• Keine Ergebnisse gefunden

Intermediates States

N/A
N/A
Protected

Academic year: 2022

Aktie "Intermediates States"

Copied!
17
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

A C S S Y M P O S I U M S E R I E S 307

Excited States and Reactive Intermediates

Photochemistry, Photophysics, and Electrochemistry

A. B. P. Lever, EDITOR York University

Developed from a symposium sponsored by the Divisions of Inorganic Chemistry of both the American Chemical Society

and the Chemical Institute of Canada at the 1985 Biennial Inorganic

Chemical Symposium, Toronto, Ontario,

June 6-9, 1985

American Chemical Society, Washington, DC 1986

(2)
(3)

9

Electrochemically Generated Transition Metal Complexes

Emissive and Reactive Excited States

A. Vogler, H . Kunkely, and S. Schäffl

Universität Regensburg, Institut für Anorganische Chemie, D-8400 Regensburg, Federal Republic of Germany

A v a r i e t y o f t r a n s i t i o n m e t a l complexes (A) was s u b j e c - t e d to an e l e c t r o l y s i s by an a l t e r n a t i n g c u r r e n t i n a s i m p l e u n d i v i d e d e l e c t r o c h e m i c a l c e l l . The compounds a r e r e d u c e d and o x i d i z e d a t the same e l e c t r o d e . I f the e x c i t a t i o n e n e r g y o f t h e s e compounds i s s m a l l e r than the p o t e n t i a l d i f f e r e n c e o f the r e d u c e d (A ) and o x i d i z e d

( A+) f o r m s , back e l e c t r o n t r a n s f e r may r e g e n e r a t e the complexes i n an e l e c t r o n i c a l l y e x c i t e d s t a t e ( A+ + A" -+

A + A ) . These e x c i t e d complexes may be e m i s s i v e (A •>

A + hv) and/or r e a c t i v e (A B ) . C h e m i c a l t r a n s f o r m a - t i o n s w h i c h accompany the ac e l e c t r o l y s i s do not o n l y p r o c e e d v i a e x c i t e d s t a t e s . As an i m p o r t a n t a l t e r n a t i v e the r e d u c e d o r o x i d i z e d compounds can undergo a f a c i l e c h e m i c a l change (A" B~ o r A+ -* B+) . Back e l e c t r o n t r a n s f e r m e r e l y r e s t o r e s the o r i g i n a l c h a r g e s ( A+ + B~

A + B o r A" + B+ A + B ) . T h i s mechanism and the ac e l e c t r o l y s i s w h i c h p r o c e e d s v i a the g e n e r a t i o n of e x c i - t e d s t a t e s a r e not u n r e l a t e d p r o c e s s e s . Hence the pho- t o r e a c t i o n and the ac e l e c t r o l y s i s can l e a d to the same p r o d u c t i r r e s p e c t i v e of the i n t i m a t e mechanism o f the e l e c t r o l y s i s . However, i t i s a l s o p o s s i b l e t h a t p h o t o - l y s i s and e l e c t r o l y s i s g e n e r a t e d i f f e r e n t p r o d u c t s . Examples o f ac e l e c t r o l y s e s p r o c e e d i n g by t h e s e d i f f e - r e n t mechanisms a r e d i s c u s s e d .

B i m o l e c u l a r e x c i t e d s t a t e e l e c t r o n t r a n s f e r r e a c t i o n s have been i n - v e s t i g a t e d e x t e n s i v e l y d u r i n g the l a s t decade ( 1 - 3 ). E l e c t r o n t r a n s - f e r i s f a v o r e d t h e r m o d y n a m i c a l l y when the e x c i t a t i o n energy E of an i n i t i a l l y e x c i t e d m o l e c u l e A* exceeds the p o t e n t i a l d i f f e r e n c e of the r e d o x c o u p l e s i n v o l v e d i n the e l e c t r o n t r a n s f e r p r o c e s s .

A + hv -> A*

+ _ E(A*) > E ° ( A / A )-E(B~/B) A* + B -> A + B"

0097-6156/ 86/0307-0120506.00/ 0

© 1986 A m e r i c a n C h e m i c a l Society

(4)

S t u d i e s o f such systems p r o v i d e d a b e t t e r u n d e r s t a n d i n g o f the mecha- n i s m o f e l e c t r o n t r a n s f e r p r o c e s s e s i n g e n e r a l . T h i s r e a c t i o n type i s a l s o the b a s i s o f a l m o s t any type o f n a t u r a l or a r t i f i c i a l p h o t o - s y n t h e s i s . Hence i t i s not s u r p r i s i n g t h a t many i n v e s t i g a t i o n s have been d e v o t e d to e x c i t e d s t a t e e l e c t r o n t r a n s f e r r e a c t i o n s . On the c o n t r a r y , the r e v e r s a l o f e x c i t e d s t a t e e l e c t r o n t r a n s f e r has found much l e s s a t t e n t i o n a l t h o u g h i t i s c e r t a i n l y not l e s s i n t e r e s t i n g . In the p r e s e n t paper v a r i o u s a s p e c t s o f t h i s r e a c t i o n type a r e d i s - c u s s e d . The p r o d u c t s o f a r e d o x r e a c t i o n may be g e n e r a t e d i n an e x c i t e d s t a t e i f to a f i r s t a p p r o x i m a t i o n the e x c i t a t i o n e n e r g y i s s m a l l e r than the p o t e n t i a l d i f f e r e n c e o f the a s s o c i a t e d r e d o x c o u p l e s .

A+ + B % A * + B E(A*) < E ° ( A / A+) - E ° ( B " / B )

G e n e r a l l y , t h i s energy r e q u i r e m e n t i s o n l y met when a s t r o n g o x i d a n t r e a c t s w i t h a s t r o n g r e d u c t a n t . The e x c i t e d s t a t e thus p r o d u c e d does not behave d i f f e r e n t l y from t h a t g e n e r a t e d by l i g h t a b s o r p t i o n . I t can be d e a c t i v a t e d by r a d i a t i o n or c h e m i c a l t r a n s f o r m a t i o n s . E l e c t r o n t r a n s f e r i n d u c e d e m i s s i o n ( c h e m i l u m i n e s c e n c e , c l ) i s such a p r o c e s s . W h i l e i t i s w e l l known f o r o r g a n i c systems (4) t h e r e a r e not many o b s e r v a t i o n s o f c l o r i g i n a t i n g from t r a n s i t i o n m e t a l complexes ( 5 - 1 2 ) . The r e a c t a n t s can be p r e p a r e d s e p a r a t e l y . Upon m i x i n g , e l e c t r o n t r a n s f e r t a k e s p l a c e w i t h concoramitant e m i s s i o n o f l i g h t . W h i l e t h i s type o f e x p e r i m e n t i s c o n c e p t i o n a l l y v e r y s i m p l e i t may be d i f f i c u l t to a c c o m p l i s h due to p r a c t i c a l o r t h e o r e t i c a l l i m i t a t i o n s . F o r exam- p l e , t h i s method cannot be a p p l i e d when the r e d o x p a r t n e r s A+ and B~

a r e not v e r y s t a b l e and have o n l y a s h o r t l i f e t i m e . In t h i s c a s e the redox a g e n t s must be p r e p a r e d i n s i t u . T h i s can be done i n two d i f f e - r e n t ways. The r e d o x c a t a l y s i s r e p r e s e n t s one p o s s i b i l i t y . I t may a p p l y to h i g h l y e x o e r g i c redox r e a c t i o n s which do not p r o c e e d r a p i d l y due to l a r g e a c t i v a t i o n e n e r g i e s . A s u i t a b l e r e d o x c a t a l y s t may speed up t h i s r e a c t i o n and f i n a l l y take up the energy w h i c h i s r e l e a s e d by t h i s r e d o x p r o c e s s .

