• Keine Ergebnisse gefunden

Symmetricmulti-personzero-sumgamewithtwosetsofstrategicvariables Satoh,AtsuhiroandTanaka,Yasuhito MunichPersonalRePEcArchive

N/A
N/A
Protected

Academic year: 2022

Aktie "Symmetricmulti-personzero-sumgamewithtwosetsofstrategicvariables Satoh,AtsuhiroandTanaka,Yasuhito MunichPersonalRePEcArchive"

Copied!
17
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Munich Personal RePEc Archive

Symmetric multi-person zero-sum game with two sets of strategic variables

Satoh, Atsuhiro and Tanaka, Yasuhito

28 December 2016

Online at https://mpra.ub.uni-muenchen.de/75838/

(2)

Symmetric multi-person zero-sum game with two sets of strategic variables

Atsuhiro Satoh

Faculty of Economics, Doshisha University, Kamigyo-ku, Kyoto, 602-8580, Japan.

and

Yasuhito Tanaka

Faculty of Economics, Doshisha University, Kamigyo-ku, Kyoto, 602-8580, Japan.

December 27, 2016

Abstract

We consider a symmetric multi-person zero-sum game with two sets of alternative strategic variables which are related by invertible functions. They are denoted by.s1; s2; : : : ; sn/ and.t1; t2; : : : ; tn/for players 1, 2,: : :,n. The number of players is larger than two. We consider a symmetric game in the sense that all players have the same payoff functions.

We do not postulate differentiability of the payoff functions of players. We will show that the following patterns of competition, 1) all players choosesi, 2) all players choose tiand 3)mplayers chooseti; i D1; : : : ; mandn mplayers choosesj; j DmC1; : : : ; n where1 m n 1, are equivalent, that is, they yield the same outcome. However, in an asymmetric zero-sum game with more than two players the equivalence does not hold.

keywords multi-person zero-sum game, two strategic variables JEL Classification: C72, D43.

atsato@mail.doshisha.ac.jp

yasuhito@mail.doshisha.ac.jp (corresponding author)

(3)

1 Introduction

We consider ann-person symmetric zero-sum game with two sets of strategic variables which are related by invertible functions. They are denoted by.s1; s2; : : : ; sn/and.t1; t2; : : : ; tn/ for players 1, 2,: : : ; n. nis an integer number which is larger than 2. We do not postulate differentiability of the payoff functions of players.

We will show that the following patterns of competition are equivalent, that is, they yield the same outcome.

(1) All players choosesi,i 2N. We call this competitionsi competition.

(2) All players chooseti,i 2N. We call this competitionti competition.

(3) Some players chooseti and other players choose sj. Specifically, mplayers choose ti,i D1; 2; : : : ; m, andn mplayers choosesj, j D mC1; mC2; : : : ; n, where 1mn 1. We call this competitionti sj competition.

We assume that the game is symmetric in the sense that all players have the same payoff functions, and consider symmetric equilibria where all players, whose strategic variables are si’s, choose the same values, and also all players, whose strategic variables areti’s, choose the same values.

Relative profit maximization in a symmetric oligopoly with differentiated goods is an ex- ample of symmetricn-person zero-sum game with two alternative strategic variables. Each firm chooses its output or price. The results of this paper imply that when firms in a symmet- ric oligopoly maximize their relative profits, Cournot and Bertrand equilibria are equivalent, and price-setting behavior and output-setting behavior are equivalent1.

However, in an asymmetric n-person zero-sum game with more than two players the equivalence does not hold. In Section 7 we present an example that shows the non-equivalence of Cournot and Bertrand equilibria in an asymmetric oligopoly.

2 The model

Consider ann-person zero-sum game withn3as follows. There arenplayers, 1, 2,: : : ; n.

The set of players is denoted byN. They have two sets of alternative strategic variables, (s1; s2; : : : ; sn/ 2S1S2 Snand.t1; t2; : : : ; tn/2 T1T2 Tn. Si andTi for i 2N are compact sets in metric spaces. The relations of them are represented by

si Dfi.t1; t2; : : : ; tn/; i 2N:

.f1; f2; : : : ; fn/is a continuous invertible function, and so it is one-to-one and onto func- tion. We denote

ti Dgi.s1; s2; : : : ; sn/; i 2N:

1About relative profit maximization under imperfect competition please see Matsumura, Matsushima and Cato (2013), Satoh and Tanaka (2013), Satoh and Tanaka (2014a), Satoh and Tanaka (2014b), Tanaka (2013a), Tanaka (2013b) and Vega-Redondo (1997). An oligopoly is symmetric when demand functions are symmetric and all firms have the same cost functions.

(4)

.g1; g2; : : : ; gn/is also a continuous invertible function. The payoff functions of the players areui.s1; s2; : : : ; sn/fori 2N. They are continuous and quasi-concave. We do not postulate differentiability of the payoff functions2. All players have the same payoff functions. Since the game is zero-sum, we have

Xn

iD1

ui.s1; s2; : : : ; sn/D0; (1)

for given.s1; s2; : : : ; sn/.

