• Keine Ergebnisse gefunden

Maximinandminimaxstrategiesinsymmetricmulti-playersgamewithtwostrategicvariables Satoh,AtsuhiroandTanaka,Yasuhito MunichPersonalRePEcArchive

N/A
N/A
Protected

Academic year: 2022

Aktie "Maximinandminimaxstrategiesinsymmetricmulti-playersgamewithtwostrategicvariables Satoh,AtsuhiroandTanaka,Yasuhito MunichPersonalRePEcArchive"

Copied!
12
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Munich Personal RePEc Archive

Maximin and minimax strategies in

symmetric multi-players game with two strategic variables

Satoh, Atsuhiro and Tanaka, Yasuhito

21 January 2017

Online at https://mpra.ub.uni-muenchen.de/76353/

MPRA Paper No. 76353, posted 22 Jan 2017 14:48 UTC

(2)

Maximin and minimax strategies in symmetric multi-players game with two

strategic variables

Atsuhiro Satoh

βˆ—

Faculty of Economics, Doshisha University, Kamigyo-ku, Kyoto, 602-8580, Japan.

and

Yasuhito Tanaka

†

Faculty of Economics, Doshisha University, Kamigyo-ku, Kyoto, 602-8580, Japan.

Abstract

We examine maximin and minimax strategies for players in symmetric multi-players game with two strategic variables. We consider two patterns of game; the π‘₯-game in which strategic variables of players areπ‘₯’s, and the𝑝-game in which strategic variables of players are𝑝’s. We will show that the maximin strategy and the minimax strategy in theπ‘₯-game, and the maximin strategy and the minimax strategy in the 𝑝-game for the players are all equivalent. However, the maximin strategy for the players are not neces- sarily equivalent to their Nash equilibrium strategies in theπ‘₯-game nor the𝑝-game. But in a special case, where the objective function of one player is the opposite of the sum of the objective functions of other players, the maximin and the minimax strategies for the players constitute the Nash equilibrium both in theπ‘₯-game and the𝑝-game.

keywords: multi-players game, two strategic variables, maximin strategy, minimax strategy JEL Classification: C72, D43.

βˆ—atsato@mail.doshisha.ac.jp

†yasuhito@mail.doshisha.ac.jp

(3)

1 Introduction

We examine maximin and minimax strategies for players in symmetric multi-players game with two strategic variables. We consider two patterns of game; theπ‘₯-game in which strategic variables of players are π‘₯’s, and the 𝑝-game in which strategic variables of players are 𝑝’s.

The maximin strategy for a player is its strategy which maximizes its objective function that is minimized by a strategy of each rival player. The minimax strategy for a player is a strategy of each rival player which minimizes its objective function that is maximized by its strategy.

These strategies are defined for any pair of two players. The objective functions of the players may be or may not be their absolute profits. We will show that the maximin strategy and the minimax strategy in theπ‘₯-game, and the maximin strategy and the minimax strategy in the 𝑝-game for the players are all equivalent. However, the maximin strategy (or the minimax strategy) for the players are not necessarily equivalent to their Nash equilibrium strategies in theπ‘₯-game nor the 𝑝-game. But in a special case, where the objective function of one player is the opposite of the sum of the objective functions of other players, the maximin strategy (or the minimax strategy) for the players constitute the Nash equilibrium both in theπ‘₯-game and the𝑝-game, and in the special case the Nash equilibrium in theπ‘₯-game and that in the 𝑝- game are equivalent. This special case corresponds to relative profit maximization by firms in symmetric oligopoly with differentiated goods in which two strategic variables are the outputs and the prices.

In Section 5 we consider a mixed game in which some players chooseπ‘₯’s and the other play- ers choose𝑝’s as their strategic variables, and show that the maximin and minimax strategies for each player in the mixed game are equivalent to those in theπ‘₯-game and the𝑝-game.

2 The model

There are𝑛 players. Call each player Player 𝑖, 𝑖 ∈ {1,2,…, 𝑛}. The strategic variables of Player𝑖are denoted byπ‘₯𝑖and𝑝𝑖. They are related by the following function.

𝑝𝑖= 𝑓𝑖(π‘₯1, π‘₯2,…, π‘₯𝑛), π‘–βˆˆ {1,2,…, 𝑛}. (1) They are symmetric, continuous, differentiable and invertible. We consider symmetric equi- libria. The inverses of them are written as

π‘₯𝑖 =π‘₯𝑖(𝑝1, 𝑝2,…, 𝑝𝑛), π‘–βˆˆ {1,2,…, 𝑛}.

Differentiating (1) with respect to𝑝𝑖given𝑝𝑗, 𝑗 ∈ {1,2,…, 𝑛}, 𝑗 ≠𝑖, yields

πœ•π‘“π‘–

πœ•π‘₯𝑖 𝑑π‘₯𝑖 𝑑𝑝𝑖 +

𝑛

βˆ‘

𝑗=1,𝑗≠𝑖

πœ•π‘“π‘–

πœ•π‘₯𝑗 𝑑π‘₯𝑗 𝑑𝑝𝑖 = 1.

πœ•π‘“π‘—

πœ•π‘₯𝑖 𝑑π‘₯𝑖 𝑑𝑝𝑖 + πœ•π‘“π‘—

πœ•π‘₯𝑗 𝑑π‘₯𝑗

𝑑𝑝𝑖 +

𝑛

βˆ‘

π‘˜=1,π‘˜β‰ π‘–,𝑗

πœ•π‘“π‘—

πœ•π‘₯π‘˜ 𝑑π‘₯π‘˜

𝑑𝑝𝑖 = 0, 𝑗 ∈ {1,2,…, 𝑛}, 𝑗 β‰  𝑖.

