠𝑖,𝑠𝑗,𝑠,̃ . . . ,̃𝑠,𝑠,̂ . . . ,𝑠),̂ arg max

𝑠𝑘∈𝑆𝑘min

𝑠𝑙∈𝑆𝑙𝑢𝑘(𝑠,̃ . . . ,𝑠,̃ 𝑠𝑘,𝑠𝑙,𝑠,̂ . . . ,𝑠)̂ =arg min

𝑠𝑙∈𝑆𝑙max

𝑠𝑘∈𝑆𝑘𝑢𝑘(𝑠,̃ . . . ,̃𝑠,𝑠𝑘,𝑠𝑙,𝑠,̂ . . . ,𝑠),̂

for 𝑖 ∈ {1,2,. . . ,𝑚},𝑘∈ {𝑚+1,𝑚+2,. . . ,𝑛}, that is, the maximin strategy and the minimax strategy coincide.

Based on Assumption 1 we present a modified version of Sion’s minimax theorem.

Lemma 2(Modified version of Sion’s minimax theorem). Let𝑗 <𝑖, 𝑖,𝑗 ∈ {1,2,. . . ,𝑚}, and𝑆𝑖 and 𝑆𝑗 be non-void convex and compact subsets of two linear topological spaces, and Let𝑙 < 𝑘, 𝑘,𝑙

{𝑚+1,𝑚+2,. . . ,𝑛}, and𝑆𝑘and𝑆𝑙be non-void convex and compact subsets of two linear topological

spaces. Let𝑢𝑖 :𝑆𝑖 ×𝑆𝑗 →ℝgiven the strategies of all other players and𝑢𝑘 :𝑆𝑘×𝑆𝑙 →ℝgiven the strategies of all other players be functions that is continuous on𝑆1×𝑆2× · · · ×𝑆𝑛, quasi-concave on 𝑆𝑖 (or𝑆𝑘) and quasi-convex on𝑆𝑗 (or𝑆𝑙). Then, there exist𝑠̃and𝑠̂which satisfy (3), (4), (5), (6) and Assumption 1.

As we will show in the Appendix, without Assumption 1 we may have a Nash equilibrium which is asymmetric in each group.

(6)

3 The main results

Consider a Nash equilibrium which is symmetric in each group. Let𝑠𝑖’s and𝑠𝑘’s be the values of𝑠𝑖’s

for𝑖 ∈ {1,2,. . . ,𝑚} and𝑠𝑘’s for𝑘 ∈ {𝑚+1,𝑚+2,. . . ,𝑛}which, respectively, maximize𝑢𝑖’s and

𝑢𝑘’s, that is,

𝑢𝑖(𝑠1,𝑠2,. . . ,𝑠𝑖,. . . ,𝑠𝑛) ≥𝑢𝑖(𝑠1,𝑠2,. . . ,𝑠𝑖,. . . ,𝑠𝑛)for any𝑠𝑖𝑆𝑖, and

𝑢𝑘(𝑠1,𝑠2,. . . ,𝑠𝑘,. . . ,𝑠𝑛) ≥𝑢𝑘(𝑠1,𝑠2,. . . ,𝑠𝑘,. . . ,𝑠𝑛)for any𝑠𝑘𝑆𝑘,

If the Nash equilibrium is symmetric in each group,𝑠1’s for all𝑖 ∈ {1,2,. . . ,𝑚}are equal, and𝑠𝑘’s for

all𝑘∈ {𝑚+1,𝑚+2,. . . ,𝑛}are equal.

Notations of strategy choice by players are as follows.

