• Keine Ergebnisse gefunden

Universität Konstanz Sommersemester 2013 Fachbereich Mathematik und Statistik

N/A
N/A
Protected

Academic year: 2021

Aktie "Universität Konstanz Sommersemester 2013 Fachbereich Mathematik und Statistik"

Copied!
2
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Universität Konstanz Sommersemester 2013 Fachbereich Mathematik und Statistik

Prof. Dr. Stefan Volkwein

Roberta Mancini, Stefan Trenz, Carmen Gräßle, Marco Menner, Kevin Sieg

Optimierung

http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/

Sheet 4

Deadline for hand-in: 2013/06/10 at lecture Optimization with boundary constraints.

So far we looked for (local) minimizer x ∈ R n of a sufficiently smooth and real valued function f : R n → R in an open set Ω ⊆ R n :

x = argmin

x∈Ω

f (x).

By differential calculus, we immediately received as a first order necessary condition:

f(x ) ≤ f(x) for all x ∈ B (x ) = ⇒ ∀x ∈ Ω : h∇f(x ), xi = 0.

If Ω is closed, e.g.,

Ω =

n

Y

i=1

[a i , b i ] = {x ∈ R n | ∀i = 1, ..., n : a i ≤ x i ≤ b i , a i , b i ∈ R },

the situation turns out to be slightly more complicated: if a (local) minimizer is located on the boundary, the gradient condition is not longer a necessary criterion. We will focus on that in the next exercise.

Exercise 10

Let f ∈ C 2 (Ω , R ), Ω as defined above. Notice that ∇f : Ω → R n can be expanded on the boundary of Ω since f ∈ C 2 implies that ∇f is Lipschitz continuous on Ω . Further, let x ∈ Ω be a local minimizer of f , i.e.

∃ > 0 : ∀x ∈ B (x ) ∩ Ω : f(x ) ≤ f (x).

Show that the following modified first order condition holds:

∀x ∈ Ω : h∇f(x ), x − x i ≥ 0.

Any x that fulfills this condition is called stationary point of f .

(2)

Exercise 11

For f : R n → R let L be the Lipschitz constant of the gradient ∇f. The canonical projection of x ∈ R n on the closed set Ω = Q n

i=1 [a i , b i ] is given by P : R n → Ω,

P (x)

i :=

a i if x i ≤ a i x i if x i ∈ (a i , b i ) b i if x i ≥ b i

.

Further we define

x(λ) := P (x − λ∇f (x)).

Prove that the following modified Armijo condition holds for all λ ∈

0, 2(1 − α) L

:

f (x(λ)) − f (x) ≤ − α

λ kx − x(λ)k 2 R

n

.

Hints: The following ansatz with the fundamental theorem of calculus may be helpful:

f (x(λ)) − f (x) = Z 1

0

d dt f

x − t

x − x(λ) dt.

You can use the following formula without proof:

x − x(λ), x(λ) − x + λ∇f(x)

≥ 0.

Exercise 12 (4 Points)

Consider the function f : R n → R and the following algorithm:

Algorithm 1 (Projected Gradient)

while termination criterion is not fulfilled do

while modified Armijo condition is not fulfilled do set λ = λ 2 ;

end while set x = x(λ);

end while

Let (x n ) n∈ N be now an iteration sequence created by this algorithm.

1. Show that (f (x n )) n∈ N converges.

2. Show that (x n ) n∈ N has at least one convergent subsequence.

3. Show that all accumulation points of (x n ) n∈ N are stationary points of f .

4. Show that x is a stationary point of f if and only if x = P (x − λ∇f(x )) holds.

Referenzen

ÄHNLICHE DOKUMENTE

Compute the point x k+1 using the damped Newton algorithm and compare it to the one returned by the classical Newton method. What do

Determine the number of gradient steps required for finding the minimum of f with the different matrices M and initial value x0 = [1.5;0.6] (use = 10

Herefore, write function files testfunction.m and rosenbrock.m which accept an input argument x and return the function and gradient values at x. Finally, write a file main.m where

Universität Konstanz Sommersemester 2015 Fachbereich Mathematik und

Universität Konstanz Sommersemester 2014 Fachbereich Mathematik und

Universität Konstanz Sommersemester 2014 Fachbereich Mathematik und

Universität Konstanz Sommersemester 2014 Fachbereich Mathematik und

Show that for the starting point x 0 = 0, the classical Newton iteration of f has two accumulation points which are both not roots of f.. Find another initial point which does not