Redox c a t a l y s i s l e a d i n g to c l i s i l l u s t r a t e d by two e x a m p l e s . The o x i d a t i o n o f o x a l a t e by P b ( I V ) does n o t p r o c e e d r e a d i l y a l t h o u g h i t i s s t r o n g l y f a v o r e d t h e r m o d y n a m i c a l l y . T h i s r e a c t i o n i s c a t a l y z e d by R u ( b p y ) ß 2 + w i t h b i p y - 2 , 2 ' b i p y r i d i n e a c c o r d i n g to the f o l l o w i n g mechanism ( 1 3 ) ;

2 R u ( b i p y ) ^+ + P b 02 + 4H+ -> 2 R u ( b i p y ) ^+ + P b2 + + 2H20 Ru(bipy)^*" + C20^~ + R u ( b i p y ) ^+ + C 02 + C0~

R u ( b i p y ) 3+ + C0~ + [ R u ( b i p y ) ^+] * + C 02

[ R u ( b i p y ) ^+] * + R u ( b i p y ) ^+ + hv 2+

The r e a c t i o n o f R u ( b i p y ) ^ w i t h C02 i s the energy r e l e a s i n g e l e c t r o n t r a n s f e r s t e p l e a d i n g to the f o r m a t i o n o f the e l e c t r o n i c a l l y e x c i t e d

(*) complex. I t cannot be c a r r i e d out s e p a r a t e l y . The s t r o n g o x i - dant CO" must be p r e p a r e d i n s i t u s i n c e i t i s a s h o r t - l i v e d r a d i c a l .

The c a t a l y z e d d e c o m p o s i t i o n o f e n e r g y - r i c h o r g a n i c p e r o x i d e s i s a n o t h e r t y p i c a l r e a c t i o n o f t h i s t y p e . I t was c a l l e d " c h e m i c a l l y i n i t i a t e d e l e c t r o n - e x c h a n g e l u m i n e s c e n c e " (CIEEL) by S c h u s t e r , who used o r g a n i c compounds as redox c a t a l y s t s ( 1 4 ) . However, t r a n s i t i o n

(5)

m e t a l complexes work as w e l l . The complex Re(o-phen) (CO)~C1 (R) (o-phen = o - p h e n a n t h r o l i n e ) c a t a l y z e s the d e c o m p o s i t i o n or t e t r a l i n e - h y d r o p e r o x i d e (T) to the k e t o n e a - t e t r a l o n e (K) and water a c c o r d i n g to the mechanism ( 1 5 ) :

R + T -* R+ + T~

T" -> K~ + H20 R+ + K~ + R* + K R* -> R + hv

The r e a c t i o n o f the k e t y l r a d i c a l a n i o n w i t h the o x i d i z e d rhenium complex i s the e n e r g y - r e l e a s i n g e l e c t r o n t r a n s f e r s t e p . T h i s r e a c t i o n cannot be c a r r i e d out s e p a r a t e l y . W h i l e k e t y l r a d i c a l a n i o n s are s t a b l e s p e c i e s , the o x i d i z e d complex i s not s t a b l e and must be gene- r a t e d as s h o r t - l i v e d i n t e r m e d i a t e .

E l e c t r o l y s i s r e p r e s e n t s a n o t h e r , v e r y e l e g a n t method to p r e p a r e s u i t a b l e r e d o x p a i r s i n s i t u w h i c h a r e g e n e r a t e d by c a t h o d i c r e d u c t i o n and a n o d i c o x i d a t i o n . By a p p l i c a t i o n of an a l t e r n a t i n g c u r r e n t the r e d o x p a i r i s g e n e r a t e d a t the same e l e c t r o d e . Back e l e c t r o n t r a n s f e r t a k e s p l a c e from the e l e c t r o g e n e r a t e d r e d u c t a n t to the o x i d a n t near the e l e c t r o d e s u r f a c e . At an a p p r o p r i a t e p o t e n t i a l d i f f e r e n c e t h i s a n n i h i l a t i o n r e a c t i o n l e a d s to the f o r m a t i o n o f e x c i t e d p r o d u c t s . As a r e s u l t an e m i s s i o n ( e l e c t r o g e n e r a t e d c h e m i l u m i n e s c e n c e , e e l ) may be o b s e r v e d ( 1 6 ) . Redox p a i r s o f l i m i t e d s t a b i l i t y can be i n v e s t i g a t e d by ac e l e c t r o l y s i s . The f r e q u e n c y o f the ac c u r r e n t must be a d j u s t e d to the l i f e t i m e of the more l a b i l e r e d o x p a r t n e r . Many o r g a n i c com- pounds have been shown to undergo e e l ( 1 7 - 1 9 ) . Much l e s s i s known about t r a n s i t i o n m e t a l c o m p l e x e s . Most o f the o b s e r v a t i o n s i n v o l v e R u ( b i p y ) ^+ and r e l a t e d complexes w h i c h p o s s e s s e m i s s i v e charge t r a n s - f e r (CT) m e t a l - t o - l i g a n d (1**L) e x c i t e d s t a t e s (13,20-31). The organo- m e t a l l i c compound R e ( o - p h e n ) ( C O ) ^ C l i s a f u r t h e r example o f t h i s c a t e - gory ( 3 2 ) . P a l l a d i u m and p l a t i n u m p o r p h y r i n s w i t h e m i t t i n g i n t r a - l i g a n d e x c i t e d s t a t e s a r e a l s o e e l a c t i v e ( 3 3 ) . Under s u i t a b l e con- d i t i o n s e e l was a l s o o b s e r v e d f o r C r ( b i p y )3 * ~ ( 2 7) . In t h i s c a s e the e m i s s i o n o r i g i n a t e s from a l i g a n d f i e l d (LF) e x c i t e d s t a t e . Almost a l l o f the e e l a c t i v e t r a n s i t i o n m e t a l complexes c o n t a i n b i p y o r r e - l a t e d l i g a n d s . I t was t h e r e f o r e o f i n t e r e s t to see i f e e l c o u l d be extended to o t h e r t y p e s o f t r a n s i t i o n m e t a l compounds which have e m i t t i n g s t a t e s of d i f f e r e n t o r i g i n .

F u r t h e r m o r e , e x c i t e d s t a t e s g e n e r a t e d e l e c t r o c h e m i c a l l y may be not o n l y e m i s s i v e but a l s o r e a c t i v e . The p o s s i b i l i t y o f such an

" e l e c t r o p h o t o c h e m i s t r y " (epc) has been c o n s i d e r e d b e f o r e ( 3 4 ) . But r e a l examples were d i s c o v e r e d o n l y q u i t e r e c e n t l y and w i l l be d i s - c u s s e d l a t e r ( 3 5 , 3 6 ) . However, c h e m i c a l t r a n s f o r m a t i o n s i n d u c e d by ac e l e c t r o l y s i s may not o n l y p r o c e e d v i a e x c i t e d s t a t e s . Other me- chanisms can be a l s o c o n s i s t e n t w i t h t h e s e o b s e r v a t i o n s . W h i l e t h i s e x t e n d s the range o f r e a c t i o n t y p e s o f ac e l e c t r o l y s i s , i t c o m p l i c a - t e s the e l u c i d a t i o n o f the r e a l mechanism. Examples o f the v a r i o u s r e a c t i o n t y p e s are p r e s e n t e d i n the f o l l o w i n g s e c t i o n s .

(6)

E l e c t r o g e n e r a t e d Chemiluminescence

F o r our e e l s t u d i e s a v e r y s i m p l e t e c h n i q u e was employed. A 1-cm s p e c t r o p h o t o m e t e r c e l l was used as an u n d i v i d e d e l e c t r o c h e m i c a l c e l l . It was e q u i p p e d w i t h two p l a t i n u m f o i l e l e c t r o d e s which were d i r e c t l y c o n n e c t e d to a s i n e wave g e n e r a t o r as an ac v o l t a g e s o u r c e . Much more s o p h i s t i c a t e d methods have been d e s c r i b e d i n the l i t e r a t u r e (16) but t h i s s i m p l e d e s i g n p e r m i t t e d the o b s e r v a t i o n o f e e l which appears a t b o t h e l e c t r o d e s .

