• Keine Ergebnisse gefunden

Rep.: Design of the strategy

N/A
N/A
Protected

Academic year: 2022

Aktie "Rep.: Design of the strategy"

Copied!
20
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Online Motion Planning MA-INF 1314 General rays!

Elmar Langetepe University of Bonn

(2)

Rep.: Window Shopper Strategy: Three parts

• A line segment from (0, 0) to (a, b) with increasing ratio for s between (1, 0) and (1, b)

• A curve f from (a, b) to some point (1, D) on l which has the same ratio for s between (1, b) and (1, D)

• A ray along the window starting at (1, D) with decreasing ratio for s beyond (1, D) to infinity

• Worst-case ratio is attained for all s between (1, b) and (1, D)

• Optimality by construction, CONVEX!

III.

(1,0) CII

CIII

I.

II.

f l

CI

(0,0)

(a, b)

(1, b) (1, D)

(3)

Rep.: Design of the strategy

• Condition I): a = 1−b2 2, √

1 + b2

• Condition II):

f0(x) = 2√

1 + b2

1+f(x)2f(x) 1−b2f(x)2 , Point ((1 − b2)/2, b)

• Solve: y0 = 1 · 2√

1 + b2

1+y2y

1−b2y2 with ((1 − b2)/2, b)

• First order diff. eq. y0 = h(x)g(y)

• Solution: R y l

dt

g(t) = R x

k h(z)dz:

Here x = f−1(y)

III.

(1,0) CII

CIII

I.

II.

f l

CI

(0,0)

(a, b)

(1, b) (1, D)

(4)

Rep.: Consider inverse function x = f

−1

(y)

• x = −b

2

1+y2+arctanh1/(

1+y2)

arctanh1/(

1+b2)

1+b2

2

1+b2

• x0 = g(y)1 = − (b2y2−1)

2

1+y2y

(1+b2) ≥ 0 for y ∈ [b, 1/b]

• x00 = − (b2y2+2y2+1)

2(1+y2)3/2

1+b2y2≤ 0 for y ≥ 0

• x = f−1(y) concave,X y = f(x) convex, Max. at y = 1/b

f−1

Y (0,1)

(0, f1(1/b))

l

(1/b,0)

(1/b, f1(1/b))

(b,(1b2)/2)

(0,0) (b,0)

(5)

Rep.: Theorem Optimality of f

• Solve f−1(1/b) = 1: b = 0.3497 . . ., D = 1/b = 2.859 . . ., a = 0.43 . . ., worst-case ratio C = √

1 + b2 = 1.05948 . . .

• f convex from (a, b) to (1, D), line segment convex

• Prolongation of line segment is tangent of f−1 at (b, a)

• Insert: f−10(b) = ab! Convex!

l

X (0,1)

(0,0.43. . .)

Y f−1

(0.34. . . ,0.43. . .)

(0,0) (2.85. . . ,0)

(2.85. . . ,1)

(0.34. . . ,0)

(6)

Rays in general

• Rays are somewhere in the plane

• Searchpath Π

• Upper bound: C = 22.531 . . .

• Lower bound: C ≥ 2π e = 17.079 . . .

s

a Πap

p r

Πap+|ps|

|as| C

(7)

Strategy: Spiral search

• Logarithmic spiral

• Polar coordinates (ϕ, d · Eφcot(α)), d > 0, −∞ < ϕ < ∞

• α = π/2 Kreis!

• Hits the ray, moves to s

• Worst-case ratio: Ray is a tangent Lemma 2.38

α

α a p

s s1

(8)

Optimizing the spiral

• Strategy d · Eφcot(α), property |SPpa| = |cos(α)||ap| = d|Ecos(α)|θp cotα

• Ratio C identical for all tangents: Ratio C(α)

• We optimize for perpendicular points q0

• Adversary can move s a bit to the left (chooses β)

• Law of sine: Ratio C(β, α) = C(α) sin(β) + cos(β)

π α

a

β

γ(α) q0

p

q

s

(9)

Minimize worst-case ratio

• dEφcot(α)): Determine α, d = 1

• Assume: Fixed α for q0

• |as| sin(β) = |aq0|,

|sq0| = |as| cos(β) = |aqsin(β)0|cos(β)

• Ratio Cq0 = |SP

p

a|+|pq0|

|aq0|

maximized by

Cq0·|aq0|+|aq0|cos(β)/sin(β)

|aq0|/sin(β) = Cq0 sin(β) + cos(β)

• Minimize over α for q0

• Finally adverary choose β, fixes s!

πα

a

β

γ(α) q0

p

q

s

(10)

Minimize worst-case for q

0

• p = (φ, Eφcot(α)): Determine α < π/2

• |SPpa| = cos(α)|ap| = Ecotα(2πcos(α)+γ+θq)

• |pq| sin(α) = |ap| sin(γ) and

|pq| = Ecotα(2π+γsin+αθq) sin(γ)

• |qq0| = |aq| cos(α)

• |pq0| = Ecotα(2π+γ+sinαθq) sin(γ) + Ecotα(θq) cos(α)

• |aq0| = |aq| sin(α) = Ecotα(θq) sin(α)

• γ depends only on α: Now γ(α)

α

γ a p

q q0

(11)

Minimize worst-case for q

0

Determine Cq0(α) = pa|+|pq

0|

|aq0| !