3 s

i

competition

First, consider competition bysi; i 2 N;for all players. Let si; i 2 N;be the values of si’s which, respectively, maximizesui; i 2 N;givensj; j ¤ i, in a neighborhood around .s1; s2; : : : ; sn/inS1S2 Sn. Then,

ui.s1; : : : ; si; : : : ; sn/ui.s1; : : : ; si; : : : ; sn/for allsi ¤si; i 2N: (2) We assume that allsi’s are equal at equilibria. Thus, ui.s1; : : : ; si; : : : ; sn/’s for alli are equal, and by the property of zero-sum game they are zero. By symmetry of the game we have

uj.s1; : : : ; si; : : : ; sn/Duk.s1; : : : ; si; : : : ; sn/forj ¤i; k ¤i; j ¤k:

From this and (1) X

jD1;j¤i

uj.s1; : : : ; si; : : : ; sn/D .n 1/uj.s1; : : : ; si; : : : ; sn/Dui.s1; : : : ; si; : : : ; sn/:

Therefore, from (2)

uj.s1; : : : ; si; : : : ; sn/uj.s1; : : : ; si; : : : ; sn/forj ¤i:

By symmetry

ui.s1; : : : ; sj; : : : ; sn/ui.s1; : : : ; si; : : : ; sn/forj ¤i:

Combining this and (2)

ui.s1; : : : ; si; : : : ; sn/ui.s1; : : : ; si; : : : ; sn/ui.s1; : : : ; sj; : : : ; sn/ for allsi ¤si; and allsj ¤sj; j ¤i; i 2N:

This is equivalent to

ui.s1; : : : ; si; : : : ; sn/Dmax

si

ui.s1; : : : ; si; : : : ; sn/Dmin

sj ui.s1; : : : ; sj; : : : ; sn/;

j ¤igivensk; k¤i; j;

2In Satoh and Tanaka (2016) we analyze maximin and minimax strategies in oligopoly when payoff functions of firms are differentiable.

(5)

.s1; s2; : : : ; sn/is a Nash equilibrium of thesi competition game. By the Glicksberg’s the- orem (Glicksberg (1952)) there exists a Nash equilibrium.

Letsi;j be a vector ofskfork¤i; j. We can show the following lemma.

Lemma 1. The following three statements are equivalent.

(1) There exists a Nash equilibrium in thesi competition game.

(2) Givenskfor allk¤i; j, the following relation holds.

vsi max

si min

sj

ui.si; sj; si;j/Dmin

sj

maxsi ui.si; sj; si;j/vsjfor any pair ofiandj:

(3) There exists a real numbervs,simandsjmsuch that

ui.sim; sj; si;j/vsfor anysj; andui.si; sjm; si;j/vsfor anysi; (3) for any pair ofi andj:

Proof. (1!2)

Letsiandsj be the equilibrium strategies of Playeri andj. Then, vsj Dmin

sj

maxsi

ui.si; sj; si;j/max

si

ui.si; sj; si;j/Dui.si; sj; si;j/ Dmin

sj

ui.si; sj; si;j/max

si min

sj

ui.si; sj; si;j/Dvsi:

On the other hand, minsjui.si; sj; si;j/ui.si; sj; si;j/, then maxsiminsjui.si; sj; si;j/ maxsiui.si; sj; si;j/, and so maxsiminsjui.si; sj; si;j/ minsjmaxsiui.si; sj; si;j/.

Thus,vsi vsj, and we havevsi Dvsj. (2!3)

LetsimDarg maxsiminsjui.si; sj; si;j/(the maximin strategy),smj Darg minsjmaxsiui.si; sj; si;j/ (the minimax strategy), and letvsDvsi Dvsj. Then, we have

ui.sim; sj; si;j/min

sj

ui.sim; sj; si;j/Dmax

si

minsj

ui.si; sj; si;j/Dvs

Dmin

sj

maxsi ui.si; sj; si;j/Dmax

si ui.si; smj ; si;j/ui.si; sjm; si;j/:

(3!1) From (3)

ui.sim; sj; si;j/vsui.si; sjm; si;j/for allsi 2Si; sj 2Sj:

Puttingsi Dsimandsj Dsjm, we seevs Dui.smi ; smj ; si;j/and.sim; smj ; si;j/is an equi- librium. Thus,simDsiandsmj Dsj.

Since at equilibria allui’s are zero, we havevsi D vsj D vs D 0. Denote the values of ti; i 2N, which are derived from the following equation;

.t1; t2; : : : ; tn/D.gi.s1; s2; : : : ; sn/; g2.s1; s2; : : : ; sn/; : : : ; gn.s1; s2; : : : ; sn//;

byti; i 2N.