(𝑠𝑖,𝑠,. . . ,𝑠,𝑠∗∗,. . . ,𝑠∗∗)is a vector of strategy choice by players such that Players 1,. . ., 𝑚other than𝑖choose𝑠and Players𝑚+1,. . .,𝑛choose𝑠∗∗.(𝑠,. . . ,𝑠,𝑠𝑘,𝑠∗∗,. . . ,𝑠∗∗) is a vector such that Players 1,. . .,𝑚choose𝑠and Players𝑚+1, . . .,𝑛other than𝑘 choose𝑠∗∗. (𝑠𝑖,𝑠𝑗,𝑠,. . . ,𝑠,𝑠∗∗,. . . ,𝑠∗∗)is a vector such that Players 1,. . .,𝑚other than 𝑖and𝑗choose𝑠and Players𝑚+1,. . .,𝑛choose𝑠∗∗. (𝑠,. . . ,𝑠,𝑠𝑘,𝑠𝑙,𝑠∗∗,. . . ,𝑠∗∗)is a vector such that Players 1,. . .,𝑚choose𝑠and Players𝑚+1,. . .,𝑛other than𝑘and𝑙 choose𝑠∗∗.

(𝑠𝑖,𝑠,̃ . . . ,𝑠,̃ 𝑠,̂ . . . ,𝑠)̂ is a vector of strategy choice by players such that Players 1,. . .,𝑚 other than𝑖choose𝑠̃and Players𝑚+1,. . .,𝑛choose𝑠.̂ (𝑠,̃ . . . ,𝑠,̃ 𝑠𝑘,𝑠,̂ . . . ,𝑠)̂ is a vector such that Players 1, . . ., 𝑚choose 𝑠̃and Players 𝑚+1, . . ., 𝑛 other than𝑘 choose 𝑠.̂ (𝑠𝑖,𝑠𝑗,𝑠,̃ . . . ,̃𝑠,𝑠,̂ . . . ,𝑠)̂ is a vector such that Players 1,. . .,𝑚other than𝑖and𝑗choose𝑠̃ and Players𝑚+1,. . .,𝑛choose𝑠.̂ (̃𝑠,. . . ,𝑠,̃ 𝑠𝑘,𝑠𝑙,𝑠,̂ . . . ,𝑠)̂ is a vector such that Players

1,. . .,𝑚choose𝑠̃and Players𝑚+1,. . .,𝑛other than𝑘and𝑙choose𝑠.̂

The same applies to other similar notations.

We show the following theorem.

Theorem 1. The existence of Nash equilibrium which is symmetric in each group implies Sion’s minimax theorem with the coincidence of the maximin strategy and the minimax strategy.

Proof. Let(𝑠1,. . . ,𝑠𝑚,𝑠𝑚+1,. . . ,𝑠𝑛) =(𝑠,. . . ,𝑠,𝑠∗∗,. . . ,𝑠∗∗) be a Nash equilibrium which is sym- metric in each group. Since the game is zero-sum in each group.

𝑢𝑖(𝑠𝑖,𝑠,. . . ,𝑠,𝑠∗∗,. . . ,𝑠∗∗)+

𝑚

𝑗=1,𝑗<𝑖

𝑢𝑗(𝑠𝑖,𝑠,. . . ,𝑠,𝑠∗∗,. . . ,𝑠∗∗)=0,

and

𝑢𝑘(𝑠,. . . ,𝑠,𝑠𝑘,𝑠∗∗,. . . ,𝑠∗∗)+

𝑛

𝑙=𝑚+1,𝑘<𝑘

𝑢𝑙(𝑠,. . . ,𝑠,𝑠𝑘,𝑠∗∗,. . . ,𝑠∗∗)=0 imply

𝑢𝑖(𝑠𝑖,𝑠,. . . ,𝑠,𝑠∗∗,. . . ,𝑠∗∗)=−(𝑚−1)𝑢𝑗(𝑠𝑖,𝑠,. . . ,𝑠,𝑠∗∗,. . . ,𝑠∗∗), and

𝑢𝑘(𝑠,. . . ,𝑠,𝑠𝑘,𝑠∗∗,. . . ,𝑠∗∗)=−(𝑛−𝑚−1)𝑢𝑙(𝑠,. . . ,𝑠,𝑠𝑘,𝑠∗∗,. . . ,𝑠∗∗).

