• Keine Ergebnisse gefunden

Universität Konstanz WS 11/12 Fachbereich Mathematik und Statistik

N/A
N/A
Protected

Academic year: 2021

Aktie "Universität Konstanz WS 11/12 Fachbereich Mathematik und Statistik"

Copied!
2
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Universität Konstanz WS 11/12 Fachbereich Mathematik und Statistik

S. Volkwein, M. Gubisch, R. Mancini, S. Trenz

Übungen zu Theorie und Numerik partieller Differentialgleichungen

http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/

Sheet 5 Deadline: 27.01.2012, 10:10 o’clock before the Lecture Exercise 13 (Quadratic ansatz functions) (4 Points) Let Ω = (a, b) ⊆ R and x 0 , ..., x n+1 ∈ Ω ¯ with x 0 = a, x n+1 = b, x i < x i+1 .

1. Define piecewise quadratic ansatz functions φ i , i = 1, ..., n, and φ i+

1

2

, i = 0, ..., n, in C 0 ( ¯ Ω) such that

φ i (x j ) = δ ij & φ i (x j+

1

2

) = 0, φ i+

1

2

(x j ) = 0 & φ i+

1

2

(x j+

1

2

) = δ ij .

Hint: A quadratic function is determined uniquely by its values on three interpo- lation points.

2. Calculate the derivatives φ i , φ i+

1

2

. 3. Draw φ i , φ i+

1

2

, φ 0 i , φ 0 i+

1 2

for one fixed i in different colours in one large plot. Don’t forget to label your axes.

4. Consider the ansatz

y(x) =

n

X

i=1

α i φ i (x) +

n

X

i=0

α i+

1

2

φ i+

1

2

(x) for arbitrary coefficients α i , α i+

1

2

∈ R . Explain why y in general is just of H 1 - regularity (you don’t need to prove this).

Exercise 14 (Weak derivatives) (4 Points)

Let Ω = (−1, 1).

1. Let u ∈ L 2 (Ω) Define: v ∈ L 2 (Ω) is the weak derivative of u.

2. u(x) = abs(x). Show that the weak derivative v = u 0 ∈ L 2 (Ω) of u is given by u 0 (x) =

−1 x ∈ [−1, 0]

1 x ∈ [0, 1] .

(2)

3. Prove that u 0 is not weakly differentiable in L 2 (Ω).

Exercise 15 (Ansatz functions in two dimensions) (4 Points) Let Ω = (−1, 1) × (−1, 1). Consider the following triangulation of Ω:

1. Define the function S : ¯ Ω → R describing the canonical simplex on Ω, i.e. S i = S| Ω ¯

i

is a plain with S i (0, 0) = 1 and S i (x, y) = 0 for all other grid points (x, y) ∈ Ω. ¯ 2. Draw the graph of S.

3. Assume that Ω is triangulized by n 2 inner grid points x i , y j now. Let f ∈ C 0 ( ¯ Ω), f ij = f (x i , y j ) and

F (x, y) =

n

X

i,j=1

f ij φ ij (x, y)

where φ ij is the simplex with centre (x i , y j ).

Describe the graph of F .

4. Is F a good approximation for f ?

Referenzen

ÄHNLICHE DOKUMENTE

Universität Konstanz Sommersemester 2014 Fachbereich Mathematik und

Universität Konstanz Sommersemester 2013 Fachbereich Mathematik und

Universität Konstanz Sommersemester 2013 Fachbereich Mathematik und

Universität Konstanz Sommersemester 2013 Fachbereich Mathematik und

function [X] = gradproj(fhandle, x0, epsilon, nmax, t0, alpha, beta, a, b) with initial point x0, parameter epsilon for the termination condition k∇f(x k )k &lt; and the

c) By directly substituting the constraint into the objective function and eliminating the variable x, we obtain an unconstrained

Don’t forget to check the dimensions of the input arguments and document the code well, following the template given in

Universität Konstanz WS 11/12 Fachbereich Mathematik und StatistikS. Consider a square