R e c e n t l y we o b s e r v e d e e l o f the b i n u c l e a r p l a t i n u m complex t e t r a - k i s ( d i p h o s p h o n a t o ) d i p l a t i n a t e ( I I ) (Pt2(pop)^~) ( 3 7 ) . T h i s a n i o n has a t t r a c t e d much a t t e n t i o n due to i t s i n t e n s e g r e e n l u m i n e s c e n c e i n room t e m p e r a t u r e s o l u t i o n (38-40) - 0.52) ( 4 1 ) . The e x c i t e d s t a t e of t h i s complex undergoes o x i d a t i v e (42) and r e d u c t i v e q u e n c h i n g ( 4 1 ) . From the q u e n c h i n g e x p e r i m e n t s the r e d o x p o t e n t i a l s were e s t i m a t e d to be E ° = -1.4 V v s . SCE f o r the r e d u c t i o n and E ° ~ 1 V f o r the o x i d a - t i o n o f P t2( p o p ) ^ ~ ( 4 1 ) . The p o t e n t i a l d i f f e r e n c e o f 2.4 V a l m o s t matches the energy o f the p h o s p h o r e s c i n g t r i p l e t (~ 2.5 eV) o f P t « -

( p o p ) ^ ~ . C o n s e q u e n t l y , i t s h o u l d be p o s s i b l e to o b s e r v e e e l o f t h i s complex. However, the reduced ( P t « ( p o p ) | ~ ) (43) and o x i d i z e d ( P t ^ -

(pop)|~) (44,45) forms a r e not s t a b l e , but decay r a p i d l y i n s o l u t i o n . Hence an e e l o f P t ^ i p o p ) ^ " w i l l o n l y take p l a c e i f the subsequent g e n e r a t i o n o f b o t h redox p a r t n e r s o c c u r s b e f o r e they undergo a d e c a y .

The e e l e x p e r i m e n t was c a r r i e d out i n a s o l u t i o n o f a c e t o n i t r i l e w i t h Bu^NBF^ as s u p p o r t i n g e l e c t r o l y t e ( 3 7 ) . At an ac v o l t a g e o f 4 V, a f r e q u e n c y o f 280 Hz, and a c u r r e n t o f 13 mA a g r e e n e m i s s i o n appea- r e d a t the e l e c t r o d e s . I t was i d e n t i c a l w i t h the p h o s p h o r e s c e n c e

( X ^ = 5 1 7 nm) o f P t2( p o p ) ^ ~ . T h i s o b s e r v a t i o n i s c o n s i s t e n t w i t h t h e P f o l l o w i n g r e a c t i o n sequence:

4- - 5-

P t ^ í p o p ) ^ + e -> P t2( p o p ) ^ c a t h o d i c c y c l e 4- - 3-

P t ^ í p o p ) ^ - e P t ^ i p o p ) ^ a n o d i c c y c l e

P t2( p o p ) ^ " + P t2( p o p ) ^ ~ - [ P t2( p o p ) £ ~ ] * + P t2( p o p ) £ "

[ P t2( p o p ) £ ~ ] * P t2( p o p ) £ ~ + hv 4-

The r e d u c t i o n and o x i d a t i o n o f P t2( p o p ) ^ takes p l a c e a t the same e l e c t r o d e . Back e l e c t r o n t r a n s f e r g e n e r a t e s one o f the s t a r t i n g i o n s i n the e x c i t e d t r i p l e t s t a t e which undergoes p h o s p h o r e s c e n c e . I n t e - r e s t i n g l y , the f l u o r e s c e n c e o f the complex w h i c h appears on photo- e x c i t a t i o n a t X = 407 nm, i s not o b s e r v e d i n the e e l e x p e r i m e n t . T h i s i s not s u r p r i s i n g s i n c e the back e l e c t r o n t r a n s f e r does not p r o - v i d e enough energy (~ 2.4 V) to p o p u l a t e the e m i t t i n g s i n g l e t (~ 3.3 V ) .

I t s h o u l d be mentioned h e r e t h a t the p r o c e s s e s w h i c h a r e i n v o l - ved i n the appearance of an e e l o f P t2( p o p ) ¿ ~ a r e a s s o c i a t e d w i t h changes i n the m e t a l - m e t a l b o n d i n g o f t h i s b i n u c l e a r complex (38-40, 42,44,46,47). The P t - P t bond o r d e r which i s z e r o i n the ground s t a t e i s i n c r e a s e d to 0.5 by o x i d a t i o n as w e l l as by r e d u c t i o n . The a n n i - h i l a t i o n r e a c t i o n l e a d s to the f o r m a t i o n o f P t2( p o p ) ^ ~ as the ground

(bond o r d e r = 0) and e x c i t e d s t a t e (bond o r d e r = 1 ) . A r e l a t e d case which was r e p o r t e d q u i t e r e c e n t l y i s the e e l o f Mo^-Cl 9^ ~ . The m e t a l -

(7)

m e t a l b o n d i n g o f the c l u s t e r i s i n v o l v e d i n the r e d o x p r o c e s s e s w h i c h a r e a s s o c i a t e d w i t h the e e l ( 4 8 ) .

E l e c t r o g e n e r a t i o n o f E x c i t e d Complexes U n d e r g o i n g E m i s s i o n and R e a c t i o n The e l e c t r o c h e m i c a l g e n e r a t i o n o f e x c i t e d s t a t e s may not o n l y l e a d to an e m i s s i o n . In a d d i t i o n o r as an a l t e r n a t i v e the e x c i t e d s t a t e can undergo a c h e m i c a l r e a c t i o n ( " e l e c t r o p h o t o c h e m i s t r y " , epc) as i t would o c c u r upon l i g h t a b s o r p t i o n ( p h o t o c h e m i s t r y ) . In the e e l e x p e r i - ments the o b s e r v a t i o n o f l u m i n e s c e n c e i s by i t s e l f a p r o o f f o r the g e n e r a t i o n o f e x c i t e d s t a t e s . But the f a c t t h a t e l e c t r o l y s i s and p h o t o l y s i s b o t h l e a d to the f o r m a t i o n o f the same p r o d u c t does not prove the e l e c t r o c h e m i c a l g e n e r a t i o n o f an e x c i t e d s t a t e (see b e l o w ) . F o r t h i s r e a s o n i t i s an advantage to study compounds w h i c h a r e s i m u l - t a n e o u s l y p h o t o e m i s s i v e and p h o t o r e a c t i v e . A p o s i t i v e c o r r e l a t i o n between e e l and the e l e c t r o c h e m i c a l r e a c t i o n i s a good i n d i c a t i o n t h a t the c h e m i c a l t r a n s f o r m a t i o n i s i n d e e d a s s o c i a t e d w i t h an e x c i t e d s t a t e . In t h i s case the e l e c t r o c h e m i c a l r e a c t i o n i s a t r u e e p c . Upon ac e l e c t r o l y s i s the complex R u ( b i p y ) 2+ undergoes s i m u l t a n e o u s l y e e l and

epc ( 4 9 ) . 2 +

The well-known p h o t o l u m i n e s c e n c e o f R u ( b i p y ) ^ o c c u r s from the lowest e x c i t e d s t a t e w h i c h i s o f the CT (Ru+bipy) type ( 5 0 , 5 1 ) . The e m i s s i o n a p p e a r s i n aqueous as w e l l as i n non-aqueous s o l u t i o n s . W h i l e the complex i s h a r d l y l i g h t - s e n s i t i v e i n water (52) i t can under- go an e f f i c i e n t p h o t o s u b s t i t u t i o n o f a b i p y l i g a n d i n non-aqueous s o l v e n t s (50,51,53-56). The r e a c t i v e e x c i t e d s t a t e seems to be a LF s t a t e w h i c h l i e s a t s l i g h t l y h i g h e r e n e r g i e s but can be p o p u l a t e d

t h e r m a l l y f r o m the e m i t t i n g CT s t a t e (50-52,55-58). A c c o r d i n g to 2 + these o b s e r v a t i o n s the e l e c t r o c h e m i c a l g e n e r a t i o n o f e x c i t e d R u ( b i p y ) ^ i n non-aqueous s o l u t i o n s s h o u l d not o n l y be accompanied by the w e l l - known e e l but a l s o by an e p c . M o r e o v e r , the e f f i c i e n c y o f b o t h p r o - c e s s e s s h o u l d show a p o s i t i v e c o r r e l a t i o n . P r e l i m i n a r y e x p e r i m e n t s i n d e e d p r o v i d e e v i d e n c e f o r a s i m u l t a n e o u s o c c u r a n c e o f e e l and epc of R u ( b i p y ) 2 + ( 4 9 ) .