(7)

These equations hold for any𝑠𝑖and𝑠𝑘. Therefore, arg max

𝑠𝑖∈𝑆𝑖𝑢𝑖(𝑠𝑖,𝑠,. . . ,𝑠,𝑠∗∗,. . . ,𝑠∗∗)=arg min

𝑠𝑖∈𝑆𝑖𝑢𝑗(𝑠𝑖,𝑠,. . . ,𝑠,𝑠∗∗,. . . ,𝑠∗∗), arg max

𝑠𝑘∈𝑆𝑘𝑢𝑘(𝑠,. . . ,𝑠,𝑠𝑘,𝑠∗∗,. . . ,𝑠∗∗)=arg min

𝑠𝑘∈𝑆𝑘𝑢𝑙(𝑠,. . . ,𝑠,𝑠𝑘,𝑠∗∗,. . . ,𝑠∗∗).

By the assumption of uniqueness of the best responses, they are unique. By symmetry for each group arg max

𝑠𝑖∈𝑆𝑖 𝑢𝑖(𝑠𝑖,𝑠,. . . ,𝑠,𝑠∗∗,. . . ,𝑠∗∗)=arg min

𝑠𝑗∈𝑆𝑗

𝑢𝑖(𝑠𝑗,𝑠,. . . ,𝑠,𝑠∗∗,. . . ,𝑠∗∗),

arg max

𝑠𝑘∈𝑆𝑘𝑢𝑘(𝑠,. . . ,𝑠,𝑠𝑘,𝑠∗∗,. . . ,𝑠∗∗)=arg min

𝑠𝑙∈𝑆𝑙𝑢𝑘(𝑠,. . . ,𝑠,𝑠𝑙,𝑠∗∗,. . . ,𝑠∗∗).

Therefore,

𝑢𝑖(𝑠,. . . ,𝑠,𝑠∗∗,. . . ,𝑠∗∗)= min

𝑠𝑗∈𝑆𝑗𝑢𝑖(𝑠𝑗,𝑠,. . . ,𝑠,𝑠∗∗,. . . ,𝑠∗∗) ≤𝑢𝑖(𝑠𝑗,𝑠,. . . ,𝑠,𝑠∗∗,. . . ,𝑠∗∗), 𝑢𝑘(𝑠,. . . ,𝑠,𝑠∗∗,. . . ,𝑠∗∗)=min

𝑠𝑙∈𝑆𝑙𝑢𝑘(𝑠,. . . ,𝑠,𝑠𝑙,𝑠∗∗,. . . ,𝑠∗∗) ≤𝑢𝑘(𝑠,. . . ,𝑠,𝑠𝑙,𝑠∗∗,. . . ,𝑠∗∗).

We get

max𝑠𝑖∈𝑆𝑖 𝑢𝑖(𝑠𝑖,𝑠,. . . ,𝑠,𝑠∗∗,. . . ,𝑠∗∗)=𝑢𝑖(𝑠,. . . ,𝑠,𝑠∗∗,. . . ,𝑠∗∗)= min

𝑠𝑗∈𝑆𝑗𝑢𝑖(𝑠𝑗,𝑠,. . . ,𝑠,𝑠∗∗,. . . ,𝑠∗∗),

𝑠max𝑘∈𝑆𝑘𝑢𝑘(𝑠,. . . ,𝑠,𝑠𝑘,𝑠∗∗,. . . ,𝑠∗∗)=𝑢𝑘(𝑠,. . . ,𝑠,𝑠∗∗,. . . ,𝑠∗∗)=min

𝑠𝑙∈𝑆𝑙𝑢𝑘(𝑠,. . . ,𝑠,𝑠𝑙,𝑠∗∗,. . . ,𝑠∗∗), They mean

𝑠min𝑗∈𝑆𝑗max

𝑠𝑖∈𝑆𝑖 𝑢𝑖(𝑠𝑖,𝑠𝑗,𝑠,. . . ,𝑠,𝑠∗∗,. . . ,𝑠∗∗) ≤max

𝑠𝑖∈𝑆𝑖𝑢𝑖(𝑠𝑖,𝑠,. . . ,𝑠,𝑠∗∗,. . . ,𝑠∗∗) (7)