(4)

By symmetry of the model, since πœ•π‘“π‘–

πœ•π‘₯𝑗 = πœ•π‘“π‘—

πœ•π‘₯𝑖 and πœ•π‘“π‘—

πœ•π‘₯𝑗 = πœ•π‘“π‘–

πœ•π‘₯𝑖 at the equilibrium, they are rewritten as

πœ•π‘“π‘–

πœ•π‘₯𝑖 𝑑π‘₯𝑖

𝑑𝑝𝑖 + (π‘›βˆ’ 1)

πœ•π‘“π‘—

πœ•π‘₯𝑖 𝑑π‘₯𝑗 𝑑𝑝𝑖 = 1.

πœ•π‘“π‘—

πœ•π‘₯𝑖 𝑑π‘₯𝑖 𝑑𝑝𝑖 +

[πœ•π‘“π‘–

πœ•π‘₯𝑖 + (π‘›βˆ’ 2)πœ•π‘“π‘—

πœ•π‘₯𝑖 ]𝑑π‘₯𝑗

𝑑𝑝𝑖 = 0.

From them we get

𝑑π‘₯𝑖

𝑑𝑝𝑖 = 𝑑π‘₯𝑗 𝑑𝑝𝑗 =

πœ•π‘“π‘–

πœ•π‘₯𝑖 + (π‘›βˆ’ 2)πœ•π‘“π‘—

πœ•π‘₯𝑖

(πœ•π‘“

𝑖

πœ•π‘₯𝑖 βˆ’ πœ•π‘“π‘—

πœ•π‘₯𝑖

) [πœ•π‘“

𝑖

πœ•π‘₯𝑖 + (π‘›βˆ’ 1)πœ•π‘“π‘—

πœ•π‘₯𝑖

] (2)

and

𝑑π‘₯𝑗

𝑑𝑝𝑖 = 𝑑π‘₯𝑖 𝑑𝑝𝑗 = βˆ’

πœ•π‘“π‘—

πœ•π‘₯𝑖

(πœ•π‘“

𝑖

πœ•π‘₯𝑖 βˆ’ πœ•π‘“π‘—

πœ•π‘₯𝑖

) [πœ•π‘“

𝑖

πœ•π‘₯𝑖 + (π‘›βˆ’ 1)πœ•π‘“π‘—

πœ•π‘₯𝑖

] (3)

because 𝑑π‘₯𝑖

𝑑𝑝𝑗 = 𝑑π‘₯𝑗

𝑑𝑝𝑖 and 𝑑π‘₯𝑖

𝑑𝑝𝑖 = 𝑑π‘₯𝑗

𝑑𝑝𝑗 at the equilibrium. We assume

πœ•π‘“π‘–

πœ•π‘₯𝑖 β‰ 0,

πœ•π‘“π‘—

πœ•π‘₯𝑖 β‰ 0, πœ•π‘“π‘–

πœ•π‘₯𝑖 βˆ’

πœ•π‘“π‘—

πœ•π‘₯𝑖 β‰ 0, πœ•π‘“π‘–

πœ•π‘₯𝑖 + (π‘›βˆ’ 1)

πœ•π‘“π‘—

πœ•π‘₯𝑖 β‰  0, πœ•π‘“π‘–

πœ•π‘₯𝑖 + (π‘›βˆ’ 2)

πœ•π‘“π‘—

πœ•π‘₯𝑖 β‰ 0. (4) The objective function of Player𝑖, π‘–βˆˆ {1,2,…, 𝑛}is

πœ‹π‘–(π‘₯1, π‘₯2,…, π‘₯𝑛).

It is continuous and differentiable. We consider two patterns of game, the π‘₯-game and the 𝑝-game. In theπ‘₯-game strategic variables of players areπ‘₯’s, and in the𝑝-game their strategic variables are𝑝’s. We do not consider simple maximization of their objective functions. Instead we investigate maximin strategies and minimax strategies for the players.

3 Maximin and minimax strategies

3.1 π‘₯-game

3.1.1 Maximin strategy

We pick up two players𝑖and𝑗 β‰  𝑖. First consider the condition for minimization of πœ‹π‘–with respect toπ‘₯𝑗, givenπ‘₯𝑖andπ‘₯π‘˜β€™s,π‘˜βˆˆ {1,2,…, 𝑛}, π‘˜β‰  𝑖, 𝑗. It is

πœ•πœ‹π‘–

πœ•π‘₯𝑗 = 0. (5)

We assume that the second order condition is satisfied in each case. Depending on the value ofπ‘₯𝑖 we get the value ofπ‘₯𝑗 which satisfies (5). Denote it byπ‘₯𝑗(π‘₯𝑖). Differentiating (5) with

(5)

respect toπ‘₯𝑖givenπ‘₯π‘˜β€™sπ‘˜βˆˆ {1,2,…, 𝑛}, π‘˜β‰ π‘–, 𝑗, we have

πœ•2πœ‹π‘–

πœ•π‘₯2𝑖 + πœ•2πœ‹π‘–

πœ•π‘₯π‘–πœ•π‘₯𝑗

𝑑π‘₯𝑗(π‘₯𝑖) 𝑑π‘₯𝑖 = 0.

From this

𝑑π‘₯𝑗(π‘₯𝑖) 𝑑π‘₯𝑖 = βˆ’

πœ•2πœ‹π‘–

πœ•π‘₯2

𝑖

πœ•2πœ‹π‘–

πœ•π‘₯π‘—πœ•π‘₯𝑖

.