An ac e l e c t r o l y s i s o f [ R u ( b i p y ) ~ ] C 1 « was c a r r i e d out i n a s p e c t r o - photometer c e l l as an u n d i v i d e d e l e c t r o c h e m i c a l c e l l e q u i p p e d w i t h p l a t i n u m f o i l e l e c t r o d e s . A c e t o n i t r i l e was used as s o l v e n t and Bu.NBF, s e r v e d as s u p p o r t i n g e l e c t r o l y t e . The e l e c t r o l y s i s l e d to the t y p i c a l e e l o f R u ( b i p y ) ^+ (20,21,23,25). S i m u l t a n e o u s l y , the complex underwent a c h e m i c a l c h a n g e . The s p e c t r a l v a r i a t i o n s w h i c h accompa- n i e d the e l e c t r o l y s i s ( F i g u r e 1) were v e r y s i m i l a r to those o b s e r v e d d u r i n g the p h o t o l y s i s o f the same s o l u t i o n (X. > 335 nm). The p r o - d u c t o f e l e c t r o l y s i s and p h o t o l y s i s was n o t y e ?ri d e n t i f i e d d e f i n i t e l y , but a c c o r d i n g to a p r e l i m i n a r y c h a r a c t e r i z a t i o n i t seems to be

[ R u ( b i p y )2( C H3C N ) C 1 ] . However, i t i s i m p o r t a n t to n o t e t h a t a l l changes or the e x p e r i m e n t a l c o n d i t i o n s ( e . g . v a r i a t i o n s o f the ac f r e q u e n c y , s t i r r i n g o f the s o l u t i o n ) w h i c h l e a d to a change o f the e e l i n t e n s i t y a l s o c a u s e d a c o r r e s p o n d i n g change o f the e f f i c i e n c y o f the e l e c t r o c h e m i c a l r e a c t i o n . These o b s e r v a t i o n s a r e good i n d i c a t i o n t h a t b o t h p r o c e s s e s p r o c e e d v i a the g e n e r a t i o n o f e x c i t e d R u ( b i p y ) ^+. I t i s s u g g e s t e d t h a t the ac e l e c t r o l y s i s can be d e s c r i b e d by the f o l l o - wing mechanism:

(8)
(9)

R u ( b i p y ) ^ + e 2 +

R u ( b i p y ) 2+

R u ( b i p y ) R u ( b i p y ) 3 3+

R u ( b i p y ) * + R u ( b i p y ) ^+

[ R u i b i p y ) * * ] *

[ R u ( b i p y ) 3+] * + R u ( b i p y ) 3+

R u ( b i p y ) ¡ ?+ + hv

c a t h o d i c c y c l e a n o d i c c y c l e

a n n i h i l a t i o n e e l

[Ruibipy)***"]* + C l " + CI13CN

R u ( b i p y )2( C H3C N ) C l

+ b i p y epc

The c o n c l u s i o n t h a t the e l e c t r o c h e m i c a l r e a c t i o n o f R u ( b i p y ) ^ t a k e s 2+

p l a c e v i a an e x c i t e d s t a t e i s a l s o s u p p o r t e d by o t h e r o b s e r v a t i o n s . A c c o r d i n g t o+e l e c t r o c h e m i c a l s t u d i e s the r e d u c e d and o x i d i z e d comple- xes R u ( b i p y ) ^ and R u ( b i p y )3 + are f a i r l y s t a b l e and not e x p e c t e d to undergo r a p i d c h e m i c a l t r a n s f o r m a t i o n s (21,23,25,50).

E l e c t r o g e n e r a t i o n of R e a c t i v e E x c i t e d S t a t e s

Most compounds w h i c h undergo a p h o t o c h e m i c a l r e a c t i o n do not s i m u l - t a n e o u s l y show p h o t o l u m i n e s c e n c e . I t i s then more d i f f i c u l t to prove t h a t a r e a c t i o n i n d u c e d by ac e l e c t r o l y s i s p r o c e e d s v i a the i n t e r m e - d i a t e f o r m a t i o n o f e x c i t e d s t a t e s . A d i f f e r e n t mechanism may be i n o p e r a t i o n . In t h i s c a s e the c h e m i c a l t r a n s f o r m a t i o n o c c u r s i n the r e d u c e d and/or o x i d i z e d f o r m . The back e l e c t r o n t r a n s f e r m e r e l y r e g e n e r a t e s the c h a r g e s o f the s t a r t i n g compound:

A + e

A - e"

A "

A+ + B"

A c a t h o d i c c y c l e A+ a n o d i c c y c l e -> B c h e m i c a l r e a c t i o n

•> A + B a n n i h i l a t i o n

N e v e r t h e l e s s , the r e s u l t o f the e l e c t r o l y s i s may be the same as t h a t o f the p h o t o l y s i s , because the o r i g i n o f the r e a c t i v i t y i s s i m i l a r i n b o t h c a s e s . F o r example, a bond weakening may o c c u r upon r e d u c t i o n o r o x i d a t i o n s i n c e an e l e c t r o n i s added to an a n t i b o n d i n g TT* o r b i t a l or removed from a b o n d i n g IT o r b i t a l . The same changes take p l a c e upon TTTT* e x c i t a t i o n .

A c a s e i n q u e s t i o n i s the ac e l e c t r o l y s i s o f the complex R e ( t r a n s - S P )2( C 0 ) C l (SP = 4 - s t y r y l p y r i d i n e ) ( 5 9 ) . I t was shown b e f o r e t h a t the c o o r d i n a t e d l i g a n d SP undergoes a p h o t o c h e m i c a l t r a n s / e i s i s o m e r i - z a t i o n ( 6 0 ) . The r e a c t i v e e x c i t e d s t a t e i s the l o w e s t TTTT* i n t r a l i g a n d

(IL) s t a t e , w h i c h i s not l u m i n e s c e n t . The ac e l e c t r o l y s i s l e a d s a l s o to the t r a n s / c i s i s o m e r i z a t i o n o f the c o o r d i n a t e d l i g a n d ( 5 9 ) . Hence i t i s a r e a s o n a b l e a s s u m p t i o n t h a t the e l e c t r o l y s i s p r o c e e d s v i a the g e n e r a t i o n o f the TTTT* IL s t a t e :

(10)

R e ( t r a n s - S P )2( C O )3C l + e Re ( t r a n s - S P )2( C 0 )3C 1 ~ Re ( t r a n s - S P )2( C O )3C 1 - e~ ->- R e ( t r a n s - S P ) ( C O )3C 1+

R e ( t r a n s - S P )2( C O )3C 1+ + R e ( t r a n s - S P ) ( C O )3C l "

+ R e ( t r a n s - S P )2( C O )3C l * + Re ( t r a n s - S P )2 (CO) C l R e ( t r a n s - S P )2( C O )3C l * -> Re ( c i s - S P )2 (C0>3C1

However, as an a l t e r n a t i v e the i s o m e r i z a t i o n may take p l a c e i n the r e d u c e d and/or o x i d i z e d form:

R e ( t r a n s - S P )2( C O )3C l " •> Re ( c i s - S P ) (CO) C l "

Re ( t r a n s - S P ) 2 (CO) 3C 1+ -> Re ( c i s - S P ) (CO) 3C1 +

R e ( c i s - S P )2( C O )3C l+ + R e ( c i s - S P ) (CO) C l ~ -> 2 R e ( c i s - S P )2( C O )3C l

I n s p e c t i o n o f some a d d i t i o n a l d a t a does n o t l e a d to a d i s t i n c t i o n between t h e two p o s s i b i l i t i e s . The p o t e n t i a l d i f f e r e n c e o f the r e - duced and o x i d i z e d complex (2.94 V) exceeds the e l e c t r o n i c e x c i t a - t i o n energy o f the n e u t r a l complex (~ 2.1 eV) ( 5 9 ) . On e n e r g e t i c grounds t h e e l e c t r o c h e m i c a l g e n e r a t i o n o f e x c i t e d s t a t e s i s c e r t a i n l y p o s s i b l e . The r e l a t e d complex Re(o-phen)(CO)3C1 i s n o t l i g h t s e n s i - t i v e b u t i s p h o t o l u m i n e s c e n t and a l s o e e l a c t i v e ( 3 2 ) . By a n a l o g y one might assume t h a t t h e e l e c t r o l y s i s o f b o t h complexes p r o c e e d s by the same mechanism. On the o t h e r s i d e , c y c l i c voltammetry shows t h a t the o x i d i z e d form o f R e ( t r a n s - S P ) (CO) C l i s f a i r l y s t a b l e b u t the r e d u c e d complex decays i r r e v e r s i b l y ( 5 9 ) . Only a t l a r g e scan r a t e s (100 Vs~^) the r e d u c t i o n wave shows b e g i n n i n g r e v e r s i b i l i t y . I t i s then n o t u n r e a s o n a b l e t o assume t h a t t h e l i g a n d i s o m e r i z a t i o n takes p l a c e i n the r e d u c e d complex. The f i n a l back e l e c t r o n t r a n s f e r would m e r e l y r e s t o r e the n e u t r a l complex. Of c o u r s e , i n the absence o f e e l any d i r e c t p r o o f o f the e l e c t r o c h e m i c a l g e n e r a t i o n o f e x c i t e d s t a t e s i s d i f f i c u l t t o o b t a i n . N e v e r t h e l e s s , i n d i r e c t b u t c o n c l u s i v e e v i - dence showed i n d e e d t h a t an e x c i t e d s t a t e mechanism l e d to the e l e c - t r o c h e m i c a l i s o m e r i z a t i o n o f the complex.