(6)

4 t

i

competition

Next consider competition byti; i 2N;for all players. In this section we use the following notation.

vi.t1; : : : ; tn/Dui.f1.t1; : : : ; tn/; : : : ; fn.t1; : : : ; tn//for eachi 2N:

LettQi; i 2N, be the values ofti’s which, respectively, maximizesvi; i 2N;giventQj; j ¤i, in a neighborhood around.tQ1;tQ2; : : : ;tQn/inT1T2 Tn. Then,

vi.tQ1; : : : ;tQi; : : : ;tQn/vi.tQ1; : : : ; ti; : : : ;tQn/for allti ¤ Qti; i 2N; (4) We assume that alltQi’s are equal at equilibria. Thus,vi.Qt1; : : : ;tQi; : : : ;tQn/for alli are equal, and by the property of zero-sum game allvi’s are zero. By symmetry of the model

vj.tQ1; : : : ; ti; : : : ;tQn/Dvk.Qt1; : : : ; ti; : : : ;tQn/forj ¤i; k¤i; j ¤k:

From this and (1) X

jD1;j¤i

vj.tQ1; : : : ; ti; : : : ;tQn/D .n 1/vj.tQ1; : : : ; ti; : : : ;tQn/Dvi.tQ1; : : : ; ti; : : : ;tQn/:

Therefore, from (4)

vj.tQ1; : : : ; ti; : : : ;tQn/vj.tQ1; : : : ;tQi; : : : ;tQn/forj ¤i:

By symmetry we get

vi.tQ1; : : : ; tj; : : : ;tQn/vi.tQ1; : : : ;tQi; : : : ;tQn/forj ¤i:

Combining this and (4)

vi.tQ1; : : : ; ti; : : : ;tQn/vi.Qt1; : : : ;tQi; : : : ;tQn/vi.tQ1; : : : ; tj; : : : ;tQn/ for allti ¤ Qti; and alltj ¤ Qtj; j ¤i; i 2N:

This is equivalent to

vi.tQ1; : : : ;tQi; : : : ;tQn/Dmax

ti

vi.tQ1; : : : ; ti; : : : ;tQn/Dmin

tj

vi.tQ1; : : : ; tj; : : : ;tQn/;

j ¤i giventQk; k ¤i; j:

LettQ i;j be a vector oftQkfork¤i; j. Similarly to Lemma 1 we can show the following lemma.

Lemma 2. The following three statements are equivalent.

(1) There exists a Nash equilibrium in theti competition game.

(7)

(2) GiventQk for allk¤i; j, the following relation holds.

vti max

ti

mintj vi.ti; tj;tQ i;j/Dmin

tj max

ti

vi.ti; tj;tQ i;j/vtj for any pair ofi andj:

(3) There exists a real numbervt,timandtjmsuch that

vi.tim; tj;tQ i;j/vt for anytj; andvi.ti; tjm;tQ i;j/vt for anyti

for any pair ofi andj:

Thus,timD Qti andtjmD Qtj. Since at equilibria allvi’s are zero, we havevti Dvtj Dvt D0.

Denote the values ofsi; i 2N, which are derived from the following equation;

.s1; s2; : : : ; sn/D.fi.tQ1;tQ2; : : : ;tQn/; f2.tQ1;tQ2; : : : ;tQn/; : : : ; fn.tQ1;tQ2; : : : ;tQn//;

bysQi; i 2N.

5 t

i

s

j

competition

Next, considerti sj competition. Assume thatmplayers chooseti; i D1; 2 : : : ; m, and the remainingn mplayers choosesj; j DmC1; mC2; : : : ; n. mis an integer such that 1 m n 1. At least one player choosesti, and at least one player chooses sj. In this section we use the following notation.

wi.t1; : : : ; tm; smC1; : : : ; sn/

Dui.f1.t1; : : : ; tm; gmC1.: : : /; : : : ; gn.: : : //; : : : ; fm.t1; : : : ; tm; gmC1.: : : /; : : : ; gn.: : : //; smC1; : : : ; sn/ for eachi 2N; where

gj.: : : /Dgj.s1; : : : ; sm; smC1; : : : ; sn/forj 2 fmC1; : : : ; n;g with

si Dfi.t1; : : : ; tm; gmC1.: : : /; : : : ; gn.: : : //fori 2 f1; : : : ; mg:

LettNi; i D1; 2; : : : ; m, andsNj; j DmC1; : : : ; n, be the values oftiandsjwhich maximizes, respectively,wi andwj, in a neighborhood around the equilibrium point. Then,

wi.tN1; : : : ;tNi; : : : ;tNm;sNmC1; : : : ;sNn/ (5) wi.tN1; : : : ; ti; : : : ;tNm;sNmC1; : : : ;sNn/for allti ¤ Nti; i D1; 2; : : : ; m;

and

wj.tN1; : : : ;tNm;sNmC1; : : : ;sNj; : : : ;sNn/ (6) wj.tN1; : : : ;tNm;sNmC1; : : : ; sj; : : : ;sNn/for allsj ¤ Nsj; j DmC1; mC2; : : : ; n;

(8)