=min

𝑠𝑗∈𝑆𝑗𝑢𝑖(𝑠𝑗,𝑠,. . . ,𝑠,𝑠∗∗,. . . ,𝑠∗∗) ≤max

𝑠𝑖∈𝑆𝑖 min

𝑠𝑗∈𝑆𝑗𝑢𝑖(𝑠𝑖,𝑠𝑗,𝑠,. . . ,𝑠,𝑠∗∗,. . . ,𝑠∗∗).

and

min𝑠𝑙∈𝑆𝑙max

𝑠𝑘∈𝑆𝑘𝑢𝑘(𝑠,. . . ,𝑠,𝑠𝑘,𝑠𝑙,𝑠∗∗,. . . ,𝑠∗∗) ≤ max

𝑠𝑘∈𝑆𝑘𝑢𝑘(𝑠,. . . ,𝑠,𝑠𝑘,𝑠∗∗,. . . ,𝑠∗∗) (8)

=min

𝑠𝑙∈𝑆𝑙𝑢𝑘(𝑠,. . . ,𝑠,𝑠𝑙,𝑠∗∗,. . . ,𝑠∗∗) ≤ max

𝑠𝑘∈𝑆𝑘min

𝑠𝑙∈𝑆𝑙𝑢𝑘(𝑠,. . . ,𝑠,𝑠𝑘,𝑠𝑙,𝑠∗∗,. . . ,𝑠∗∗).

On the other hand, since

𝑠min𝑗∈𝑆𝑗𝑢𝑖(𝑠𝑖,𝑠𝑗,𝑠,. . . ,𝑠,𝑠∗∗,. . . ,𝑠∗∗) ≤𝑢𝑖(𝑠𝑖,𝑠𝑗,𝑠,. . . ,𝑠,𝑠∗∗,. . . ,𝑠∗∗),

𝑠min𝑘∈𝑆𝑘𝑢𝑘(𝑠,. . . ,𝑠,𝑠𝑘,𝑠𝑙,𝑠∗∗,. . . ,𝑠∗∗) ≤𝑢𝑘(𝑠,. . . ,𝑠,𝑠𝑘,𝑠𝑙,𝑠∗∗,. . . ,𝑠∗∗),

we have

max𝑠𝑖∈𝑆𝑖 min

𝑠𝑗∈𝑆𝑗𝑢𝑖(𝑠𝑖,𝑠𝑗,𝑠,. . . ,𝑠,𝑠∗∗,. . . ,𝑠∗∗) ≤max

𝑠𝑖∈𝑆𝑖 𝑢𝑖(𝑠𝑖,𝑠𝑗,𝑠,. . . ,𝑠,𝑠∗∗,. . . ,𝑠∗∗),

𝑠max𝑘∈𝑆𝑘min

𝑠𝑙∈𝑆𝑙𝑢𝑘(𝑠,. . . ,𝑠,𝑠𝑘,𝑠𝑙,𝑠∗∗,. . . ,𝑠∗∗) ≤max

𝑠𝑘∈𝑆𝑘𝑢𝑘(𝑠,. . . ,𝑠,𝑠𝑘,𝑠𝑙,𝑠∗∗,. . . ,𝑠∗∗).

(8)