We assume that it is not zero. The maximin strategy for Player𝑖to Player𝑗is its strategy which maximizesπœ‹π‘–givenπ‘₯𝑗(π‘₯𝑖)andπ‘₯π‘˜β€™sπ‘˜βˆˆ {1,2,…, 𝑛}, π‘˜β‰  𝑖, 𝑗. The condition for maximization ofπœ‹π‘–is

πœ•πœ‹π‘–

πœ•π‘₯𝑖 + πœ•πœ‹π‘–

πœ•π‘₯𝑗

𝑑π‘₯𝑗(π‘₯𝑖) 𝑑π‘₯𝑖 = 0.

By (5) it is reduced to

πœ•πœ‹π‘–

πœ•π‘₯𝑖 = 0.

Thus, the conditions for the maximin strategy for Player𝑖to Player𝑗 are

πœ•πœ‹π‘–

πœ•π‘₯𝑖 = 0, πœ•πœ‹π‘–

πœ•π‘₯𝑗 = 0. (6)

(6) are the same for all pairs ofπ‘–βˆˆ {1,2,…, 𝑛}and𝑗 β‰  𝑖.

3.1.2 Minimax strategy

Consider the condition for maximization of πœ‹π‘– with respect to π‘₯𝑖 given π‘₯𝑗, and π‘₯π‘˜β€™s, π‘˜ ∈ {1,2,…, 𝑛}, π‘˜β‰ π‘–, 𝑗. It is

πœ•πœ‹π‘–

πœ•π‘₯𝑖 = 0. (7)

Depending on the value ofπ‘₯𝑗 we get the value ofπ‘₯𝑖 which satisfies (7). Denote it by π‘₯𝑖(π‘₯𝑗).

Differentiating (7) with respect toπ‘₯𝑗 givenπ‘₯π‘˜β€™s,π‘˜βˆˆ {1,2,…, 𝑛}, π‘˜β‰ π‘–, 𝑗.

πœ•2πœ‹π‘–

πœ•π‘₯2𝑖 𝑑π‘₯𝑖

𝑑π‘₯𝑗 + πœ•2πœ‹π‘–

πœ•π‘₯π‘—πœ•π‘₯𝑖 = 0.

From it we obtain

𝑑π‘₯𝑖(π‘₯𝑗) 𝑑π‘₯𝑗 = βˆ’

πœ•2πœ‹π‘–

πœ•π‘₯π‘—πœ•π‘₯𝑖

πœ•2πœ‹π‘–

πœ•π‘₯2

𝑖

.

We assume that it is not zero. The minimax strategy for Player𝑖to Player 𝑗 is a strategy of Player𝑗 which minimizesπœ‹π‘–given π‘₯𝑖(π‘₯𝑗)andπ‘₯π‘˜β€™s ,π‘˜βˆˆ {1,2,…, 𝑛}, π‘˜β‰  𝑖, 𝑗. The condition for minimization ofπœ‹π‘–is

πœ•πœ‹π‘–

πœ•π‘₯𝑖

𝑑π‘₯𝑖(π‘₯𝑗) 𝑑π‘₯𝑗 + πœ•πœ‹π‘–

πœ•π‘₯𝑗 = 0.

(6)

By (7) it is reduced to

πœ•πœ‹π‘–

πœ•π‘₯𝑗 = 0.

Thus, the conditions for the minimax strategy for Player𝑖are

πœ•πœ‹π‘–

πœ•π‘₯𝑖 = 0, πœ•πœ‹π‘–

πœ•π‘₯𝑗 = 0.

These conditions are the same for all pairs ofπ‘–βˆˆ {1,2,…, 𝑛}and𝑗 β‰  𝑖, and they are the same as conditions in (6).

3.2 𝑝-game

We pick up two players𝑖and𝑗 ≠𝑖. The objective function of Player𝑖, π‘–βˆˆ {1,2,…, 𝑛}, in the 𝑝-game is written as follows.

πœ‹π‘–(π‘₯1(𝑝1, 𝑝2,…, 𝑝𝑛), π‘₯2(𝑝1, 𝑝2,…, 𝑝𝑛),…, π‘₯𝑛(𝑝1, 𝑝2,…, 𝑝𝑛)).

We can write it as

πœ‹π‘–(𝑝1, 𝑝2,…, 𝑝𝑛),

becauseπœ‹π‘– is a function of 𝑝1, 𝑝2,…, 𝑝𝑛. Interchangingπ‘₯𝑖, π‘₯𝑗 and π‘₯π‘˜ by𝑝𝑖, 𝑝𝑗 andπ‘π‘˜ in the arguments in the previous subsection, we can show that the conditions for the maximin strategy and the minimax strategy for Player𝑖to Player𝑗 in the𝑝-game are as follows.

πœ•πœ‹π‘–

πœ•π‘π‘– = 0, πœ•πœ‹π‘–

πœ•π‘π‘— = 0. (8)

The conditions in (8) are the same for all pairs ofπ‘–βˆˆ {1,2,…, 𝑛}and𝑗 β‰  𝑖. We can rewrite them as follows.