We assume that at equilibria alltNi; i D1; 2; : : : ; m, are equal, and allsNj; j DmC1; mC 2; : : : ; n, are equal. Since all players have the same payoff functions, allwi; i D1; 2; : : : ; m, are equal, and allwj; j DmC1; mC2; : : : ; n, are equal. Then, from (1) we obtain

mwi.tN1; : : : ;tNm;sNmC1; : : : ;sNj; : : : ;sNn/C.n m/wj.tN1; : : : ;tNm;sNmC1; : : : ;sNj; : : : ;sNn/D0;

and so

wj.tN1; : : : ;tNm;sNmC1; : : : ;sNj; : : : ;sNn/D m

n mwi.tN1; : : : ;tNm;sNmC1; : : : ;sNj; : : : ;sNn/:

Ifwi D0(orwj D0), thenwj D0(orwi D0). (6) is rewritten as wi.tN1; : : : ;tNm;sNmC1; : : : ;sNj; : : : ;sNn/

wi.tN1; : : : ;tNm;sNmC1; : : : ; sj; : : : ;sNn/for allsj ¤ Nsj; j DmC1; mC2; : : : ; n;

Combining this and (5),

wi.tN1; : : : ; ti; : : : ;tNm;sNmC1; : : : ;sNj; : : : ;sNn/wi.tN1; : : : ;tNi; : : : ;tNm;sNmC1; : : : ;sNj; : : : ;sNn/ wi.Nt1; : : : ;tNm;sNmC1; : : : ; sj; : : : ;sNn/

for allti ¤ Nti; i D1; 2; : : : ; m; and allsj ¤ Nsj; j DmC1; mC2; : : : ; n:

This is equivalent to

wi.tN1; : : : ;tNi; : : : ;tNm;sNmC1; : : : ;sNj; : : : ;sNn/Dmax

ti

wi.tN1; : : : ; ti; : : : ;tNm;sNmC1; : : : ;sNn/ Dmin

sj

wi.tN1; : : : ;tNm;sNmC1; : : : ; sj; : : : ;sNn/for any pair ofi; j:

LettN i be a vector oftNk for k 2 f1; : : : ; mg; k ¤ i and sN j be a vector ofsNl forl 2 fmC1; : : : ; ng; l ¤j. Similarly to Lemma 1 we can show the following lemma.

Lemma 3. The following three statements are equivalent.

(1) There exists a Nash equilibrium in theti sj competition game.

(2) GiventNk,k¤i; k 2 f1; : : : ; mgandsNl,l ¤j; l 2 fmC1; : : : ; ng, the following relation holds.

vt si max

ti min

sj

wi.ti;tN i; sj;sN j/Dmin

sj

maxti wi.ti;tN i; sj;sN j/vt sj for any pair ofi andj:

(3) There exists a real numbervt s,tit s andsjt ssuch that

wi.tit s;tN i; sj;sN j/vt sfor anysj; andwi.ti;tN i; sjt s;sN j/vt s for anyti

for any pair ofi andj;

Thus,tit s D Nti andsjt s D Nsj. Denote the values ofsi; i 2 f1; 2; : : : ; mgand the values of tj; j 2 fmC1; mC2; : : : ; ng, which are derived from the following equation;

.s1; s2; : : : ; sm/D.f1.tN1;tN2; : : : ;tNm; tmC1; tmC2; : : : ; tn/; f2.: : : /; : : : ; fm.: : : //;

.tmC1; tmC2; : : : ; tn/D.g1.s1; s2; : : : ; sm;sNmC1;sNmC2; : : : ; sn/; g2.: : : /; : : : ; gm.: : : //;

bysNi; i 2 f1; 2; : : : ; mgandtNj; j 2 fmC1; mC2; : : : ; ng.

(9)

6 Equivalence of three patterns of competition

First we show the following proposition.

Proposition 1. si competition andti sj competition where one player, Player 1, choosest1

are equivalent.

Each playerj inf2; : : : ; ngchoosessj as his/her strategic variable. To prove this propo- sition we need the following lemma.

Lemma 4.

maxt1

minsj

w1.t1; sj;sN j/Dmax

s1

minsj

u1.s1; sj;sN j/:

N

s j is a vector ofsNl forl 2 f2; : : : ; ng; l ¤j.

Proof. minsjw1.t1; sj;sN j/is the minimum ofw1.D u1/with respect to sj givent1 and N

s j. Letsj.t1/Darg minsj w1.t1; sj;sN j/, and fix the value ofs1at

s10Df1.t1; g2.s10; s2; : : : ; sj.t1/; : : : ; sn/; : : : ; gn.s10; s2; : : : ; sj.t1/; : : : ; sn//:

Then, we have minsj

u1.s10; sj;sN j/u1.s01; sj.t1/;sN j/Dmin

sj

w1.t1; sj;sN j/;

where minsj u1.s10; sj;sN j/is the minimum of u1 with respect tosj given the value ofs1

ats10. We assume thatsj.t1/Darg minsjw1.t1; sj;sN j/is single-valued. By the maximum theorem and continuity ofw1,sj.t1/is continuous. Then, any value ofs10in some neighbor- hood around.Ns1;sN2; : : : ;sNn/can be realized by appropriately choosingt1givensj andsN j

ass10Df1.t1; g2.s01; s2; : : : ; sj.t1/; : : : ; sn/; : : : ; gn.s10; s2; : : : ; sj.t1/; : : : ; sn//. Therefore, maxs1

minsj

u1.s1; sj;sN j/max

t1

minsj

w1.t1; sj;sN j/: (7)

On the other hand, minsju1.s1; sj;sN j/is the minimum ofu1with respect tosj givens1

andsN j. Letsj.s1/Darg minsj u1.s1; sj;sN j/, and fix the value oft1atg1.s1; sj.s1/;sN j/.

