• Keine Ergebnisse gefunden

Molecular Beam Eptaxy of Cu(In,Ga)S2 on Si (2003) - PDF ( 206 KB )

N/A
N/A
Protected

Academic year: 2022

Aktie "Molecular Beam Eptaxy of Cu(In,Ga)S2 on Si (2003) - PDF ( 206 KB )"

Copied!
5
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Molecular Beam Epitaxy of Cu (In,Ga) S 2 on Si

In recent years impressive achievements concerning thin film solar cells based on chalcopyrite compound semicon- ductors have been reached, resulting in the realisation of several pilot plants for commercial exploitation. However, the best reported efficiencies for Cu(In,Ga)(Se,S)2-based devices, although remarkably high, are still considerably lower as compared to single crystalline solar cells based on Si or GaAs. Here, the question arises, how far the polycry- stalline nature of these materials limits their efficiencies.

Single crystalline materials, either obtained by single crystal or epitaxial growth, bear the possibility to check the bene- ficial or disadvantageous influence of grain boundaries and interfaces in these compounds. In recent years we have developed a process for the growth of the sulphide-based chalcopyrite system Cu(In,Ga)S2(CIGS) on Si substrates via molecular beam epitaxy (MBE) from elemental sources.

Fig. 1 depicts the bandgap energies of varioussemiconduc- tors as a function of their lattice constants. As can be seen, the sulphide chalcopyrite system stands very close to the lattice constant of Si and thus bears the possibility of a monolithic integration of a direct semiconductor into Si- technology. Via the adjustment of the Ga-content, the bandgap energies can be tuned over a wide range and the lattice mismatch to the employed substrate can be elimi- nated, as illustrated in Fig. 2-4.

Th. Hahn J. Cieslak H. Metzner J. Eberhardt M. Müller U. Kaiser U. Reislöhner W. Witthuhn J. Kräußlich Universität Jena hahn@pinet.uni-jena.de

R. Goldhahn F. Hudert

Technische Universität Ilmenau

(2)

perties, important information about the structural varia- tions in chalcopyrite thin films can be drawn from epitaxial layers. As an example, a metastable ordering, called CuAu- type ordering, was predicted theoretically, but it was not until epitaxial thin layers of CuInS2were available that this metastability in chalcopyrites could be verified experimen- tally(Fig. 5).

On the other hand, as depicted in Fig. 6, MBE growth of CuGaS2always leads to the highly ordered chalcopyrite structure. Thus, through variation of the deposition para- meters and compositions, MBE grown CIGS offers the pos- sibility for a wide, systematic variation of electronic, opti- cal, and structural properties of photoactive layers in thin film devices.

Figure 1:

Bandgap energies of common semiconductors as a function of their lattice constants CuAIS2

CuGaS2

CuGaSe2

CuInS2

CulnSe2 CuAlSe2

ZnS

ZnSe CdS

InP

Ge Si

Lattice Constant (A)

5.0 5.2 5.4 5.6 5.8 6.0

Bandgap (eV)

GaAs GaP

GaN 4

3

2

1

0

(3)

Figure 2:

Rutherford backscattering spectra (RBS) of CIGS thin films with varying Ga-content reveal a high homogeneity of the epitaxial layers

Si

Si

Si

Energy (MeV) In

In Cu

Cu

Cu Ga

Ga

0.5 1.0 1.5 2.0 2.5 3.0 3.5 20

15

10

5

0

10

5

0 15

10

5

0

CuIn S2

S

S

S Cu(In,Ga) S2

CuGaS2

Normalized Yield

(4)

Figure 3:

Photoreflection (PR) measurements of CIGS thin films with varying Ga-content. The arrows indicate the respective bandgap-energies at room temperature which varies continuously from 1.52 eV for pure CuInS2

to 2.52 eV for pure CuGaS2.

Figure 4:

Lattice constants in CIGS epitaxial layers as a function of the Ga-content x. Perfect lattice match to Si is achieved at x = 47 %.

T = 295 K

x = 0.81

x = 0.68

x = 0.42 CuGaS2

Cu(In(1-x)Gax)Sx

1.5 2.0 2.5 3.0 Photon Energy (eV)

6R / R (arb. units)

1.60

1.58

1.56

1.54

0 20 40 60 80 100 x [%]

d(224)[Å]

dSI

47 %

222

(5)

Figure 6:

X-ray diffraction scan of the (220)/(204) refle- xions of CuInGa2taken in Bragg-Brentano geo- metry. The splitting of the two reflexions is due to the tetragonal nature of the highly ordered chalcopyrite structure.

Figure 5:

High-resolution trans- mission electron micro- scope image of pure CuAu-ordering in CIGS.

The metastable CuAu- ordering can be identified by the alternating light and dark grey cationic planes in [001]-direction.

The inset to the image shows a simulation of the CuAu-ordering for comparison.

1nm

[001]

[110]

2Q [Degrees]

46.5 46.0 47.5 48.0 48.5 49.0 49.5 60

50

40

30

20

10

0

Si(220)

Intensity [a.u.] CGS(220) CGS(024)CGS(204)

Referenzen

ÄHNLICHE DOKUMENTE

The observed strong cluster formation of the deposited Co clusters is probably due to the weak Co±sub- strate interaction across the hydrogen atoms of the H-passi- vated Si(111)

However, in the case of the III − N system, the nitrogen equilibrium vapor pressure over the crystal at such elevated temperatures is higher than the typical background pressure

Für eine erfolgreiche Großserienfertigung sind zuverlässige, effizien- te und kostengünstige Verfahren zur Herstellung der ein- zelnen Schichten einer CIS-Dünnschichtsolarzelle,

Neue Ansätze für eine kostengünstige Produktion durch die Material- und Energieersparnis sowie durch die Verkürzung der Prozesszeiten des Durchsatzes und des Wirkungsgrades sind

Nichtstrahlende Rekombination deutet auf tiefe Stör- stellen in der Bandlücke hin und zeigt an, dass hier erzeug- te Ladungsträger einen Rekombinationspfad finden, der mit dem

Sie zeigen zwar in ähnlicher Weise das (bereits beschriebene gekoppelte) Auftreten des Majo- ritäten- und des Minoritätensignals Max1T und Min2T, jeweils abhängig von den

Now, the nucleation rate of III-N growth under N-rich conditions with desorption can calculated as a function of substrate temperature and fluxes using the relations of section

irradiations, the thickness of the iron layer in the Fe/aSi bilayer was 30 nm. After a careful calculation of the mixing rates, the values listed in Table 5.1 and also shown in Fig