πœ•πœ‹π‘–

πœ•π‘π‘– = πœ•πœ‹π‘–

πœ•π‘₯𝑖 𝑑π‘₯𝑖

𝑑𝑝𝑖 + (π‘›βˆ’ 1)πœ•πœ‹π‘–

πœ•π‘₯𝑗 𝑑π‘₯𝑗

𝑑𝑝𝑖 = 0,

πœ•πœ‹π‘–

πœ•π‘π‘— =πœ•πœ‹π‘–

πœ•π‘₯𝑖 𝑑π‘₯𝑖 𝑑𝑝𝑗 + πœ•πœ‹π‘–

πœ•π‘₯𝑗 𝑑π‘₯𝑗

𝑑𝑝𝑗 + (π‘›βˆ’ 2)πœ•πœ‹π‘–

πœ•π‘₯π‘˜ 𝑑π‘₯π‘˜ 𝑑𝑝𝑗

=πœ•πœ‹π‘–

πœ•π‘₯𝑖 𝑑π‘₯𝑖 𝑑𝑝𝑗 + πœ•πœ‹π‘–

πœ•π‘₯𝑗 [𝑑π‘₯𝑖

𝑑𝑝𝑖 + (π‘›βˆ’ 2)𝑑π‘₯𝑖 𝑑𝑝𝑗 ]

= 0, π‘˜β‰ π‘–, 𝑗, because 𝑑π‘₯𝑗

𝑑𝑝𝑗 = 𝑑π‘₯𝑖

𝑑𝑝𝑖, πœ•πœ‹π‘–

πœ•π‘₯π‘˜ = πœ•πœ‹π‘–

πœ•π‘₯𝑗 and 𝑑π‘₯π‘˜

𝑑𝑝𝑗 = 𝑑π‘₯𝑖

𝑑𝑝𝑗 at the symmetric equilibrium. By (2) and (3) and the assumptions in (4), they are further rewritten as

πœ•πœ‹π‘–

πœ•π‘₯𝑖 [πœ•π‘“π‘–

πœ•π‘₯𝑖 + (π‘›βˆ’ 2)πœ•π‘“π‘—

πœ•π‘₯𝑖 ]

βˆ’ (π‘›βˆ’ 1)πœ•πœ‹π‘–

πœ•π‘₯𝑗

πœ•π‘“π‘—

πœ•π‘₯𝑖 = 0,

πœ•πœ‹π‘–

πœ•π‘₯𝑖

πœ•π‘“π‘—

πœ•π‘₯𝑖 βˆ’ πœ•πœ‹π‘–

πœ•π‘₯𝑗

πœ•π‘“π‘–

πœ•π‘₯𝑖 = 0.

(7)

Again by the assumptions in (4), we obtain

πœ•πœ‹π‘–

πœ•π‘₯𝑖 = 0, πœ•πœ‹π‘–

πœ•π‘₯𝑗 = 0.

They are the same as conditions in (6). We have proved the following proposition.

Proposition 1. The maximin strategy and the minimax strategy in theπ‘₯-game, and the maximin strategy and the minimax strategy in the𝑝-game for the players are all equivalent.

4 Special case

The results in the previous section do not imply that the maximin strategies (or the minimax strategies) for the players are equivalent to their Nash equilibrium strategies in theπ‘₯-game nor the𝑝-game. But in a special case the maximin strategies (or the minimax strategies) for the players constitute theNash equilibrium both in theπ‘₯-game and the𝑝-game.

The conditions for the maximin strategy and the minimax strategy for Player𝑖to Player𝑗

are πœ•πœ‹π‘–

πœ•π‘₯𝑖 = 0, πœ•πœ‹π‘–

πœ•π‘₯𝑗 = 0, 𝑗 ≠𝑖, π‘–βˆˆ {1,2,…, 𝑛}. (6) The conditions for Nash equilibrium in theπ‘₯-game for Players𝑖and𝑗are

πœ•πœ‹π‘–

πœ•π‘₯𝑖 = 0, πœ•πœ‹π‘—

πœ•π‘₯𝑗 = 0, 𝑗 ≠𝑖, π‘–βˆˆ {1,2,…, 𝑛}. (9) (6) and (9) are not necessarily equivalent. The conditions for Nash equilibrium in the𝑝-game are

πœ•πœ‹π‘–

πœ•π‘π‘– = 0,

πœ•πœ‹π‘—

πœ•π‘π‘— = 0, 𝑗 ≠𝑖, π‘–βˆˆ {1,2,…, 𝑛}. (10) (8) and (10) are not necessarily equivalent. However, in a special case those conditions are all equivalent. We assume

πœ‹π‘– = βˆ’

𝑛

βˆ‘

𝑗=1,𝑗≠𝑖

πœ‹π‘—, orπœ‹π‘–+

𝑛

βˆ‘

𝑗=1,𝑗≠𝑖

πœ‹π‘— = 0. (11)

By symmetry of the game

πœ‹π‘–= βˆ’(π‘›βˆ’ 1)πœ‹π‘—, 𝑗 ≠𝑖.

Then, (9) is rewritten as

πœ•πœ‹π‘–

πœ•π‘₯𝑖 = 0, πœ•πœ‹π‘–

πœ•π‘₯𝑗 = 0, 𝑗 ≠𝑖, π‘–βˆˆ {1,2,…, 𝑛}. (12) (12) and (6) are equivalent. Therefore, the maximin strategies and the minimax strategies for the players in theπ‘₯-game constitute a Nash equilibrium of the π‘₯-game. πœ•πœ‹π‘—

πœ•π‘₯𝑗 = 0 in (9) means

(8)

maximization of πœ‹π‘— with respect to π‘₯𝑗. On the other hand, πœ•πœ‹π‘–

πœ•π‘₯𝑗 = 0 in (12) and (6) means minimization ofπœ‹π‘–with respect toπ‘₯𝑗.

Similarly, (10) is rewritten as

πœ•πœ‹π‘–

πœ•π‘π‘– = 0, πœ•πœ‹π‘–

πœ•π‘π‘— = 0, 𝑗 β‰  𝑖, π‘–βˆˆ {1,2,…, 𝑛}. (13) (13) and (8) are equivalent. Therefore, the maximin strategies and the minimax strategies for the players in the 𝑝-game constitute a Nash equilibrium of the 𝑝-game. Since the maximin strategies and the minimax strategies in theπ‘₯-game and those in the𝑝-game are equivalent, the Nash equilibrium of theπ‘₯-game and that of the𝑝-game are equivalent.