Then, we have

minsj w1.t1; sj;sN j/Dmin

sj w1.g1.s1; sj.s1/;sN j/; sj;sN j/u1.s1; sj.s1/;sN j/Dmin

sj u1.s1; sj;sN j/;

where minsj w1.g1.s1; sj.s1/;sN j/; sj;sN j/is the minimum ofw1.Du1/with respect tosj

given the value oft1atg1.s1; sj.s1/;sN j/. We assume thatsj.s1/Darg minsj u1.s1; sj;sN j/ is single-valued. By the maximum theorem and continuity ofu1,sj.s1/is continuous. Then, any value oft1in some neighborhood around.tN1;sN2; : : : ;sNn/can be realized by appropriately choosings1givensj andsN j ast1Dg1.s1; sj.s1/;sN j/. Therefore,

maxt1 min

sj

w1.t1; sj;sN j/max

s1

minsj

u1.s1; sj;sN j/: (8)

Combining (7) and (8), we get maxt1

minsj

w1.t1; sj;sN j/Dmax

s1

minsj

u1.s1; sj;sN j/:

(10)

Proof of Proposition 1. We show that the condition for .sN1; : : : ;sNn/ and the condition for .s1; : : : sn/are the same. From Lemma 3

maxt1 min

sj

w1.t1; sj;sN j/Dmin

sj

maxt1 w1.t1; sj;sN j/:

Since any value ofs1can be realized by appropriately choosingt1givensj; j ¤1, andsN j, we have maxs1u1.s1; sj;sN j/Dmaxt1w1.t1; sj;sN j/for anysj. Thus,

minsj max

s1

u1.s1; sj;sN j/Dmin

sj max

t1

w1.t1; sj;sN j/:

With Lemma 4 we conclude maxs1

minsj

u1.s1; sj;sN j/Dmin

sj

maxs1

u1.s1; sj;sN j/Du1.Ns1;sN2; : : : ;sNn/D0:

This is 2 of Lemma 1. The result of this proposition means thatw1.tN1;sNj;sN j/Dwj.tN1;sNj;sN j/D 0.

Next we show the following proposition.

Proposition 2. ti competition andti sj competition where one player, Playern, choosessn, are equivalent.

To prove this proposition we need the following lemma.

Lemma 5.

minsn

maxti

wi.ti;tN i; sn/Dmin

tn

maxti

vi.ti;tN i; tn/:

tN i is a vector oftNk fork2 f1; : : : ; n 1g; k ¤i.

Proof. maxtiwi.ti;tN i; sn/is the maximum ofwi.Dvi/with respect toti givensnandtN i. Letti.sn/Darg maxtiwi.ti;tN i; sn/, and fix the value oftnat

tn0Dgn.fi.ti.sn/;tN i; tn/; f i..ti.sn/;tN i; tn//; sn/;

wheref i is a vector offkfork2 f2; : : : ; n 1g; k¤i. Then, we have maxti vi.ti;tN i; tn0/Dmax

ti vi.ti;tN i; gn.fi.ti.sn/;tN i; tn/; f i..ti.sn/;tN i; tn//; sn//

wi.ti.sn/;tN i; sn/Dmax

ti

wi.ti;tN i; sn/;

where maxtivi.ti;tN i; tn0/is the maximum ofvi with respect toti given the value oftnat gn.fi.ti.sn/;tN i; tn/; f i..ti.sn/;tN i; tn//; sn/:

We assume thatti.sn/Darg maxtiwi.ti;tN i; sn/is single-valued. By the maximum theorem and continuity ofwi, ti.sn/is continuous. Then, any value of tn0 in some neighborhood around.tN1;tN2; : : : ;tNn/can be realized by appropriately choosingsngiventi andtN i as

tn0Dgn.fi.ti.sn/;tN i; tn/; f i..ti.sn/;tN i; tn//; sn/:

(11)

Therefore,

mintn

maxti vi.ti;tN i; tn/min

sn

maxti wi.ti;tN i; sn/: (9) On the other hand, maxtivi.ti;tN i; tn/is the maximum ofviwith respect totigiventnand tN i. Letti.tn/ D arg maxtivi.ti;tN i; tn/, and fix the value ofsnatfn.ti.tn/;tN i; tn/. Then, we have

maxti

wi.ti;tN i; sn/Dmax

ti

wi.ti;tN i; fn.ti.tn/;tN i; tn//vi.ti.tn/;tN i; tn/Dmax

ti

vi.ti;tN i; tn/;

where maxtiwi.ti;tN i; sn/ is the maximum ofwi.D vi/ with respect toti given the value of sn atfn.ti.tn/;tN i; tn/.We assume thatti.tn/ D arg maxtivi.ti;tN i; tn/is single-valued.