E x p e r i m e n t s were c a r r i e d o u t to d e t e r m i n e i f d u r i n g t h e ac e l e c - t r o l y s i s the l i g a n d i s o m e r i z a t i o n r e q u i r e s t h e f o r m a t i o n o f the r e d u - ced and o x i d i z e d form ( 5 9 ) . T h i s would i n d i c a t e an e x c i t e d s t a t e mechanism. I f the i n t e r m e d i a t e f o r m a t i o n o f the reduced o r o x i d i z e d complex i s s u f f i c i e n t to i n d u c e the i s o m e r i z a t i o n , e x c i t e d s t a t e s a r e not r e q u i r e d . F i r s t s u p p o r t i n f a v o r o f a t r u e epc was o b t a i n e d by the r e s u l t s o f the ac e l e c t r o l y s i s o f R e ( t r a n s - S P )2( C O )3C 1 i n the p r e s e n c e o f r e d o x b u f f e r s . T e t r a m e t h y 1 - p - p h e n y l e n e d i a m m e (TMPD) was used as r e d u c t a n t and the p a r a q u a t c a t i o n (PQ^+) s e r v e d as o x i d a n t . In t h e p r e s e n c e o f an e x c e s s o f TMPD the complex i s s t i l l r e d u c e d , but TMPD i s o x i d i z e d d u r i n g the e l e c t r o l y s i s . S i n c e the o x i d a t i o n p o t e n t i a l o f TMPD i s much lower than t h a t o f t h e complex, the a n n i h i - l a t i o n r e a c t i o n o f the complex a n i o n and TMPD+ does n o t p r o v i d e enough energy t o g e n e r a t e the complex i n t h e e x c i t e d s t a t e . Q u i t e an a n a l o -

(11)

gous s i t u a t i o n a p p l i e s to the e l e c t r o l y s i s i n the p r e s e n c e of PQ Now the complex i s o x i d i z e d but PQ^+ r e d u c e d . A g a i n , the p o t e n t i a l d i f f e r e n c e of the complex c a t i o n and PQ i s s m a l l e r than the e x c i t a - t i o n e n e r g y o f R e ( t r a n s - S P ) ( 0 0 ) ^ 0 1 . In b o t h e x p e r i m e n t s the l i g a n d i s o m e r i z a t i o n was e s s e n t i a l l y s u p p r e s s e d . C o n s e q u e n t l y the i n t e r m e - d i a t e f o r m a t i o n o f the complex c a t i o n o r a n i o n a l o n e cannot be respon- s i b l e f o r the i s o m e r i z a t i o n .

A d d i t i o n a l e v i d e n c e i n s u p p o r t o f an e x c i t e d s t a t e mechanism was o b t a i n e d by c o n t i n u o u s p o t e n t i a l s t e p c h r o n o c o u l o m e t r i c e x p e r i m e n t s

( 5 9 ) . When the e l e c t r o d e p o t e n t i a l was s t e p p e d o n l y o v e r the o x i d a - t i o n p o t e n t i a l o f the complex a t a f r e q u e n c y o f 10 Hz a slow net o x i - d a t i o n took p l a c e . P o t e n t i a l s t e p s i n v o l v i n g o n l y the r e d u c t i o n wave l e d to r a p i d net r e d u c t i o n but no l i g a n d i s o m e r i z a t i o n . The i s o m e r i - z a t i o n o c c u r r e d o n l y when the p o t e n t i a l s t e p s i n c l u d e d b o t h r e d u c t i o n and o x i d a t i o n o f the complex. S i n c e the voltammograms of R e ( t r a n s - S P ^ ( C 0 )3C 1 and R e ( c i s - S P )2( 0 0 ) ^ 0 1 a r e v i r t u a l l y i n d i s t i n g u i s h a b l e , the l i g a n d i s o m e r i z a t i o n was not accompanied by a p o t e n t i a l c h a n g e . No net F a r a d a i c p r o c e s s was o b s e r v e d .

The c o n c l u s i o n t h a t the ac e l e c t r o l y s i s o f R e ( t r a n s - S P )2( C 0 )3C 1 p r o c e e d s v i a e x c i t e d s t a t e s i s a l s o s u p p o r t e d by the d i r e c t i o n o f i s o m e r i z a t i o n . In t h e r m a l r e a c t i o n s o f s t i l b e n e d e r i v a t i v e s and r a d i - c a l s e i s to t r a n s c o n v e r s i o n s a r e g e n e r a l l y o b s e r v e d ( 6 1 ) . C o n t r a r y to t h i s b e h a v i o r the p h o t o l y s i s and ac e l e c t r o l y s i s l e a d to e n e r g e t i - c a l l y u p h i l l t r a n s t o e i s i s o m e r i z a t i o n .

AC E l e c t r o l y s i s W i t h o u t G e n e r a t i o n o f E x c i t e d S t a t e s

As d i s c u s s e d a b o v e , a c h e m i c a l t r a n s f o r m a t i o n which o c c u r s d u r i n g the ac e l e c t r o l y s i s does not r e q u i r e the i n t e r m e d i a t e f o r m a t i o n of e x c i - ted s t a t e s . The c h e m i c a l r e a c t i o n may take p l a c e i n the r e d u c e d and/

or o x i d i z e d form o f a compound. N e v e r t h e l e s s , i n t h i s c a s e the e l e c - t r o l y s i s may s t i l l l e a d to the same p r o d u c t s as t h o s e of the photo- l y s i s due to the o b v i o u s r e l a t i o n s h i p between e l e c t r o n i c e x c i t a t i o n and r e d o x p r o c e s s e s . I t w i l l be then q u i t e d i f f i c u l t to e l u c i d a t e the mechanism of e l e c t r o l y s i s . T h i s r e a c t i o n t y p e may a p p l y to the e l e c t r o c h e m i c a l s u b s t i t u t i o n of C r ( C 0 )6 ( 5 9 ) .

The ac e l e c t r o l y s i s o f C r ( C 0 )6 i n CH^CN was accompanied by the same s p e c t r a l changes ( F i g u r e 2) as those o b s e r v e d i n the p h o t o l y s i s o f the same s o l u t i o n w i t h 333-nm l i g h t . In b o t h c a s e s C r ( C O ) , was c o n v e r t e d to C r ( C 0 )5( C H3C N ) ( 5 9 ) . A c c o r d i n g to P i c k e t t and P l e t c h e r

(62) C r ( C 0 )6 shows a r e v e r s i b l e o x i d a t i o n wave a t 1.52 V v s . SCE;

the r e d u c t i o n wave a t -2.66 V i s i r r e v e r s i b l e and was a t t r i b u t e d to a r a p i d o r even c o n c e r t e d l o s s of CO f r o m C r ( C 0 ) ~ to g i v e C r ( C 0 ) ~ . A r e v e r s e peak i n the c y c l i c voltammogram a t -2.1 V shows the r e o x i - d a t i o n o f the l a t t e r s p e c i e s to the c o o r d i n a t i v e l y u n s a t u r a t e d Cr(CO) which can be s t a b i l i z e d by the a d d i t i o n of a s o l v e n t m o l e c u l e as a s i x t h l i g a n d . C o n s e q u e n t l y , the ac e l e c t r o l y s i s may p r o c e e d a c c o r d i n g to the f o l l o w i n g r e a c t i o n scheme w i t h o u t i n v o k i n g an e l e c t r o n i c a l l y e x c i t e d s t a t e i n the back e l e c t r o n t r a n s f e r (59):

(12)

C r ( C O )6 - e~ + C r ( C O ) * a n o d i c c y c l e C r ( C O ) . + e~ + Cr(C0)7 c a t h o d i c c y c l e

D D

Cr(C0)7 + Cr(C0)7 + CO l i g a n d d i s s o c i a t i o n

b d

C r ( C O ) * + C r ( C 0 ) ~ •+ C r ( C O ) . + C r ( C O )c a n n i h i l a t i o n O D D J