Summarizing the results, we get the following proposition.

Proposition 2. In the special case in which (11) is satisfied: The maximin strategies and the minimax strategies for the players constitute the Nash equilibrium both in theπ‘₯-game and the 𝑝-game.

This special case corresponds to relative profit maximization by firms in symmetric oligopoly with differentiated goods in which two strategic variables are the outputs and the prices1. Let

Μ„

πœ‹π‘–be the absolute profit of Firm𝑖, π‘–βˆˆ {1,2,…, 𝑛}, and denote its relative profit byπœ‹π‘–. Then, πœ‹π‘– =πœ‹Μ„π‘–βˆ’ 1

π‘›βˆ’ 1

𝑛

βˆ‘

𝑗=1,𝑗≠𝑖

Μ„

πœ‹π‘—, π‘–βˆˆ {1,2,…, 𝑛}.

We have

𝑛

βˆ‘

𝑖=1

πœ‹π‘–=

𝑛

βˆ‘

𝑖=1

Μ„ πœ‹π‘–βˆ’

𝑛

βˆ‘

𝑖=1

Μ„ πœ‹π‘– = 0.

By symmetry of the oligopoly

πœ‹π‘–= βˆ’(π‘›βˆ’ 1)πœ‹π‘—.

5 Mixed game

Suppose that the first π‘š players choose 𝑝’s and the remaining π‘›βˆ’ π‘š players choose π‘₯’s as their strategic variables. We assume 1 ≀ π‘š ≀ π‘›βˆ’ 1. Differentiating (1) with respect to 𝑝𝑖, 𝑖= 1,…, π‘š, givenπ‘π‘˜, π‘˜= 1,…, π‘š, π‘˜ ≠𝑖, andπ‘₯𝑗, 𝑗 =π‘š+ 1,…, 𝑛,

πœ•π‘“π‘–

πœ•π‘₯𝑖 𝑑π‘₯𝑖

𝑑𝑝𝑖 + (π‘šβˆ’ 1)πœ•π‘“π‘–

πœ•π‘₯π‘˜ 𝑑π‘₯π‘˜

𝑑𝑝𝑖 = 1, π‘˜βˆˆ {1,…, π‘š}, π‘˜β‰ π‘–,

πœ•π‘“π‘˜

πœ•π‘₯π‘˜ 𝑑π‘₯π‘˜

𝑑𝑝𝑖 + πœ•π‘“π‘˜

πœ•π‘₯𝑖 𝑑π‘₯𝑖

𝑑𝑝𝑖 + (π‘šβˆ’ 2)πœ•π‘“π‘˜

πœ•π‘₯π‘˜β€²

𝑑π‘₯π‘˜β€²

𝑑𝑝𝑖 = 0, π‘˜βˆˆ {1,…, π‘š}, π‘˜β‰ π‘–, π‘˜β€² ≠𝑖, π‘˜,

1About relative profit maximization under imperfect competition, please see Matsumura, Matsushima and Cato (2013), Satoh and Tanaka (2013), Satoh and Tanaka (2014a), Satoh and Tanaka (2014b), Tanaka (2013a), Tanaka (2013b) and Vega-Redondo (1997).

(9)

At the equilibrium we assume 𝑑π‘₯π‘˜β€²

𝑑π‘₯𝑖 = 𝑑π‘₯π‘˜

𝑑π‘₯𝑖, πœ•π‘“π‘˜

πœ•π‘₯π‘˜ = πœ•π‘“π‘–

πœ•π‘₯𝑖, πœ•π‘“π‘–

πœ•π‘₯π‘˜ = πœ•π‘“π‘˜

πœ•π‘₯π‘˜β€² = πœ•π‘“π‘˜

πœ•π‘₯𝑖. Then, they are rewritten as

πœ•π‘“π‘–

πœ•π‘₯𝑖 𝑑π‘₯𝑖

𝑑𝑝𝑖 + (π‘šβˆ’ 1)πœ•π‘“π‘˜

πœ•π‘₯𝑖 𝑑π‘₯π‘˜

𝑑𝑝𝑖 = 1,

πœ•π‘“π‘˜

πœ•π‘₯𝑖 𝑑π‘₯𝑖 𝑑𝑝𝑖 +

[πœ•π‘“π‘–

πœ•π‘₯𝑖 + (π‘šβˆ’ 2)πœ•π‘“π‘˜

πœ•π‘₯𝑖 ]𝑑π‘₯π‘˜

𝑑𝑝𝑖 = 0, From them we get

𝑑π‘₯𝑖 𝑑𝑝𝑖 =

πœ•π‘“π‘–

πœ•π‘₯𝑖 + (π‘šβˆ’ 2)πœ•π‘“π‘˜

πœ•π‘₯𝑖

(πœ•π‘“π‘–

πœ•π‘₯𝑖 βˆ’ πœ•π‘“π‘˜

πœ•π‘₯𝑖

) [πœ•π‘“π‘–

πœ•π‘₯𝑖 + (π‘šβˆ’ 1)πœ•π‘“π‘˜

πœ•π‘₯𝑖

], 𝑑π‘₯π‘˜

𝑑𝑝𝑖 = βˆ’