By the maximum theorem and continuity ofvi,ti.tn/is continuous. Then, any value ofsn

in some neighborhood around.Nt1;tN2; : : : ;sNn/can be realized by appropriately choosingtn giventNi andtN i assnDfn.ti.tn/;tN i; tn/. Therefore,

minsn

maxti wi.ti;tN i; sn/min

tn

maxti vi.ti;tN i; tn/: (10) Combining (9) and (10), we get

minsn

maxti

wi.ti;tN i; sn/Dmin

tn max

ti

vi.ti;tN i; tn/:

Proof of Proposition 2. We show that the condition for .Nt1; : : : ;tNn/ and the condition for .tQ1; : : : ;tQn/are the same. From Lemma 3

maxti min

sn

wi.ti;tN i; sn/Dmin

sn

maxti wi.ti;tN i; sn/:

Since any value oftncan be realized by appropriately choosingsngiventi,i ¤n, andtN i, we have minsnwi.ti;tN i; sn/Dmintnvi.ti;tN i; tn/for anyti. Thus,

maxti

mintn

vi.ti;tN i; tn/Dmax

ti

minsn

wi.ti;tN i; sn/:

From Lemma 5 we have minsnmaxtiwi.ti;tN i; sn/ Dmintnmaxtivi.ti;tN i; tn/. Therefore, we obtain

maxti

mintn

vi.ti;tN i; tn/Dmin

tn

maxti

vi.ti;tN i; tn/Dvi.tN1;tN2; : : : ;tNn/D0:

This is 2 of Lemma 2. The result of this proposition means thatwi.tNi;tN i;sNn/Dwn.tNi;tN i;sNn/D 0.

Finally we show the following proposition.

Proposition 3. ti sj competition in whichmplayers chooseti’s as their strategic variables, and ti sj competition in whichm 1players chooseti’s as their strategic variables are equivalent, where2mn 1.

(12)

To prove this proposition we need the following lemma.

Lemma 6.

maxti

minsj

wi.ti;tN i; sj;sN j/Dmax

si min

sj

wi.si;tN i; sj;sN j/:

tN i is a vector of tNk for k 2 f1; : : : ; mg; k ¤ i. sN j is a vector of sNl for l 2 fmC 1; : : : ; ng; l ¤j.

Proof. minsjwi.ti;tN i; sj;sN j/is the minimum ofwi.Dui/with respect tosj giventi,tN i

andsN j. Letsj.ti/ D arg minsjwi.ti;tN i; sj;sN j/. The values of variables other thanti, sj.ti/,tN i andsN j are determined by the following equations;

s1Df1.tN1; : : : ; ti; : : : ;tNm; tmC1; : : : ; tj; : : : ; tn/;

: : : ;

si Dfi.tN1; : : : ; ti; : : : ;tNm; tmC1; : : : ; tj; : : : ; tn/;

: : : ;

smDfm.tN1; : : : ; ti; : : : ;tNm; tmC1; : : : ; tj; : : : ; tn/;

tmC1DgmC1.s1; : : : ; si; : : : ; sm;sNmC1; : : : ; sj.ti/; : : : ;sNn/;

: : : ;

tj Dgj.s1; : : : ; si; : : : ; sm;sNmC1; : : : ; sj.ti/; : : : ;sNn/;

: : : ;

tnDgn.s1; : : : ; si; : : : ; sm;sNmC1; : : : ; sj.ti/; : : : ;sNn/:

Denote thissi bysi0, and fix the value ofsi atsi0. Then, we have minsj wi.si0;tN i; sj;sN j/wi.ti;tN i; sj.ti/;sN j/Dmin

sj wi.ti;tN i; sj;sN j/;

where minsjwi.s0i;tN i; sj;sN j/ is the minimum ofwi.D ui/ with respect to sj given the value ofsi atsi0. We assume thatsj.ti/Darg minsjwi.ti;tN i; sj;sN j/is single-valued. By the maximum theorem and continuity ofwi, sj.ti/is continuous. Then, any value of si0 in some neighborhood around.sNi;tN i;sNj;sN j/can be realized by appropriately choosingti

givensj,tN i andsN j. Therefore, maxsi

minsj wi.si;tN i; sj;sN j/max

ti

minsj wi.ti;tN i; sj;sN j/: (11) On the other hand, minsjwi.si;tN i; sj;sN j/is the minimum ofwi.Dui/with respect to sj givensi,tN i andsN j. Letsj.si/Darg minsj wi.si;tN i; sj;sN j/. The values of variables other thansi,sj.si/,tN i andsN j are determined by the following equations;

s1Df1.tN1; : : : ; ti; : : : ;tNm; tmC1; : : : ; tj; : : : ; tn/;

(13)

: : : ;

smDfm.tN1; : : : ; ti; : : : ;tNm; tmC1; : : : ; tj; : : : ; tn/;

tmC1DgmC1.s1; : : : ; si; : : : ; sm;sNmC1; : : : ; sj.si/; : : : ;sNn/;