C r ( C O )5 + CH3CN + Cr ( C 0 )5 (CH3CN) l i g a n d a d d i t i o n

T h i s mechanism and the p h o t o l y s i s have i n common t h a t the a d d i t i o n of an e l e c t r o n to the a n t i b o n d i n g e o r b i t a l s i n d u c e s the d i s s o c i a t i o n

of a CO l i g a n d . g

As a f u r t h e r p o s s i b i l i t y the ac e l e c t r o l y s i s may l e a d to o t h e r p r o d u c t s than t h o s e o f the p h o t o l y s i s . In t h i s c a s e an e x c i t e d s t a t e mechanism i s , o f c o u r s e , e x c l u d e d . A l t h o u g h t h e r e i s a c e r t a i n s i m i - l a r i t y between the e l e c t r o n i c s t r u c t u r e o f an e x c i t e d s t a t e and the r e d u c e d or o x i d i z e d f o r m o f a m o l e c u l e , they a r e not i d e n t i c a l . Con- s e q u e n t l y , i t i s not s u r p r i s i n g when p h o t o l y s i s and e l e c t r o l y s i s do not y i e l d the same p r o d u c t . A n o t h e r r e a s o n f o r such an o b s e r v a t i o n may be the d i f f e r e n t l i f e t i m e s . An e x c i t e d s t a t e can be e x t r e m e l y s h o r t - l i v e d . N o n - r e a c t i v e d e a c t i v a t i o n c o u l d then compete s u c c e s s - f u l l y w i t h a p h o t o r e a c t i o n . The compound i s not l i g h t - s e n s i t i v e . On the c o n t r a r y , the r e d u c e d and o x i d i z e d i n t e r m e d i a t e s g e n e r a t e d by ac e l e c t r o l y s i s s h o u l d have comparably l o n g l i f e times which may p e r m i t a r e a c t i o n . The ac e l e c t r o l y s i s o f N i ( I I ) ( B A B A ) ( M N T ) (BABA = b i a c e t y l - b i s ( a n i l ) and MNT^~ = d i s u l f i d o m a l e o n i t r i l e ) i s an example of t h i s r e a c t i o n type ( 6 3 ) .

The complex Ni(BABA)(MNT) (64) i s not l i g h t s e n s i t i v e (X. >

400 nm) i n s o l u t i o n s o f a c e t o n i t r i l e but undergoes an ac e l e c t r o l y s i s which i s accompanied by s p e c t r a l changes as shown i n F i g u r e 3. A c c o r - d i n g to a p r e l i m i n a r y a n a l y s i s o f the p r o d u c t s the e l e c t r o l y s i s l e a d s to a l i g a n d exchange:

2 N i1 1 (BABA) (MNT) -> N i1 1 (BABA)^+ + N i ^ i M N T )2"

The e l e c t r o c h e m i s t r y o f Ni(BABA)(MNT) has been i n v e s t i g a t e d r e c e n t l y ( 6 4 ) . The f i r s t r e d u c t i o n o c c u r s r e v e r s i b l y a t E ¿ = -0.7 V v s . SCE.

However, the o x i d a t i o n i s i r r e v e r s i b l e (Ep/2 = v) • F o r t n e r e l a - ted complex N i ( o - p h e n )( S ^ C ^ P h ^ ) i t was shown t h a t the c a t i o n

N i ( o - p h e n ) ( S « C 2 P h 2 )+ g e n e r a t e d by p h o t o o x i d a t i o n i n h a l o c a r b o n s o l v e n t s undergoes a f a c i l e l i g a n d exchange to y i e l d the symmetric complexes N i ( o - p h e n ) |+ and Ni(S2C2Ph2)2 ( 6 5 ) . A c c o r d i n g to these c o n s i d e r a t i o n s the ac e l e c t r o l y s i s can be r a t i o n a l i z e d by the f o l l o w i n g r e a c t i o n scheme:

Ni(BABA)(MNT) + e" + Ni(BABA)(MNT)~ c a t h o d i c c y c l e N i (BABA) (MNT) - e" •> Ni (BABA) (MNT)+ a n o d i c c y c l e 2 N i ( B A B A ) ( M N T )+ Ni(BABA)^* + N i ( M N T )2 l i g a n d exchange 2 Ni (BABA) (MNT)"" + Ni (MNT) -» 2 Ni (BABA) (MNT) e l e c t r o n

+ N i ( M N T )2-2 t r a n s f e r

(13)

1.2

0.8 -

0.4 -

F i g u r e 2. S p e c t r a l changes d u r i n g ac e l e c t r o l y s i s o f 6.5x10 " M .-4 C r ( C 0 )6 i n a c e t o n i t r i l e / 0 . 0 5 m Bu^NBF a t (a) 0 and ( f ) 300-min e l e c t r o l y s i s time a t 2.5 V/10 Hz and 5 mA, 1-cm c e l l .

1.0

0.8

0.6

0.4

0.2 -

400 500 600 X [nm]

-4 M F i g u r e 3. S p e c t r a l changes d u r i n g ac e l e c t r o l y s i s o f 1.5x10 Ni(BABA)(MNT) i n a c e t o n i t r i l e / O . 1 M Bu^NBF^ a t (a) 0 and (d) 30- rain e l e c t r o l y s i s time a t 3 V/20 Hz and 40 mA, 1-cm c e l l .

(14)

The l i g a n d exchange p r o d u c e s NiCMNT)^ which i s n o t s t a b l e b u t a s t r o n g o x i d a n t ( 6 6 ) . I t o x i d i z e s a p p a r e n t l y the r e d u c i n g a n i o n Ni(BABA)(MNT) i n two subsequent e l e c t r o n t r a n s f e r s t e p s .

R e a c t i o n s R e l a t e d to the AC E l e c t r o l y s i s

There a r e o t h e r r e a c t i o n s o f t r a n s i t i o n m e t a l complexes which a r e r e - l e v a n t t o o u r o b s e r v a t i o n s on the ac e l e c t r o l y s i s . R e c e n t l y , new mechanisms o f l i g a n d s u b s t i t u t i o n r e a c t i o n s have been r e p o r t e d which a r e c h a r a c t e r i z e d by e l e c t r o n t r a n s f e r r e a c t i o n s as key s t e p s a l t h o u g h the o v e r a l l r e a c t i o n s a r e n o t r e d o x p r o c e s s e s , e.g.,

ML + e~ -* ML~

ML" + L* -> MLf" + L ML1" - e~ -+ ML1

o v e r a l l : ML + L1 ML* + L

The s u b s t i t u t i o n a l ^ l a b i l e complex may be g e n e r a t e d n o t o n l y by r e - d u c t i o n but by o x i d a t i o n as w e l l . An immediate r e l a t i o n s h i p o f such a r e a c t i o n to the ac e l e c t r o l y s i s p r o c e e d i n g w i t h o u t g e n e r a t i o n o f e x c i t e d s t a t e s c a n be r e c o g n i z e d . The i n i t i a l p r o d u c t i o n o f the sub- s t i t u t i o n a l ^ l a b i l e o x i d a t i o n s t a t e o f ML c a n be a c h i e v e d e l e c t r o - c h e m i c a l l y ( 6 7 - 7 6 ) , c h e m i c a l l y (75-77) o r p h o t o c h e m i c a l l y ( 7 8 ) . In the e l e c t r o c h e m i c a l e x p e r i m e n t s r e d u c t i o n o r o x i d a t i o n was a c c o m p l i s h e d by a d i r e c t c u r r e n t . In most c a s e s t h e s e p r o c e s s e s a r e c a t a l y t i c c h a i n r e a c t i o n s w i t h F a r a d a i c e f f i c i e n c i e s much l a r g e r than u n i t y . E l e c t r o - c h e m i c a l s u b s t i t u t i o n o f M(CO). w i t h M = C r , Mo, W was c a r r i e d out by c a t h o d i c r e d u c t i o n to M(CO)~ which d i s s o c i a t e s i m m e d i a t e l y t o y i e l d M(CO)~. Upon a n o d i c r e o x i d a t i o n a t t h e o t h e r e l e c t r o d e c o o r d i n a t i v e l y u n s a t u r a t e d M(CO) i s formed and s t a b i l i z e d by a d d i t i o n o f a l i g a n d L to g i v e M ( C O )5L ( 6 8 ) .