πœ•π‘“π‘˜

πœ•π‘₯𝑖

(πœ•π‘“π‘–

πœ•π‘₯𝑖 βˆ’ πœ•π‘“π‘˜

πœ•π‘₯𝑖

) [πœ•π‘“π‘–

πœ•π‘₯𝑖 + (π‘šβˆ’ 1)πœ•π‘“π‘˜

πœ•π‘₯𝑖

]. We assume

𝑑π‘₯𝑖

𝑑𝑝𝑖 βˆ’ 𝑑π‘₯π‘˜ 𝑑𝑝𝑖 =

πœ•π‘“π‘–

πœ•π‘₯𝑖 + (π‘šβˆ’ 1)πœ•π‘“π‘˜

πœ•π‘₯𝑖

(πœ•π‘“π‘–

πœ•π‘₯𝑖 βˆ’ πœ•π‘“π‘˜

πœ•π‘₯𝑖

) [πœ•π‘“π‘–

πœ•π‘₯𝑖 + (π‘šβˆ’ 1)πœ•π‘“π‘˜

πœ•π‘₯𝑖

] β‰ 0, (14)

𝑑π‘₯𝑖

𝑑𝑝𝑖 + (π‘šβˆ’ 1)𝑑π‘₯π‘˜ 𝑑𝑝𝑖 =

πœ•π‘“π‘–

πœ•π‘₯𝑖 βˆ’ πœ•π‘“π‘˜

πœ•π‘₯𝑖

(πœ•π‘“π‘–

πœ•π‘₯𝑖 βˆ’ πœ•π‘“π‘˜

πœ•π‘₯𝑖

) [πœ•π‘“π‘–

πœ•π‘₯𝑖 + (π‘šβˆ’ 1)πœ•π‘“π‘˜

πœ•π‘₯𝑖

] β‰ 0. (15) Differentiating (1) with respect toπ‘₯𝑗, 𝑗 = π‘š+ 1,…, 𝑛, given𝑝𝑖, 𝑖 = 1,…, π‘š, andπ‘₯𝑙, 𝑙 = π‘š+ 1,…, 𝑛, 𝑙≠ 𝑗,

πœ•π‘“π‘–

πœ•π‘₯𝑖 𝑑π‘₯𝑖

𝑑π‘₯𝑗 + (π‘šβˆ’ 1)πœ•π‘“π‘–

πœ•π‘₯π‘˜ 𝑑π‘₯π‘˜ 𝑑π‘₯𝑗 + πœ•π‘“π‘–

πœ•π‘₯𝑗 = 0, π‘–βˆˆ {1,…, π‘š}, π‘˜β‰ π‘–.

At the equilibrium we assume 𝑑π‘₯π‘˜

𝑑π‘₯𝑗 = 𝑑π‘₯𝑖

𝑑π‘₯𝑗, πœ•π‘“π‘–

πœ•π‘₯π‘˜ = πœ•π‘“π‘˜

πœ•π‘₯𝑖. Then, it is rewritten as [πœ•π‘“π‘–

πœ•π‘₯𝑖 + (π‘šβˆ’ 1)πœ•π‘“π‘˜

πœ•π‘₯𝑖 ] 𝑑π‘₯𝑖

𝑑π‘₯𝑗 + πœ•π‘“π‘–

πœ•π‘₯𝑗 = 0, This means

𝑑π‘₯𝑖 𝑑π‘₯𝑗 = βˆ’

πœ•π‘“π‘–

πœ•π‘₯𝑗

πœ•π‘“π‘–

πœ•π‘₯𝑖 + (π‘šβˆ’ 1)πœ•π‘“π‘˜

πœ•π‘₯𝑖

, We assume 𝑑π‘₯𝑖

𝑑π‘₯𝑗 β‰ 0.

We write the objective functions as follows.

πœ‘π‘–(𝑝1,…, π‘π‘š, π‘₯π‘š+1,…, π‘₯𝑛) =πœ‹π‘–(π‘₯1(𝑝1,…, 𝑝𝑛),…, π‘₯π‘š(𝑝1,…, 𝑝𝑛), π‘₯π‘š+1,…, π‘₯𝑛), π‘–βˆˆ {1,…, 𝑛}.

(10)

Then,

πœ•πœ‘π‘–

πœ•π‘π‘– = πœ•πœ‹π‘–

πœ•π‘₯𝑖 𝑑π‘₯𝑖

𝑑𝑝𝑖 + (π‘šβˆ’ 1)πœ•πœ‹π‘–

πœ•π‘₯π‘˜ 𝑑π‘₯π‘˜

𝑑𝑝𝑖,

πœ•πœ‘π‘–

πœ•π‘π‘˜ = πœ•πœ‹π‘–

πœ•π‘₯𝑖 𝑑π‘₯𝑖 π‘‘π‘π‘˜ + πœ•πœ‹π‘–

πœ•π‘₯π‘˜ 𝑑π‘₯π‘˜

π‘‘π‘π‘˜ + (π‘šβˆ’ 2)πœ•πœ‹π‘–

πœ•π‘₯π‘˜β€²

𝑑π‘₯π‘˜β€²

π‘‘π‘π‘˜ ,

πœ•πœ‘π‘–

πœ•π‘₯𝑗 = πœ•πœ‹π‘–

πœ•π‘₯𝑗 + πœ•πœ‹π‘–

πœ•π‘₯𝑖 𝑑π‘₯𝑖

𝑑π‘₯𝑗 + (π‘šβˆ’ 1)πœ•πœ‹π‘–

πœ•π‘₯π‘˜ 𝑑π‘₯π‘˜ 𝑑π‘₯𝑗,

πœ•πœ‘π‘—

πœ•π‘₯𝑗 = πœ•πœ‹π‘—

πœ•π‘₯𝑗 +π‘šπœ•πœ‹π‘—

πœ•π‘₯𝑖 𝑑π‘₯𝑖 𝑑π‘₯𝑗,

πœ•πœ‘π‘—

πœ•π‘₯𝑙 = πœ•πœ‹π‘—

πœ•π‘₯𝑙 +π‘šπœ•πœ‹π‘—

πœ•π‘₯𝑖 𝑑π‘₯𝑖 𝑑π‘₯𝑙,

πœ•πœ‘π‘—

πœ•π‘π‘– = πœ•πœ‹π‘—

πœ•π‘₯𝑖 𝑑π‘₯𝑖

𝑑𝑝𝑖 + (π‘šβˆ’ 1)πœ•πœ‹π‘—

πœ•π‘₯π‘˜ 𝑑π‘₯π‘˜

𝑑𝑝𝑖,

where 𝑖 ∈ {1,…, π‘š}, π‘˜ ∈ {1,…, π‘š}, π‘˜ β‰  𝑖, π‘˜β€² β‰  𝑖, π‘˜, 𝑗 ∈ {π‘š+ 1,…, 𝑛}, 𝑙 ∈ {π‘š+ 1,…, 𝑛}, 𝑙 β‰  𝑗. At the equilibrium 𝑑π‘₯π‘˜

