• Keine Ergebnisse gefunden

Advanced NMR Methodology for the Investigation of Organometallic Compounds in Solution

N/A
N/A
Protected

Academic year: 2022

Aktie "Advanced NMR Methodology for the Investigation of Organometallic Compounds in Solution"

Copied!
161
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Advanced NMR Methodology for the Investigation of Organometallic

Compounds in Solution

Dissertation

zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades

„Doctor rerum naturalium“

der Georg-August-Universität Göttingen

im Promotionsprogramm CaSuS

der Georg-August University School of Science (GAUSS)

vorgelegt von Ann-Christin Pöppler

aus Hofgeismar

Göttingen, 2013

(2)

Betreuungsausschuss

Prof. Dr. Dietmar Stalke, Institut für Anorganische Chemie Prof. Dr. Philipp Vana, Institut für Physikalische Chemie Dr. Michael John, Institut für Anorganische Chemie

Mitglieder der Prüfungskommission

Referent: Prof. Dr. Dietmar Stalke Korreferent: Prof. Dr. Philipp Vana

weitere Mitglieder

Dr. Michael John, Institut für Anorganische Chemie

Prof. Dr. Ulf Diederichsen, Institut für Organische und Biomolekulare Chemie Dr. Inke Siewert, Institut für Anorganische Chemie

Jun.-Prof. Dr. Ricardo A. Mata, Institut für Physikalische Chemie

Tag der mündlichen Prüfung: 24.06.2013

(3)
(4)
(5)

Table of Contents

Abbreviations ... iii

1 INTRODUCTION ... 1

2 RESULTS AND DISCUSSION ... 30

3 SUMMARY AND OUTLOOK ... 111

4 EXPERIMENTAL PART ... 117

(6)

Appendix ... 131 5 REFERENCES ... 141

(7)

Abbreviations

(8)
(9)

1 I

NTRODUCTION

1.1 Aggregation of Organolithium Compounds

1.1.1 Structural Motifs

(10)

μ

(11)

1.1.2 Structure Elucidation by X-ray Diffraction Experiments

(12)
(13)

)

α

(14)

1.1.3 Structure Elucidation by NMR Spectroscopy

(15)

α

(16)
(17)

η

α

(18)
(19)

1.2 Anisotropic NMR

Å

(20)

1.2.1 Alignment Techniques

(21)

1.2.1.1 Self-alignment

χ

1.2.1.2 Phospholipid Bicelles

(22)

α

1.2.1.3 Bacteriophages and Purple membranes

(23)

1.2.1.4 Liquid Crystals for Small Organic Molecules

(24)

γ

γ ε

(25)

1.2.1.5 Strain Induced Alignment in a Gel (SAG)

(26)

Δν

(27)
(28)

1.2.2 Residual Anisotropic NMR Parameters (RDCs, RQCs and RCSAs) 1.2.2.1 Residuals Dipolar Couplings (RDCs)

(29)

(30)
(31)

1.2.2.2 Residual Quadrupolar Couplings (RQCs)

(32)
(33)

(34)

1.2.2.3 Residual Chemical Shift Anisotropies (RCSAs)

δ

(35)

σ σ

Δδ

(36)

1.3 Scope

Solid State

Solution Reactivity

(37)
(38)

2 R

ESULTS AND

D

ISCUSSION

2.1 Structure Elucidation by Isotropic NMR Experiments

2.1.1 Mixed Crystalline Lithiumorganics and Interconversion in Solution

(39)

̅

(40)
(41)

(42)
(43)
(44)

2.1.2 Aggregation of Donor Base Stabilized 2-Thienyllithium in Solution



(45)

 

(46)



 

(47)
(48)
(49)
(50)

(51)

(52)

(53)

2.1.3 Interim Conclusion

(54)

2.2 Structure Elucidation by Anisotropic NMR Experiments

2.2.1 Employment of Polystyrene Gels for the Analysis of Organolithium Compounds

2.2.1.1 Polymer Synthesis

(55)
(56)
(57)
(58)

(59)

2.2.1.2 Analysis of Text Book Lithium Compounds

(60)

δ

Δν

(61)
(62)
(63)

2e 2c

(64)
(65)

2.2.2 Slice-Selective NMR Experiments

(66)

2.2.2.1 Technique

2

Gz

z

z 2G



  

  

(67)

(68)

2.2.2.2 Basic Information from Slice-selective 2H and 7Li NMR Spectroscopy

(69)

(70)
(71)
(72)

2.2.2.3 Dependency of the Swelling on the Cross-linking

(73)

2.2.2.4 Dependency of the Swelling on the Temperature

(74)

2.2.2.5 Connecting Remarks

(75)
(76)
(77)

2.2.3 Investigations of Different Polymer Systems: PBA and Modification of PS

2.2.3.1 Thermally Polymerized Butyl (and Ethyl) Acrylates

(78)
(79)
(80)
(81)

2.2.3.2 Homogeneity of Different Butyl Acrylate Systems

(82)
(83)
(84)