These inequalities hold for any𝑠𝑗 and𝑠𝑙. Thus, max𝑠𝑖∈𝑆𝑖 min

𝑠𝑗∈𝑆𝑗

𝑢𝑖(𝑠𝑖,𝑠𝑗,𝑠,. . . ,𝑠,𝑠∗∗,. . . ,𝑠∗∗) ≤ min

𝑠𝑗∈𝑆𝑗

max𝑠𝑖∈𝑆𝑖𝑢𝑖(𝑠𝑖,𝑠𝑗,𝑠,. . . ,𝑠,𝑠∗∗,. . . ,𝑠∗∗),

𝑠max𝑘∈𝑆𝑘min

𝑠𝑙∈𝑆𝑙𝑢𝑘(𝑠,. . . ,𝑠,𝑠𝑘,𝑠𝑙,𝑠∗∗,. . . ,𝑠∗∗) ≤min

𝑠𝑙∈𝑆𝑙max

𝑠𝑘∈𝑆𝑘𝑢𝑘(𝑠,. . . ,𝑠,𝑠𝑘,𝑠𝑙,𝑠∗∗,. . . ,𝑠∗∗), With (7) and (8), we obtain

max𝑠𝑖∈𝑆𝑖 min

𝑠𝑗∈𝑆𝑗𝑢𝑖(𝑠𝑖,𝑠𝑗,𝑠,. . . ,𝑠,𝑠∗∗,. . . ,𝑠∗∗)= min

𝑠𝑗∈𝑆𝑗max

𝑠𝑖∈𝑆𝑖 𝑢𝑖(𝑠𝑖,𝑠𝑗,𝑠,. . . ,𝑠,𝑠∗∗,. . . ,𝑠∗∗), (9)

𝑠max𝑘∈𝑆𝑘min

𝑠𝑙∈𝑆𝑙𝑢𝑘(𝑠,. . . ,𝑠,𝑠𝑘,𝑠𝑙,𝑠∗∗,. . . ,𝑠∗∗)= min

𝑠𝐷∈𝑆𝐷 max

𝑠𝐶∈𝑆𝐶𝑢𝐶(𝑠,. . . ,𝑠,𝑠𝑘,𝑠𝑙,𝑠∗∗,. . . ,𝑠∗∗). (10) From

𝑠min𝑗∈𝑆𝑗

𝑢𝑖(𝑠𝑖,𝑠𝑗,𝑠,. . . ,𝑠,𝑠∗∗,. . . ,𝑠∗∗) ≤𝑢𝑖(𝑠𝑖,𝑠,. . . ,𝑠,𝑠∗∗,. . . ,𝑠∗∗), min𝑠𝑙∈𝑆𝑙𝑢𝑘(𝑠,. . . ,𝑠,𝑠𝑘,𝑠∗∗,. . . ,𝑠∗∗) ≤𝑢𝑘(𝑠,. . . ,𝑠,𝑠𝑘,𝑠∗∗,. . . ,𝑠∗∗), max𝑠𝑖∈𝑆𝑖 min

