• Keine Ergebnisse gefunden

Universität Konstanz Sommersemester 2015 Fachbereich Mathematik und Statistik

N/A
N/A
Protected

Academic year: 2021

Aktie "Universität Konstanz Sommersemester 2015 Fachbereich Mathematik und Statistik"

Copied!
1
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Universität Konstanz Sommersemester 2015 Fachbereich Mathematik und Statistik

Prof. Dr. Stefan Volkwein Sabrina Rogg

Optimierung

http://www.math.uni-konstanz.de/numerik/personen/rogg/de/teaching/

Sheet 1

Tutorial in calender week 18 Exercise 1

Determine and identify the local critical point(s) of the Rosenbrock function f : R

2

→ R , f(x

1

, x

2

) = 100 (x

2

− x

21

)

2

+ (1 − x

1

)

2

.

Exercise 2

Show that the function

f : R

2

→ R , f(x

1

, x

2

) = 8x

1

+ 12x

2

+ x

21

− 2x

22

has only one stationary point, and that it is neither a maximum nor minimum, but a saddle point. Sketch the contour lines of f (you can also use Matlab).

Exercise 3

Consider the function

f : R

2

→ R , f (x

1

, x

2

) = 3x

41

− 4x

21

x

2

+ x

22

.

Prove that x ˜ = (0, 0) is a critical point of f . Show further, that a restriction of f on any line

1

through x, has a strict local minimum in ˜ x. Is ˜ x ˜ a local minimizer of f?

1

The restriction of f on the line γ is defined as g(t) = f (γ(t)), t ∈ R , with γ(t) := ˜ x + td, where

d ∈ R

2

\ {0} is an arbitrary but fixed direction.

Referenzen

ÄHNLICHE DOKUMENTE

Determine the number of gradient steps required for finding the minimum of f with the different matrices M and initial value x0 = [1.5;0.6] (use = 10

Herefore, write function files testfunction.m and rosenbrock.m which accept an input argument x and return the function and gradient values at x. Finally, write a file main.m where

Universität Konstanz Sommersemester 2015 Fachbereich Mathematik und

Universität Konstanz Sommersemester 2014 Fachbereich Mathematik und

Universität Konstanz Sommersemester 2014 Fachbereich Mathematik und

Universität Konstanz Sommersemester 2014 Fachbereich Mathematik und

Show that for the starting point x 0 = 0, the classical Newton iteration of f has two accumulation points which are both not roots of f.. Find another initial point which does not

Universität Konstanz Sommersemester 2014 Fachbereich Mathematik und