2.2.3.3 Slice-selective Experiments

2.2.3.3.1 General Observations

(85)
(86)

2.2.3.3.2 Dependency on the Linker Concentration

(87)
(88)

2.2.3.3.3 Dependency on the Concentration of the RAFT agent

(89)

2.2.3.3.4 Addressing Homogeneity Issues

(90)

  

(91)

(92)
(93)

2.2.3.4 Synthesis and Application of RAFT-polymerized PS Gels

(94)
(95)

(96)

2.2.4 Interim Conclusion

(97)
(98)

2.3 Combined Studies for Structure Elucidation

2.3.1 Study of iPrMgCl and its Turbo Analogue in THF

2.3.1.1 Structural Motifs of Grignard and Turbo-Grignard Compounds

(99)
(100)

2.3.1.2 Electrospray Ionisation (ESI) Mass Spectrometry

2.3.1.3 Isotropic NMR Experiments

(101)
(102)
(103)
(104)
(105)

2.3.1.4 Anisotropic NMR Experiments

(106)
(107)

2.3.2 Investigation of ThiLi·Diglyme by NMR Spectroscopy and DFT- Calculations

2.3.2.1 The Structural Motif

(108)

2.3.2.2 NMR Spectroscopic Studies

(109)

(110)

(111)
(112)

2.3.2.3 Preliminary DFT Calculations

(113)

(114)
(115)

(116)

2.3.2.4 Final Structure Refinement

ε

ε

(117)
(118)

(119)

3 S

UMMARY AND

O

UTLOOK

(120)
(121)
(122)
(123)
(124)
(125)

4 E

XPERIMENTAL

P

ART

4.1 Techniques and Experiments

4.1.1 Handling of Air- and Moisture-Sensitive Compounds

4.1.2 NMR Techniques and Experiments

(126)
(127)

4.2 General Procedures

4.2.1 Polymer Synthesis

(128)

4.2.2 Polymer Swelling

(129)

4.3 Characterizations

4.3.1 Synthesis and Characterization of [tBuLi]44[Me2NC6H4Li]4 (1):

(130)
(131)

4.3.2 Synthesis and Characterization of [ThiLi·Dn]m (2a-e)

(132)
(133)
(134)

4.3.3 Characterization of (‒)-Menthol (3)

Atom D (C-H) in Hz

C1 -23.0

C2 -18.8

C3-He -4.3

C3-Ha -32.7

C4-He -4.3

C4-Ha -30.1

C5 -24.1

C6-He -7.6

C6-Ha -19.6

C7 -14.5

C8 1.1

C9 3.2

C10 -8.9

(135)

4.3.4 Characterization of Lithium hexamethyldisilazane (4)

(136)

4.3.5 Characterization of nButyllithium·L (5a-d)

4.3.6 Characterization of Lithiumtetrafluoroborate (6)

Δν

Δν

(137)

4.3.7 Characterization of iPrMgCl (7)

4.3.8 Characterization of iPrMgCl · LiCl (8)

(138)

4.3.9 Characterization of LiCl (9)

4.3.10 Characterization of [Li(diglyme)2][(diglyme)Li2(C4H3S)3] (10)

Atom D (C-H) in Hz

C3 15.9

C4 0.1

C5 1.0

C1’ 0.8

C2’ 6.3

C3’ 2.1

H4-H5 4.0

(139)

Appendix

(140)
(141)
(142)
(143)

-112.36 -69.69 -76.16

465.71 173.63 180.57

64.31 -17.72 -23.96

176.67 51.97 52.21

(144)
(145)
(146)
(147)
(148)
(149)

5 R

EFERENCES

(150)
(151)
(152)
(153)
(154)
(155)
(156)

(157)
(158)
(159)
(160)
(161)

Referenzen

ÄHNLICHE DOKUMENTE

hoher Druck, hohe Temperatur 2) Catalytic HPHT Synthese:. hoher Druck, hohe

Lewis-Säure: Teilchen, das über ein leeres äußeres Orbital verfügt, das zur Bildung einer kovalenten Bindung ein Elektronenpaar aufnehmen kann = Elektronenpaarlücke

Dabei sollen Studenten und an- gehende Absolventen die Möglichkeit haben, Kontakt zu für sie relevanten Firmen herzustellen bzw, auch nur allgemeine Informationen über

Bis(trimethylsilyl)diazene, Diazene, Tetrazene The acid-catalyzed decomposition of diazene, formed as an intermediate by the reaction of bis(trimethylsilyl)diazene with acids,

Sonderdruckanforderungen an Dipl.-Phys. niveaus durch schnelle Änderung des thermischen Zu- standes des entsprechenden Gases zu erzielen. Dabei muß die Zustandsänderung in

Exemplary ORCA input files geometry optimization and numerical frequencies.. Structure

Die Ionisierungsenergie ist die Energie, die aufgewendet werden muß, um ein Elektron aus der Anziehungskraft des Atomkerns zu bringen.. Die Ionisierungsenergie wird durch

z.B. Petroleum), da Reaktion mit Luft - fast alle Salze sind in Wasser