𝑠𝑗∈𝑆𝑗𝑢𝑖(𝑠𝑖,𝑠𝑗,𝑠,. . . ,𝑠,𝑠∗∗,. . . ,𝑠∗∗)=max

𝑠𝑖∈𝑆𝑖𝑢𝑖(𝑠𝑖,𝑠,. . . ,𝑠,𝑠∗∗,. . . ,𝑠∗∗), and

𝑠max𝑘∈𝑆𝑘min

𝑠𝑙∈𝑆𝑙𝑢𝑘(𝑠,. . . ,𝑠,𝑠𝑘,𝑠𝑙,𝑠∗∗,. . . ,𝑠∗∗)= max

𝑠𝑘∈𝑆𝑘𝑢𝑘(𝑠,. . . ,𝑠,𝑠𝑘,𝑠∗∗,. . . ,𝑠∗∗), we have

arg max

𝑠𝑖∈𝑆𝑖 min

𝑠𝑗∈𝑆𝑗𝑢𝑖(𝑠𝑖,𝑠𝑗,𝑠,. . . ,𝑠,𝑠∗∗,. . . ,𝑠∗∗)=arg max

𝑠𝑖∈𝑆𝑖 𝑢𝑖(𝑠𝑖,𝑠,. . . ,𝑠,𝑠∗∗,. . . ,𝑠∗∗)=𝑠, arg max

𝑠𝑘∈𝑆𝑘min

𝑠𝑙∈𝑆𝑙𝑢𝑘(𝑠,. . . ,𝑠,𝑠𝑘,𝑠𝑙,𝑠∗∗,. . . ,𝑠∗∗)=arg max

𝑠𝑘∈𝑆𝑘𝑢𝑘(𝑠,. . . ,𝑠,𝑠𝑘,𝑠∗∗,. . . ,𝑠∗∗)=𝑠∗∗. From

max𝑠𝑖∈𝑆𝑖𝑢𝑖(𝑠𝑖,𝑠𝑗,𝑠,. . . ,𝑠,𝑠∗∗,. . . ,𝑠∗∗) ≥𝑢𝑖(𝑠𝑗,𝑠,. . . ,𝑠,𝑠∗∗,. . . ,𝑠∗∗),

𝑠max𝑘∈𝑆𝑘𝑢𝑘(𝑠,. . . ,𝑠,𝑠𝑘,𝑠𝑙,𝑠∗∗,. . . ,𝑠∗∗) ≥𝑢𝑘(𝑠,. . . ,𝑠,𝑠𝑙,𝑠∗∗,. . . ,𝑠∗∗),

𝑠min𝑗∈𝑆𝑗max

𝑠𝑖∈𝑆𝑖

𝑢𝑖(𝑠𝑖,𝑠𝑗,𝑠,. . . ,𝑠,𝑠∗∗,. . . ,𝑠∗∗)= min

𝑠𝑗∈𝑆𝑗𝑢𝑖(𝑠𝑗,𝑠,. . . ,𝑠,𝑠∗∗,. . . ,𝑠∗∗), and

min𝑠𝑙∈𝑆𝑙max

𝑠𝑘∈𝑆𝑘𝑢𝑘(𝑠,. . . ,𝑠,𝑠𝑘,𝑠𝑙,𝑠∗∗,. . . ,𝑠∗∗)=min

𝑠𝑙∈𝑆𝑙𝑢𝑘(𝑠,. . . ,𝑠,𝑠𝑙,𝑠∗∗,. . . ,𝑠∗∗), we get

arg min

𝑠𝑗∈𝑆𝑗max

𝑠𝑖∈𝑆𝑖𝑢𝑖(𝑠𝑖,𝑠𝑗,𝑠,. . . ,𝑠,𝑠∗∗,. . . ,𝑠∗∗)=arg min

𝑠𝑗∈𝑆𝑗𝑢𝑖(𝑠𝑗,𝑠,. . . ,𝑠,𝑠∗∗,. . . ,𝑠∗∗)=𝑠, arg min

𝑠𝑙∈𝑆𝑙max

𝑠𝑘∈𝑆𝑘𝑢𝑘(𝑠,. . . ,𝑠,𝑠𝑘,𝑠𝑙,𝑠∗∗,. . . ,𝑠∗∗)=arg min

𝑠𝑙∈𝑆𝑙𝑢𝑘(𝑠,. . . ,𝑠,𝑠𝑙,𝑠∗∗,. . . ,𝑠∗∗)=𝑠∗∗. Therefore,

arg max

𝑠𝑖∈𝑆𝑖 min

𝑠𝑗∈𝑆𝑗

𝑢𝑖(𝑠𝑖,𝑠𝑗,𝑠,. . . ,𝑠,𝑠∗∗,. . . ,𝑠∗∗) (11)

=arg min

𝑠𝑗∈𝑆𝑗max

𝑠𝑖∈𝑆𝑖𝑢𝑖(𝑠𝑖,𝑠𝑗,𝑠,. . . ,𝑠,𝑠∗∗,. . . ,𝑠∗∗)=𝑠,

(9)

arg max

𝑠𝑘∈𝑆𝑘min

𝑠𝑙∈𝑆𝑙𝑢𝑘(𝑠,. . . ,𝑠,𝑠𝑘,𝑠𝑙,𝑠∗∗,. . . ,𝑠∗∗) (12)

=arg min

𝑠𝑙∈𝑆𝑙max

𝑠𝑘∈𝑆𝑘𝑢𝑘(𝑠,. . . ,𝑠,𝑠𝑘,𝑠𝑙,𝑠∗∗,. . . ,𝑠∗∗)=𝑠∗∗.

□ Next we show the following theorem.