: : : ;

ti Dgi.s1; : : : ; si; : : : ; sm;sNmC1; : : : ; sj.si/; : : : ;sNn/;

tj Dgj.s1; : : : ; si; : : : ; sm;sNmC1; : : : ; sj.si/; : : : ;sNn/;

: : : ;

tnDgn.s1; : : : ; si; : : : ; sm;sNmC1; : : : ; sj.si/; : : : ;sNn/:

Denote thisti byti0, and fix the value ofti atti0. Then, we have minsj wi.ti0;tN i; sj;sN j/wi.si;tN i; sj.si/;sN j/Dmin

sj wi.si;tN i; sj;sN j/;

where minsjwi.ti0;tN i; sj;sN j/ is the minimum of wi.D ui/ with respect tosj given the value ofti atti0. We assume thatsj.si/Darg minsjwi.si;tN i; sj;sN j/is single-valued. By the maximum theorem and continuity ofwi, sj.si/ is continuous. Then, any value ofti0 in some neighborhood around.tNi;tN i;sNj;sN j/can be realized by appropriately choosingsi

givensj,sN j andtN i. Therefore, maxti min

sj

wi.ti;tN i; sj;sN j/max

si min

sj

wi.si;tN i; sj;sN j/: (12) Combining (11) and (12), we get

maxti min

sj

wi.ti;tN i; sj;sN j/Dmax

si min

sj

wi.si;tN i; sj;sN j/:

Proof of Proposition 3. We show that the condition for.tNi;tN i;sNj;sN j/ and the condition for.sNi;tN i;sNj;sN j/are the same. From Lemma 3

maxti

minsj

wi.ti;tN i; sj;sN j/Dmin

sj

maxti

wi.ti;tN i; sj;sN j/:

Since any value ofsi can be realized by appropriately choosingti givensj,tN i,sN j, we have maxtiwi.ti;tN i; sj;sN j/Dmaxsiwi.si;tN i; sj;sN j/for anysj. Thus,

minsj max

ti

wi.ti;tN i; sj;sN j/Dmin

sj max

si wi.si;tN i; sj;sN j/:

With Lemma 6 we conclude maxsi min

sj wi.si;tN i; sj;sN j/Dmax

si min

sj wi.si;tN i; sj;sN j/:

(14)

Summarizing these results we conclude.

Proposition 4. sicompetition,ticompetition andti sjcompetition with any number of players whose strategic variables areti’s are equivalent, and payoffs of all players at any equilibrium are zero.

Proof. From Proposition 1

w1.tN1;sNj;sN j/Dwj.tN1;sNj;sN j/D0; j 2 f2; 3; : : : ; ng:

This means that the payoffs of all players when only one player chooses ti and all other players choosesj’s are zero. From Proposition 2

wn.tNi;tN i;sNn/Dwi.tNi;tN i;sNn/D0; i 2 f1; 2; : : : ; n 1g:

This means that the payoffs of all players when only one player choosessj and all other players chooseti’s are zero. From the result of Proposition 3

wi.tN1;tN2;sNj;sN j/Dwj.tN1;tN2;sNj;sN j/D0; i 2 f1; 2g; j 2 f3; 4; : : : ; ng:

This means that the payoffs of all players when two players chooseti’s and all other players choosesj’s are zero. Then, inductively we conclude that

wi.tNi;tN i;sNj;sN j/Dwj.tNi;tN i;sNj;sN j/D0;

in the game wheremplayers chooseti’s as their strategic variables for anymsuch that2 m n 1. i denotes a player whose strategic variable isti, andj denotes a player whose strategic variable issj. Thus, payoffs of all players in anyti sj competition are zero. By the definitions ofsi competition andti competition payoffs of all players in thesi competition and theti competition are zero.

7 Example: relative profit maximization in oligopoly with differentiated goods

Consider an oligopoly with three firms producing differentiated goods. The firms are A, B and C. The inverse demand functions are

pADa xA bxB bxC;

pB Da xB bxA bxC;

and

pC Da xC bxA bxB;

where0 < b < 1. pA, pB and pC are the prices of the goods of Firm A, B and C, and xA, xB andxC are the outputs of them. From these inverse demand functions the direct demand functions are derived as follows;

xAD .1 b/a .1Cb/pACb.pACpC/

.1 b/.1C2b/ ;

(15)

xB D .1 b/a .1Cb/pBCb.pBCpC/

.1 b/.1C2b/ ;

and

xC D .1 b/a .1Cb/pC Cb.pACpB/

.1 b/.1C2b/ :

The (absolute) profits of the firms are

ADpAxA cAxA; B DpBxB cBxB; and

C DpCxC cCxC:

cA,cB andcC are the constant marginal costs of Firm A, B and C. The relative profits of the firms are

'ADA BCC

2 ;

'B DB

ACC

2 ;

and

'C DC

ACB

2 :