P h o t o c h e m i c a l s u b s t i t u t i o n v i a a l a b i l e o x i d a t i o n s t a t e may o c c u r by e x c i t e d - s t a t e e l e c t r o n t r a n s f e r . I f the m e t a l complex has a l o n g - l i v e d e x c i t e d s t a t e , i t c a n undergo an e l e c t r o n exchange w i t h a r e d u c - t a n t o r o x i d i d a n t i n a b i m o l e c u l a r r e a c t i o n . The l a b i l e r e d u c e d o r o x i d i z e d complex thus produced i s s u s c e p t i b l e to a l i g a n d s u b s t i t u t i o n . A c a t a l y t i c c h a i n r e a c t i o n takes p l a c e when t h e s u b s t i t u t e d complex i n the l a b i l e o x i d a t i o n s t a t e undergoes a f u r t h e r e l e c t r o n exchange w i t h a n o t h e r u n s u b s t i t u t e d complex. The c h a i n t e r m i n a t e s by back e l e c t r o n t r a n s f e r between the l a b i l e o x i d a t i o n s t a t e and the e x t e r n a l r e d o x p a r t n e r w h i c h was g e n e r a t e d i n i t i a l l y . The c a t i o n Re(o-phen)(CO)^~

(CH^CN)"1" undergoes t h i s new type o f p h o t o s u b s t i t u t i o n ( 7 8 ) . The o c c u r - r e n c e o f a c h a i n r e a c t i o n was c o n f i r m e d by t h e quantum y i e l d s which were as l a r g e as <j> = 24 depending on the e x p e r i m e n t a l c o n d i t i o n s . Of c o u r s e , the e f f i c i e n c y o f the u s u a l p h o t o s u b s t i t u t i o n s w h i c h o r i g i n a t e from LF e x c i t e d s t a t e s o f m e t a l complexes do n o t exceed u n i t y .

(15)

C o n c l u s i o n

The use o f ac e l e c t r o l y s i s i n a l l i t s v a r i a t i o n s i s c e r t a i n l y an i n t e r e s t i n g and v a l u a b l e t e c h n i q u e f o r s t u d y o f t h e mechanism o f e l e c t r o n t r a n s f e r r e a c t i o n s . The g e n e r a t i o n o f a s h o r t - l i v e d redox p a i r as c h e m i c a l i n t e r m e d i a t e s i s an i m p o r t a n t f e a t u r e o f t h e ac e l e c t r o l y s i s . In the f u t u r e i t may even be d e v e l o p e d to s y n t h e t i c a p p l i c a t i o n s i r r e s p e c t i v e o f the m e c h a n i s t i c d e t a i l s . In some c a s e s i t c o u l d be a c o n v e n i e n t a l t e r n a t i v e t o p h o t o c h e m i c a l r e a c t i o n s . In o t h e r c a s e s i t r e p r e s e n t s a new r e a c t i o n type w h i c h has no p r e c e d e n t . Acknowledgments

We thank P r o f e s s o r Andreas Merz f o r h e l p f u l d i s c u s s i o n s . F i n a n c i a l s u p p o r t o f t h i s work by the Deutsche F o r s c h u n g s g e m e i n s c h a f t and t h e Fonds d e r Chemischen I n d u s t r i e i s g r a t e f u l l y a c k n o w l e d g e d .

L i t e r a t u r e C i t e d

1. B a l z a n i , V.; B o l l e t t a , F . ; G a n d o l f i , M. T.; M a e s t r i , M. T o p . C u r r . Chem. 1978, 75, 1.

2. Meyer, T . J . A c c . Chem. R e s . 1978, 11, 94.

3. S u t i n , N.; C r e u t z , C. A d v . Chem. S e r . 1978, 168, 1.

4. S c h u s t e r , G. B.; S c h m i d t , S. P. A d v . P h y s . O r g . Chem. 1982, 18, 187.

5. L y t t l e , F . E . ; H e r c u l e s , D. M. Photochem. P h o t o b i o l . 1971, 13, 123.

6. M a r t i n , J . E . ; H a r t , E . J . ; Adamson, A. W.; H a l p e r n , J . J . Am.

Chem. S o c . 1972, 94, 9238.

7. G a f n e y , H. D.; Adamson, A. W. J . Chem. E d . 1975, 5 2 , 480.

8. J o n a h , C. D.; Matheson, M. S.; M e i s e l , D. J . Am. Chem. S o c . 1978, 100, 1449.

9. B o l l e t t a , F . ; R o s s i , A.; B a l z a n i , V. I n o r g . Chim. A c t a 1981, 5 3 , L 2 3 .

10. V o g l e r , A.; E l - S a y e d , L . ; J o n e s , R. G.; Namnath, J . ; Adamson, A.

W. I n o r g . Chim. A c t a 1981, 5 3 , L 3 5 .

11. B a l z a n i , V.; B o l l e t t a , F . J . Photochem. 1981, 17, 4 7 9 . 12. B o l l e t t a , F . ; B a l z a n i , V. J . Am. Chem. S o c . 1982, 104, 4250.

13. R u b i n s t e i n , I . ; B a r d , A. J . J . Am. Chem. S o c . 1981, 103, 512.

14. S c h u s t e r , G. B. A c c . Chem. R e s . 1979, 12, 336.

15. V o g l e r , A.; K u n k e l y , H. Angew. Chem. I n t . E d . E n g l . 1981, 2 0 , 4 6 9 . 16. F a u l k n e r , L . R.; B a r d , A. J . In " E l e c t r o a n a l y t i c a l C h e m i s t r y " ;

B a r d , A. J . , E d . ; M a r c e l Dekker I n c . : New Y o r k , 1977; V o l . 10, p . 1.

17. F a u l k n e r , L . R.; G l a s s , R. S. In "Chemical and B i o l o g i c a l Genera- t i o n o f E x c i t e d S t a t e s " ; Adam, W.; C i l e n t o , G., Eds.; Academic P r e s s , New Y o r k , 1982; c h a p t e r 6 and r e f e r e n c e s c i t e d t h e r e i n . 18. P a r k , S.-M.; T r y k , D. A . Rev. Chem. I n t e r m e d i a t e s 1981, 4, 4 3 . 19. P r ä g s t , F . Z. Chem. 1978, 18, 4 1 .

20. T o k e l , N. E . ; B a r d , A. J . J . Am. Chem. S o c . 1972, 94, 2862.

21. T o k e l - T a k v o r y a n , N. E.; Hemingway, R. E . ; B a r d , A. J . J . Am.

Chem. S o c . 1973, 9 5 , 6582.

22. Chang, M. M.; S a j i , T.; B a r d , A. J . J . Am. Chem. S o c . 1977, 9 9 , 5399.

23. W a l l a c e , W. L.; B a r d , A. J . J . P h y s . Chem. 1979, 8 3 , 1350.

(16)

24. R u b i n s t e i n , I . ; B a r d , A. J . J . Am. Chem. S o c . 1980, 102, 6641.

25. L u t t m e r , J . D.; B a r d , A. J . J . P h y s . Chem. 1981, 8 5 , 1155.

26. R u b i n s t e i n , I . ; B a r d , A. J . J . Am. Chem. S o c . 1981, 103, 5007.

27. B o l l e t t a , F . ; C i a n o , M.; B a l z a n i , V.; S e r p o n e , N. I n o r g . Chim.

A c t a 1982, 6 2 , 2 0 7 .

28. G l a s s , R. S.; F a u l k n e r , L . R. J . P h y s . Chem. 1981, 8 5 , 1160.

29. I t o h , K.; Honda, K. Chem. L e t t . 1979, 9 9 .

30. A b r u n a , H. D.; B a r d , A. J . J . Am. Chem. S o c . 1982, 104, 2 6 4 1 . 31. G o n z a l e s - V e l a s c o , J . ; R u b i n s t e i n , I . ; C r u t c h l e y , R. J . ; L e v e r ,

A. B. P.; B a r d , A . J . I n o r g . Chem. 1983, 2 2 , 8 2 2 .

32. Luong, J . C ; N a d j o , L . ; W r i g h t o n , M. S. J . Am. Chem. S o c . 1978, 100, 5790.

33. T o k e l - T a k v o r y a n , N. E . ; B a r d , A. J . Chem. P h y s . L e t t . 1974, 2 5 , 235.

34. P a r k , S. M.; B a r d , A. J . Chem. P h y s . L e t t . 1976, 3 8 , 257 . 35. The t h e r m a l g e n e r a t i o n o f r e a c t i v e e x c i t e d s t a t e s ("photoche-

m i s t r y w i t h o u t l i g h t " ) has been r e p o r t e d b e f o r e ( 3 6 ) . 36. W h i t e , E . H.; M i a n o , J . D.; W a t k i n s , C. J . ; B r e a u x , E . J .