π‘‘π‘π‘˜ = 𝑑π‘₯𝑖

𝑑𝑝𝑖, 𝑑π‘₯π‘˜β€²

π‘‘π‘π‘˜ = 𝑑π‘₯𝑖

π‘‘π‘π‘˜ = 𝑑π‘₯π‘˜

𝑑𝑝𝑖, πœ•πœ‹π‘–

πœ•π‘₯π‘˜β€²

= πœ•πœ‹π‘–

πœ•π‘₯π‘˜, 𝑑π‘₯𝑖

𝑑π‘₯𝑙 = 𝑑π‘₯𝑖

𝑑π‘₯𝑗 and

πœ•πœ‹π‘—

πœ•π‘₯π‘˜ = πœ•πœ‹π‘—

πœ•π‘₯𝑖. Then, they are rewritten as

πœ•πœ‘π‘–

πœ•π‘π‘– = πœ•πœ‹π‘–

πœ•π‘₯𝑖 𝑑π‘₯𝑖

𝑑𝑝𝑖 + (π‘šβˆ’ 1)πœ•πœ‹π‘–

πœ•π‘₯π‘˜ 𝑑π‘₯π‘˜

𝑑𝑝𝑖,

πœ•πœ‘π‘–

πœ•π‘π‘˜ = πœ•πœ‹π‘–

πœ•π‘₯𝑖 𝑑π‘₯π‘˜ 𝑑𝑝𝑖 + πœ•πœ‹π‘–

πœ•π‘₯π‘˜ [𝑑π‘₯𝑖

𝑑𝑝𝑖 + (π‘šβˆ’ 2)𝑑π‘₯π‘˜ 𝑑𝑝𝑖 ]

,

πœ•πœ‘π‘–

πœ•π‘₯𝑗 = πœ•πœ‹π‘–

πœ•π‘₯𝑖 𝑑π‘₯𝑖 𝑑π‘₯𝑗 + πœ•πœ‹π‘–

πœ•π‘₯𝑗 + (π‘šβˆ’ 1)πœ•πœ‹π‘–

πœ•π‘₯π‘˜ 𝑑π‘₯𝑖 𝑑π‘₯𝑗.

πœ•πœ‘π‘—

πœ•π‘₯𝑗 = πœ•πœ‹π‘—

πœ•π‘₯𝑗 +π‘šπœ•πœ‹π‘—

πœ•π‘₯𝑖 𝑑π‘₯𝑖 𝑑π‘₯𝑗,

πœ•πœ‘π‘—

πœ•π‘₯𝑙 = πœ•πœ‹π‘—

πœ•π‘₯𝑙 +π‘šπœ•πœ‹π‘—

πœ•π‘₯𝑖 𝑑π‘₯𝑖 𝑑π‘₯𝑙,

πœ•πœ‘π‘—

πœ•π‘π‘– = πœ•πœ‹π‘—

πœ•π‘₯𝑖 [𝑑π‘₯𝑖

𝑑𝑝𝑖 + (π‘šβˆ’ 1)𝑑π‘₯π‘˜ 𝑑𝑝𝑖 ]

.

By similar arguments to those in the previous sections, we obtain the conditions for the maximin and minimax strategies for Player𝑖, 𝑖 ∈ {1,…, π‘š}, to Player𝑗with the condition for the maximin and minimax strategies for Player𝑖to Playerπ‘˜as follows;

πœ•πœ‘π‘–

πœ•π‘π‘– = 0, πœ•πœ‘π‘–

πœ•π‘π‘˜ = 0, πœ•πœ‘π‘–

πœ•π‘₯𝑗 = 0, 𝑖, π‘˜βˆˆ {1,…, π‘š}, π‘˜β‰  𝑖, 𝑗 ∈ {π‘š+ 1,…, 𝑛}. (16)

(11)

From these conditions we obtain

πœ•πœ‹π‘–

πœ•π‘₯𝑖 𝑑π‘₯𝑖

𝑑𝑝𝑖 + (π‘šβˆ’ 1)πœ•πœ‹π‘–

πœ•π‘₯π‘˜ 𝑑π‘₯π‘˜

𝑑𝑝𝑖 = 0, (17)

πœ•πœ‹π‘–

πœ•π‘₯𝑖 𝑑π‘₯π‘˜

𝑑𝑝𝑖 + πœ•πœ‹π‘–

πœ•π‘₯π‘˜ [𝑑π‘₯𝑖

𝑑𝑝𝑖 + (π‘šβˆ’ 2)𝑑π‘₯π‘˜ 𝑑𝑝𝑖 ]

= 0, (18)

πœ•πœ‹π‘–

πœ•π‘₯𝑖 𝑑π‘₯𝑖 𝑑π‘₯𝑗 + πœ•πœ‹π‘–

πœ•π‘₯𝑗 + (π‘šβˆ’ 1)πœ•πœ‹π‘–

πœ•π‘₯π‘˜ 𝑑π‘₯𝑖

𝑑π‘₯𝑗 = 0. (19)

By (14) and (15), (17) and (18) imply

πœ•πœ‹π‘–

πœ•π‘₯𝑖 = 0, πœ•πœ‹π‘–

πœ•π‘₯π‘˜ = 0, π‘–βˆˆ {1,…, π‘š}, π‘˜βˆˆ {1,…, π‘š}, π‘˜β‰  𝑖. (20) From (19) we get

πœ•πœ‹π‘–

πœ•π‘₯𝑗 = 0, π‘–βˆˆ {1,…, π‘š}, 𝑗 ∈ {π‘š+ 1,…, 𝑛}. (21) (20) and (21) are the same as the conditions in (6) for Player𝑖, π‘–βˆˆ {1,…, π‘š}.