Theorem 2. Sion’s minimax theorem with the coincidence of the maximin strategy and the minimax strategy implies the existence of a Nash equilibrium which is symmetric in each group.

Proof. We denote a state such that Players1,2,. . . ,𝑚choose𝑠, and Players̃ 𝑚+1,𝑚+2,. . . ,𝑛choose

̂

𝑠by(𝑠,̃ . . . ,𝑠,̃ 𝑠̂. . . ,𝑠).̂

Let𝑠̃and𝑠̂be the values of𝑠𝑖’s for𝑖 ∈ {1,2,. . . ,𝑚}and𝑠𝑘’s for𝑘∈ {𝑚+1,𝑚+2,. . . ,𝑛}such that

̃

𝑠=arg max

𝑠𝑖∈𝑆𝑖 min

𝑠𝑗∈𝑆𝑗𝑢𝑖(𝑠𝑖,𝑠𝑗,𝑠,̃ . . . ,̃𝑠,𝑠,̂ . . . ,𝑠)̂ =arg min

𝑠𝑗∈𝑆𝑗max

𝑠𝑖∈𝑆𝑖 𝑢𝑖(𝑠𝑖,𝑠𝑗𝑠,. . . ,𝑠,̃ 𝑠,̂ . . . ,𝑠),̂

̂

𝑠=arg max

𝑠𝑘∈𝑆𝑘min

𝑠𝑙∈𝑆𝑙𝑢𝑘(𝑠,̃ . . . ,̃𝑠,𝑠𝑘,𝑠𝑙,𝑠,̂ . . . ,𝑠)̂ =arg min

𝑠𝑙∈𝑆𝑙max

𝑠𝑘∈𝑆𝑘𝑢𝑘𝑠,. . . ,𝑠,̃ 𝑠𝑘,𝑠𝑙,𝑠,̂ . . . ,𝑠),̂

max𝑠𝑖∈𝑆𝑖 min

𝑠𝑗∈𝑆𝑗𝑢𝑖(𝑠𝑖,𝑠𝑗𝑠,. . . ,𝑠,̃ 𝑠,̂ . . . ,𝑠)̂ = min

𝑠𝑗∈𝑆𝑗𝑢𝑖(𝑠𝑗𝑠,. . . ,𝑠,̃ 𝑠,̂ . . . ,𝑠)̂

= min

𝑠𝑗∈𝑆𝑗max

𝑠𝑖∈𝑆𝑖 𝑢𝑖(𝑠𝑖,𝑠𝑗𝑠,. . . ,𝑠,̃ 𝑠,̂ . . . ,𝑠)̂ =max

𝑠𝑖∈𝑆𝑖 𝑢𝑖(𝑠𝑖,𝑠,̃ . . . ,𝑠,̃ 𝑠,̂ . . . ,𝑠),̂

and

𝑠max𝑘∈𝑆𝑘min

𝑠𝑙∈𝑆𝑙𝑢𝑘(𝑠,̃ . . . ,𝑠,̃ 𝑠𝑘,𝑠𝑙,𝑠,̂ . . . ,𝑠)̂ =min

𝑠𝑙∈𝑆𝑙𝑢𝑘𝑠,. . . ,𝑠,̃ 𝑠𝑙,𝑠,̂ . . . ,𝑠)̂

=min

𝑠𝑙∈𝑆𝑙max

𝑠𝑘∈𝑆𝑘𝑢𝑘(𝑠,̃ . . . ,𝑠,̃ 𝑠𝑘,𝑠𝑙,𝑠,̂ . . . ,𝑠)̂ =max

𝑠𝑘∈𝑆𝑘𝑢𝑘(𝑠,̃ . . . ,𝑠,̃ 𝑠𝑘,𝑠,̂ . . . ,𝑠).̂ Since

𝑢𝑖(𝑠𝑗,𝑠,̃ . . . ,̃𝑠,𝑠,̂ . . . ,𝑠) ≤̂ max

𝑠𝑖∈𝑆𝑖𝑢𝑖(𝑠𝑖,𝑠𝑗𝑠,. . . ,𝑠,̃ 𝑠,̂ . . . ,𝑠),̂

𝑠min𝑗∈𝑆𝑗𝑢𝑖(𝑠𝑗𝑠,. . . ,𝑠,̃ 𝑠,̂ . . . ,𝑠)̂ = min

𝑠𝑗∈𝑆𝑗max

𝑠𝑖∈𝑆𝑖 𝑢𝑖(𝑠𝑖,𝑠𝑗,𝑠,̃ . . . ,̃𝑠,𝑠,̂ . . . ,𝑠),̂ we get

arg min

𝑠𝑗∈𝑆𝑗𝑢𝑖(𝑠𝑗,𝑠,̃ . . . ,𝑠,̃ 𝑠,̂ . . . ,𝑠)̂ =arg min

𝑠𝑗∈𝑆𝑗max

𝑠𝑖∈𝑆𝑖 𝑢𝑖(𝑠𝑖,𝑠𝑗,𝑠,̃ . . . ,̃𝑠,𝑠,̂ . . . ,𝑠)̂ =𝑠.̃ Similarly, from

𝑢𝑘(𝑠,̃ . . . ,̃𝑠,𝑠𝑙,𝑠,̂ . . . ,𝑠) ≤̂ max

𝑠𝑘∈𝑆𝑘𝑢𝑘(𝑠,̃ . . . ,̃𝑠,𝑠𝑘,𝑠𝑙,𝑠,̂ . . . ,𝑠),̂ min𝑠𝑙∈𝑆𝑙𝑢𝑘𝑠,. . . ,𝑠,̃ 𝑠𝑙,𝑠,̂ . . . ,𝑠)̂ =min