Angew. Chem. I n t . E d . E n g l . 1974, 13, 229 and r e f e r e n c e s c i t e d t h e r e i n .

37. V o g l e r , A.; K u n k e l y , H. Angew. Chem. I n t . E d . E n g l . 1984, 2 3 , 316.

38. F o r d y c e , W. A.; Brummer, J . G.; C r o s b y , G. A. J . Am. Chem. S o c . 1981, 103, 5 1 2 .

39. R i c e , S. F . ; G r a y , H. B. J . Am. Chem. S o c . 1983, 105, 4 5 7 1 . 40. Che, C.-M.; B u t l e r , L . G.; G r a y , H. B.; C r o o k s , R. M. ; W o o d r u f f ,

W. H. J . Am. Chem. S o c . 1983, 105, 5492.

4 1 . H e u e r , W. B.; T o t t e n , M. D.; Rodman, G. S.; H e b e r t , E . J . ; T r a c y , H. J . ; N a g l e , J . K. J . Am. Chem. S o c . 1984, 106, 1163.

42. Che, C.-M.; B u t l e r , L . G.; G r a y , H. B. J . Am. Chem. S o c . 1981, 103, 7796.

4 3 . Che, C.-M.; A t h e r t o n , S. J . ; B u t l e r , L . G.; G r a y , H. B. J . Am.

Chem. S o c . 1984, 106, 5143.

44. Che, C.-M.; H e r b s t e i n , F . H.; S c h a e f e r , W. P.; M a r s h , R. E . ; G r a y , H. B. J . Am. Chem. S o c . 1983, 105, 4604.

45. B r y a n , S. A.; D i c k s o n , M. K.; R o u n d h i l l , D. M. J . Am. Chem. S o c . 1984, 106, 1882.

4 6 . C h e , C.-M.; S c h a e f e r , W. P.; G r a y , H. B.; D i c k s o n , M. K.; S t e i n , P. B.; R o u n d h i l l , D. M. J . Am. Chem. S o c . 1982, 104, 4253.

47. S t e i n , P.; D i c k s o n , M. K.; R o u n d h i l l , D. M. J . Am. Chem. S o c . 1983, 105, 3489.

48. N o c e r a , D. G.; G r a y , H. B. J . Am. Chem. S o c . 1984, 106, 824.

4 9 . S c h ä f f l , S.; K u n k e l y , H.; V o g l e r , A., u n p u b l i s h e d r e s u l t s . 50. Kalyanasundaram, K. C o o r d , Chem. Rev. 1982, 4 6 , 159.

5 1 . W a t t s , R. J . J . Chem. E d . 1983, 6 0 , 834.

52. Van Houten, J . ; W a t t s , R. J . I n o r g . Chem. 1978, 17, 3 3 8 1 .

53. Hoggard, P . E . ; P o r t e r , G. B. J . Am. Chem. S o c . 1978, 100, 1457.

54. G l e r i a , M. ; M i n t o , F . ; B e g g i a t o , G.; B o r t o l u s , P . J . Chem. S o c , Chem. Comm. 1978, 2 8 5 .

55. Durham, B.; C a s p a r , J . V.; N a g l e , J . K.; Meyer, T . J . J . Am.

Chem. S o c . 1982, 104, 4803.

56. A l l e n , G. H.; W h i t e , R. P.; R i l l e m a , D. P.; Meyer, T . J . J . Am.

Chem. S o c . 1984, 106, 2 6 1 3 .

5 7 . C a s p a r , J . V.; Meyer, T . J . I n o r g . Chem. 1983, 22, 2444.

(17)

58. C a s p a r , J . V.; Meyer, T . J . J . Am. Chem. S o c . 1983, 105, 5583.

59. K u n k e l y , H.; M e r z . A.; V o g l e r , A. J . Am. Chem. S o c . 1983, 105, 7241.

60. W r i g h t o n , M. S.; M o r s e , D. L . ; Pdungsap, L . J . Am. Chem. S o c . 1975, 9 7 , 2073.

61. Cheim, C. U.; Wang, H. C.; S z w a r c , M.; B a r d , A. J . ; I t a y a , K.

J . Am. Chem. S o c . 1980, 102, 3100.

62. P i c k e t , C. J . ; P l e t c h e r , D. J . J . Chem. S o c , D a l t o n T r a n s . 1976, 7 4 9 .

63. S c h ä f f l , S.; V o g l e r , A., u n p u b l i s h e d r e s u l t s .

64. V o g l e r , A.; K u n k e l y , H.; H l a v a t s c h , J . ; M e r z , A. I n o r g . Chem.

1984, 2 3 , 5 0 6 .

65. V o g l e r , A.; K u n k e l y , H. Angew. Chem. I n t . E d . E n g l . 1981, 2 0 , 386.

66. D a v i s o n , A.; E d e l s t e i n , N.; Holm, R. H.; M a k i , A. H. I n o r g . Chem. 1963, 2, 1227.

67. Bezems, G. J . ; R i e g e r , P. H. ; V i s c o , S. J . Chem. S o c , Chem.

Comm. 1981, 2 6 5 .

68. G r o b e , J . ; Zimmermann, H. Z. N a t u r f o r s c h . 1981, 36b, 3 0 1 . 69. T a n a k a , K.; U-eda, K.; T a n a k a , T . J . I n o r g . N u c l . Chem. 1981,

43, 2029.

70. H e r s h b e r g e r , J . W. ; K o c h i , J . K. J . Chem. S o c , Chem. Comm.

1982, 2 1 2 .

71. H e r s h b e r g e r , J . W.; K l i n g l e r , R. J . ; K o c h i , J . K. J . Am. Chem.

Soc. 1982, 104, 3034.

72. D a r c h e n , A.; Mahe, C ; P a t i n , H. J . Chem. S o c , Chem. Comm.

1982, 2 4 3 .

73. M i h o l o v á , D.; V l c e k , A. A. J . O r g a n o m e t a l . Chem. 1982, 240, 4 1 3 . 74. H e r s h b e r g e r , J . W.; Amatore, C.; K o c h i , J . K. J . O r g a n o m e t a l .

Chem. 1983, 250, 345.

75. H e r s h b e r g e r , J . W.; K l i n g l e r , R. J . ; K o c h i , J . K. J . Am. Chem.

S o c . 1983, 105, 5 1 .

76. Z i z e l m a n , P. M.; Amatore, C.; K o c h i , J . K. J . Am. Chem. S o c . 1984, 106, 3 7 7 1 .

77. H a r r i s o n , J . J . J . Am. Chem. S o c . 1984, 106, 1487.

78. Summers, D. P.; L u o n g , J . C.; W r i g h t o n , M. S. J . Am. Chem. S o c . 1981, 103, 5238.

R E C E I V E D N o v e m b e r 8, 1985

Reprinted from ACS SYMPOSIUM SERIES No. 307 Excited States and Reactive Intermediates:

Photochemistry, Photophysics, and Electrochemistry A. B. P. Lever, Editor

Copyright © 1986 by the American Chemical Society

Reprinted by permission of the copyright owner

Referenzen

ÄHNLICHE DOKUMENTE

Recalling the expertise in the OPCW for the investigation of alleged use of chemical weapons, the States Parties expressed their support for the close cooperation, in accordance

Diverse chemical descriptors were explored for use in QSPR models aimed to screen the soil sorption po- tential of 351 organic compounds [54]. These com- pounds were divided into

meteorite contains C-rich material at some individual measurement po- sitions. The other points can be identi fi ed as a mixture of melilite and albite. 6d) show that the

The mathematical models of the transformations of biogenic element compounds and BOC given in this paper attempt to give a very broad simulation of the physical, chemical

This does not by any means say that crystalline precipitation is an unsuitable method for identifying organic compounds; combined with the determina- tion

Values selected for the SIT analysis, to determine the stability constant at zero ionic strength and the reaction ion interaction coefficient Δε(10) , are listed in Table A2-5,

Data selected for the SIT analysis, to determine the stability constant at zero ionic strength and the re- action ion interaction coefficient, Δε (10), refer to perchlorate

Values selected for the SIT analysis, to determine the stability constant at zero ionic strength (the stan- dard equilibrium constant) and the ion interaction coefficient ∆ε