1

cosα Ecotα(θq+2π+γ(α)) + sin1α Ecotα(θq+2π+γ(α)) sin γ(α) + Ecotαθq cos α

Ecotαθq sinα =

1

cosα Ecotα(2π+γ(α)) + sin1α Ecotα(2π+γ(α)) sin γ(α) + cos α

sinα =

1

sin α · cos α + sinγ(α) sin2 α

Eb(2π+γ(α)) + cot α

α

γ a p

q q0

(12)

Minimize worst-case for s = q

0

Determine γ(α), Exercise!

Solve Equation: sin(α−γsinα(α)) = Ecotα(2π+γ(α)) Then optimize: f(α) :=

1

sinα·cosα + sinγ(α)

sin2 α

Eb(2π(α)) + cot α Then minimize: g(β) := f(αmin) sin β + cos β!

γ(α)

a

β α

q p

q0

s

(13)

Optimizing the spiral: Theorem 2.42

• Ratio: C(α) for s = q0 minimal for α = 1.4575 . . .

• C(α) = 22.4908 . . .

• Adversary choose β for max.

D(β, α) = C(α) sin(β) + cos(β)

• For α = 1.4575 . . .

choose δ = 0.044433 . . .

D(β, C(α)) = 22.51306056 . . .

γ(α)

a

β α

δ

q p

q0

s

(14)

Lower bound: Special example

• General problem of lower bounds

• Special example: Searching for a special ray in the plane

• Cross R and detect s

• Special case: No move to s

• Alpern/Gal (Spiral search):

Ratio C = 17.289 . . .

• Best ratio among monotone and periodic strategies

• ”Complicated task”: There is an optimal periodic/monotone strategy

p

s R

a

(15)

Lower bound construction

• n known rays emanating from a

• Angle α = n

• Find s on one of the rays

• Also non-periodic and non- monotone strategies

• Stragegy S: Visits the rays in some order

• Hit xk, leave βkxkk ≥ 1)

xk+2 βk+1xk+1

xk+1 xk

βkxk

α

(16)

Lower bound construction

• Find s on a ray visited up to βkxk at the last time, now at xJk

• Note: Any order is possible

• Worst-case, s close to βkxk

• Ratio: C(S)

PJk−1

i=1

q

ixi)2−2βixixi+1 cosγi,i+1+x2i+1+(βixi−xi) βkxk

• Monotone/Periodic, Funktional??

xJk

xk+2 βk+1xk+1

xk+1 α

xk βkxk s

a

(17)

Lower bound construction

• Ratio: C(S)

PJk−1

i=1

qixi)2−2βixixi+1 cosγi,i+1+x2i+1+(βixi−xi)

βkxk

• Shortest distance to next ray:

βixi sin n

• Lower bound for

q

ixi)2 ixixi+1 cosγi,i+1 + x2i+1

• Lower bound: C(S) ≥ sin 2π

n

PJk−1

i=1 βixi βkxk

xi+1

βixi xi

n βJkxJk

xJk

xk βkxk

(18)

Lower bound construction

• Lower bound

PJk−1

i=1 fi fk

• Equals functional of standard m- ray search

• Optimal strategy:

monotone/periodic (Alpern/Gal)

• fi =

n n−1

i , ratio:(n − 1)

n n−1

n

• C(S) ≥ sin n (n − 1)

n n−1

n

xi+1

βixi xi

n βJkxJk

xJk

xk βkxk

(19)

Lower bound construction

• C(S) ≥ sin n (n − 1)

n n−1

n

n→∞lim (n − 1)

n n − 1

n

sin 2π n = 2π e = 17.079 . . .

• Lower bound: Theorem

xi+1

βixi xi n

βJkxJk

xJk

xk βkxk

(20)

Summary

• The Window-Shopper-Problem

• Optimal strategy C = 1.059 . . .: Theorem

• Interesting design technique

• Rays in general

• Lower C ≥ 2π e = 17.079 . . . (Theorem) and upper bound C = 22.51 . . . (Theorem)

• Lower bound construction

• Also a lower bound for special case with C = 17.289 . . .

Referenzen

ÄHNLICHE DOKUMENTE

Online Motion Planning MA-INF 1314 Smart DFS. Elmar Langetepe University

Lemma Asumme the agent does not leave the labyrinth by Pledge and let Π ◦ be the repeated path.. Moves

Online Motion Planning MA-INF 1314 General rays!. Elmar Langetepe University

Online Motion Planning MA-INF 1314 Alternative cost measures!. Elmar Langetepe University

Leave the area as soon as possible Lost in a forest Bellman 1956 Escape paths for known region R Single deterministic path.. Leave area from any starting point Adversary translates

Online Motion Planning MA-INF 1314 Restricted Graphexploration.. Elmar Langetepe University

Online Motion Planning MA-INF 1314 Searching Points/Rays.. Elmar Langetepe University

Online Motion Planning MA-INF 1314 Alternative cost measures!. Elmar Langetepe University