𝑠𝑙∈𝑆𝑙max

𝑠𝑘∈𝑆𝑘𝑢𝑘(𝑠,̃ . . . ,𝑠,̃ 𝑠𝑘,𝑠𝑙,𝑠,̂ . . . ,𝑠),̂ we get

arg min

𝑠𝑙∈𝑆𝑙𝑢𝑘(𝑠,̃ . . . ,𝑠,̃ 𝑠𝑙,𝑠,̂ . . . ,𝑠)̂ =arg min

𝑠𝑙∈𝑆𝑙max

𝑠𝑘∈𝑆𝑘𝑢𝑘(𝑠,̃ . . . ,𝑠,̃ 𝑠𝑘,𝑠𝑙,𝑠,̂ . . . ,𝑠)̂ =𝑠.̂ Since

𝑢𝑖(𝑠𝑖𝑠,. . . ,𝑠,̃ 𝑠,̂ . . . ,𝑠) ≥̂ min

𝑠𝑗∈𝑆𝑗𝑢𝑖(𝑠𝑖,𝑠𝑗𝑠,. . . ,𝑠,̃ 𝑠,̂ . . . ,𝑠),̂

Referenzen

ÄHNLICHE DOKUMENTE

タイトル Choice of strategic variables by relative profit maximizing firms in oligopoly 著者 Atsuhiro Satoh and Yasuhito Tanaka.. 所属 Faculty of Economics,

Relative profit maximization in a symmetric oligopoly with differentiated goods is an ex- ample of symmetric n-person zero-sum game with two alternative strategic variables.. Each

(2014a), “Relative profit maximization and equivalence of Cournot and Bertrand equilibria in asymmetric duopoly”, Economics Bulletin, 34,

We consider general demand and cost functions, and show that the choice of strategic variables is irrelevant in the sense that the conditions of relative profit maximization for

We show that in symmetric duopoly these definitions of relative profit are completely equiv- alent, but in asymmetric duopoly the equilibrium output of the more efficient (lower

We consider a simple model of the choice of strategic variables under relative profit maximization by firms in an asymmetric oligopoly with differentiated sub- stitutable goods

We study the equilibrium with quantity setting behavior and price setting be- havior of firms in duopoly under relative profit maximization with constant conjec- tural variations,

Of course