We see

'AC'BC'C D0;

so . the game is zero-sum. In a Cournot model the firms determine their outputs to maxi- mize their relative profits. In a Bertrand model they determine the prices of their goods to maximize their relative profits. The Cournot equilibrium outputs are

xAC D bcC CbcB bcA 4cA abC4a

.4 b/.2Cb/ ;

xBC D bcC bcB 4cBCbcA abC4a

.4 b/.2Cb/ ;

xCC D bcB bcC 4cC CbcA abC4a

.4 b/.2Cb/ :

The Bertrand equilibrium prices are

pBA D 3b2cC C3bcC C3b2cBC3bcBC4b2cAC7bcAC4cA 5ab2CabC4a

.2Cb/.4C5b/ ;

pBB D 3b2cC C3bcC C4b2cBC7bcBC4cBC3b2cAC3bcA 5ab2CabC4a

.2Cb/.4C5b/ ;

pCB D 4b2cC C7bcC C4cC C3b2cBC3bcBC3b2cAC3bcA 5ab2CabC4a

.2Cb/.4C5b/ ;

(16)

The difference between the relative profit in the Bertrand equilibrium and that in the Cournot equilibrium for each of Firm A, B, C is

'AB 'AC D 9b3.bC2/.cC2 4cBcC C2cAcC Cc2BC2cAcB 2cA2/

.b 4/2.b 1/.5bC4/2 ;

'BB 'BC D 9b3.bC2/.cC2 C2cBcC 4cAcC 2c2BC2cAcBCcA2/

.b 4/2.b 1/.5bC4/2 ;

and

'CB 'CC D 9b3.bC2/.2cC2 2cBcC 2cAcC c2BC4cAcB cA2/

.b 4/2.b 1/.5bC4/2 :

If and only ifcADcB DcC, we have'AC D'AB,'BC D'BB,'CC D'CB. Thus, in a symmetric oligopoly Cournot and Bertrand equilibria coincide. However, in an asymmetric oligopoly they do not coincide. For example, ifcB D cC butcA > cB, the difference between the relative profit in the Bertrand equilibrium and the relative profit in the Cournot equilibrium for each firm is

'AB 'AC D 18b3.bC2/.cB cA/2 .b 4/2.b 1/.5bC4/2 < 0;

'BB 'BC D 9b3.bC2/.cB cA/2 .b 4/2.b 1/.5bC4/2 > 0;

and

'CB 'CC D 9b3.bC2/.cB cA/2 .b 4/2.b 1/.5bC4/2 > 0:

References

Glicksberg, I.L. (1952), “A further generalization of the Kakutani fixed point theorem,”

Proceedings of the American Mathematical Society,3, 170174.

Matsumura, T., N. Matsushima and S. Cato (2013) “Competitiveness and R&D competition revisited”Economic Modelling,31, 541-547.

Satoh, A. and Y. Tanaka (2013) “Relative profit maximization and Bertrand equilibrium with quadratic cost functions,”Economics and Business Letters,2, pp. 134-139, 2013.

Satoh, A. and Y. Tanaka (2014a) “Relative profit maximization and equivalence of Cournot and Bertrand equilibria in asymmetric duopoly,” Economics Bulletin, 34, pp. 819-827, 2014.

Satoh, A. and Y. Tanaka (2014b), “Relative profit maximization in asymmetric oligopoly,”

Economics Bulletin,34, 1653-1664.

Satoh, A. and Tanaka, Y. (2016), “Maximin and minimax strategies in symmetric oligopoly,” mimeo.

(17)

Tanaka, Y. (2013a) “Equivalence of Cournot and Bertrand equilibria in differentiated duopoly under relative profit maximization with linear demand,”Economics Bulletin,33, 1479-1486.

Tanaka, Y. (2013b) “Irrelevance of the choice of strategic variables in duopoly under relative profit maximization,”Economics and Business Letters,2, pp. 75-83, 2013.

Vega-Redondo, F. (1997) “The evolution of Walrasian behavior”Econometrica65, 375-384.

Referenzen

ÄHNLICHE DOKUMENTE

タイトル Choice of strategic variables by relative profit maximizing firms in oligopoly 著者 Atsuhiro Satoh and Yasuhito Tanaka.. 所属 Faculty of Economics,

(2014a), “Relative profit maximization and equivalence of Cournot and Bertrand equilibria in asymmetric duopoly”, Economics Bulletin, 34,

We consider general demand and cost functions, and show that the choice of strategic variables is irrelevant in the sense that the conditions of relative profit maximization for

We show that in symmetric duopoly these definitions of relative profit are completely equiv- alent, but in asymmetric duopoly the equilibrium output of the more efficient (lower

We consider a simple model of the choice of strategic variables under relative profit maximization by firms in an asymmetric oligopoly with differentiated sub- stitutable goods

We study the equilibrium with quantity setting behavior and price setting be- havior of firms in duopoly under relative profit maximization with constant conjec- tural variations,

Of course

(2) The existence of Nash equilibrium in a symmetric multi-person zero-sum game implies Sion’s minimax theorem, and implies that the maximin strat- egy and the minimax strategy for