The conditions for the maximin and minimax strategies for Player𝑗, 𝑗 ∈ {π‘š+ 1,…, 𝑛}, to Player𝑖with the condition for the maximin and minimax strategies for Player𝑗to Player𝑙are

πœ•πœ‘π‘—

πœ•π‘₯𝑗 = 0, πœ•πœ‘π‘—

πœ•π‘₯𝑙 = 0, πœ•πœ‘π‘—

πœ•π‘π‘– = 0, 𝑗 ∈ {π‘š+ 1,…, 𝑛}, 𝑙 ∈ {π‘š+ 1,…, 𝑛}, 𝑙≠𝑗, π‘–βˆˆ {1,…, π‘š}.

From them we obtain

πœ•πœ‹π‘—

πœ•π‘₯𝑗 +π‘šπœ•πœ‹π‘—

πœ•π‘₯𝑖 𝑑π‘₯𝑖

𝑑π‘₯𝑗 = 0, (22)

πœ•πœ‹π‘—

πœ•π‘₯𝑙 +π‘šπœ•πœ‹π‘—

πœ•π‘₯𝑖 𝑑π‘₯𝑖

𝑑π‘₯𝑙 = 0, (23)

πœ•πœ‹π‘—

πœ•π‘₯𝑖 [𝑑π‘₯𝑖

𝑑𝑝𝑖 + (π‘šβˆ’ 1)𝑑π‘₯π‘˜ 𝑑𝑝𝑖 ]

= 0. (24)

From (15) and (24) we get

πœ•πœ‹π‘—

πœ•π‘₯𝑖 = 0. (25)

Then, by (22) and (23), we obtain

πœ•πœ‹π‘—

πœ•π‘₯𝑗 = 0, πœ•πœ‹π‘—

πœ•π‘₯𝑙 = 0. (26)

(25) and (26) are the same as the conditions in (6) for Player𝑗, 𝑗 ∈ {π‘š+ 1,…, 𝑛}.

Therefore, the conditions for the maximin and minimax strategies in the mixed game are equivalent to the conditions in theπ‘₯-game.

(12)

6 Concluding Remark

We have analyzed maximin and minimax strategies in symmetric multi-players game with two strategic variables. We assumed differentiability of objective functions of players. In the future research we want to extend the arguments of this paper to a case where objective functions of players are not assumed to be differentiable2.

References

Matsumura, T., Matsushima,N. and Cato,S. (2013), β€œCompetitiveness and R&D competition revisited”Economic Modelling,31, 541-547.

Satoh, A. and Tanaka, Y. (2013), β€œRelative profit maximization and Bertrand equilibrium with quadratic cost functions,”Economics and Business Letters,2, pp. 134-139.

Satoh, A. and Tanaka, Y. (2014a), β€œRelative profit maximization and equivalence of Cournot and Bertrand equilibria in asymmetric duopoly,”Economics Bulletin,34, pp. 819-827.

Satoh, A. and Tanaka, Y. (2014b), β€œRelative profit maximization in asymmetric oligopoly,”

Economics Bulletin,34, 1653-1664.

Satoh, A. and Tanaka, Y. (2017), β€œSymmetric multi-person zero-sum game with two sets of strategic variables,” mimeo.

Tanaka, Y. (2013a), β€œEquivalence of Cournot and Bertrand equilibria in differentiated duopoly under relative profit maximization with linear demand,”Economics Bulletin,33, 1479-1486.

Tanaka, Y. (2013b), β€œIrrelevance of the choice of strategic variables in duopoly under relative profit maximization,”Economics and Business Letters,2, pp. 75-83.

Vega-Redondo, F. (1997), β€œThe evolution of Walrasian behavior”Econometrica65, 375-384.

2One attempt along this line is Satoh and Tanaka (2017).

Referenzen

Γ„HNLICHE DOKUMENTE

Unit for Library Computer Service at the Main Library of the University of Silesia takes care of smooth operating of computer system, especially for hiring establishment of the

But a det err ence st r at egy fails t o det er ( i) if regulat ion is t oo incom plet e, or ( ii) if im posing sanct ions is t oo cost ly, or ( iii) if t he enforcem ent

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ интСгрирования ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ двиТСния получаСтся тСхнологичСская траСктория для j - Π³ΠΎ Π±Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Π°,

If Norman was just a little bit smarter, he would see that we would do much better by both charging the high price, each getting 5000 schillings each day, rather than both setting

4.39 Across all those scenarios, we also need to recognise the extent to which success depends on early and continuing analysis and understanding. Intervention without

74 The prudent use of American military power, in concert with the economic, political, and diplomatic instruments of national power, remains central to attempts to shape

Close bilateral and multilateral defence cooperation with Baltic and Nordic countries, the United States of America (the USA), Poland and other Allies allows a

Online Motion Planning MA-INF 1314 General rays!. Elmar Langetepe University